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A classification of all the Clifford algebras is given in terms of Kronecker products of the
quaternion and dihedral groups. The relationship to spinors in # dimensions is explicitly
determined. We show that the real Clifford algebra in Minkowski spacetime is distinct from both
the algebra of Dirac matrices and the algebra of Majorana matrices, and cannot be realized by the
spinor framework. The matrix representations of Clifford algebras are discussed, and are utilized
to give a classification of the real forms of Lie algebras. We are thus able to relate Clifford, Lie, and

spinor algebras in an intrinsic geometrical setting.
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I. INTRODUCTION

The apparatus of theoretical physics consists in large
part of certain algebraic structures which arise naturally in
the description of physical phenomena. The Clifford alge-
bras'™ appear to offer a framework for a unified setting of
many of these algebras. (For various applications of Clifford
algebras to physics, see references in Ref. 5.)

In the past, we have recast the Clifford algebras in a
form suitable for calculations and manipulations in physics,
by using the basis of differential forms in a Riemannian
space.” The advantage is that we were able to utilize the
entire apparatus from the theory of differential forms (exteri-
or product, duality, and the geometrical interpretation) in
addition to the useful manipulatory properties of the Clif-
ford algebras. Our classification of all Clifford algebras in-
cluded many of the algebras that have appeared in physics,
and placed them in a useful geometrical setting.’

The purpose of the present paper is to further the task
begun in Ref. 5 towards providing a simple and unified alge-
braic framework for use in physics. First, we show how the
Clifford algebras can be related in a very simple manner to
Kronecker (tensor) products of the quaternion and dihedral
groups. This provides a means of directly constructing the
larger Clifford algebras, and obtaining relations between
them. The Classification theorem (Theorem 5) gives the
structure of all the Clifford algebras. The content of this
theorem is given in an easily accessible manner in Tables I
and II, which include, in particular, the relationship of Clif-
ford algebras to Riemannian spaces.

Second, we relate some of the Clifford algebras to spin-
ors in # dimensions.*™® What is important is that many Clif-
ford algebras cannot be related to the spinor framework
{Theorem 6). An example is the quaternion algebra H. An-
other physically important example is the real Clifford alge-
brain Minkowskispacetime 4 ' =~ N, [elsewhere called H (2)
or M,(H )]. This algebra is distinct from both the algebra of
Dirac matrices and the algebra of Majorana matrices (which
we demonstrate here) and cannot be realized by the spinor
framework. This point has not been discussed previously.

Next, we determine the Lie algebra which corresponds
to each Clifford algebra, in two distinct ways. First, we give
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the orthogonal Lie algebras SO{r,s) realized by the Clifford
algebras via the Lie bracket (Table III). These algebras are in
fact larger than the spin (1) algebras which are obtained from
the usual spinor construction, and include spin (#) as a subal-
gebra.

Second, we give the matrix representation space of each
Clifford algebra, which in turn enables us to obtain the full
matrix Lie algebra corresponding to each Clifford algebra
(Theorem 9). The previously determined relationship to the
orthogonal Lie algebras, along with this result, gives us a
useful list of Lie algebra isomorphisms (Table IV). In addi-
tion, Theorem 9 combined with the Classification theorem
{Theorem 5)determines the real forms SL(k;H ) and SL(2k;R)
of the complex Lie algebra SL(2k;C). These last results, while
not new, demonstrate the usefulness of the construction by
the simplicity and ease with which they are obtained.

‘A novel feature of our discussion is the utilization of the
abelian algebra  (elsewhere denoted R @ R) in a key manner
in the classification of Clifford algebras. The algebra Q has
properties akin to the complex field C, yet £ is not a conven-
tional field. The properties of £ were discussed in detail in
Ref. 9.

Il. THE DIFFERENTIAL FORM REALIZATION OF
CLIFFORD ALGEBRAS

A Clifford algebra'~ is defined via the anticommuting
bases,

eel= —ele, i#j, i,j=1,..n,

€P=+1or —1. (1)

We have previously joined the theory of Clifford alge-
bras to the theory of differential forms by identifying the
basis ¢’ with the basis one-forms dx’ = ¢ of a flat n-dimen-
sional Riemannian space.® The metric of this space is g’

= (0’,0”) and has diagonal entries either + 1 or — 1 (all off-
diagonal entries are zero). We can realize the product (1) in
terms of the basis one-forms, the metric, and the Grass-

mann—Cartan exterior product A . (For the apparatus of dif-
ferential forms, see Ref. 10.) This realization is discussed at
length in Ref. 5. The product was called the *‘vee product,”
and was denoted by v. For the basis one-forms the vee prod-
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uct obeys the following rules:

oval=0o'Na!, i#),

o'vo'=g" (no sum). (2)

By repeated application of the vee product, we can gen-
erate all the basis p forms. In particular, we single out the
volume element 0" = g' A - Ag" = o' V-V ¢, which is
important in the following section. In each n-dimensional
space there are 2" basis forms, all of which can be manipulat-
ed with the vee product. The vee product between a basis »
form and a basis s form is given in two steps, as follows: (i)
Identify the & indices that the two basis forms have in com-
mon, and permute them into canonical form (below), (ii) con-
tract between identical indices.

This prescription gives the general definition of the vee

product between two specific basis forms.
Definition 1:

(0" A Ao V(a” A No)
=(= )= )0 " ANo™ *AN A Ao,
VieH A A" AN A Ad )

= (= 1) = )" g0 A A NG A N

(3)

Here the factors of ( — 1)™ and ( — 1) arise, respective-
ly, from the permutations

R P 1"'ir>
\ (4a)
(}‘l"'/{r—k ViV
(jl"'jk jk +1 .l( ) (4b)
ViV,

Kol

The crucial difference between the vee product and the
well-known exterior product is that the vee product of two
forms is always another form, whereas the exterior product
of two forms is zero if the sum of their ranks exceeds the
dimension of the space. Another important property is the
existence of a unique inverse in vee: every basis form has an
inverse equal to the form itself up to a sign.

These properties demonstrate that the set of all basis
forms define a finite group under the vee-product, called the
“vee group” of that particular Riemannian space.” We have
shown that the group algebra over R of each ““vee” group is
isomorphic (modulo Z,) to the real Clifford algebra corre-
sponding to that space.’

The Z, grading is due to the following observation. In
the finite vee group, one must consider positive and negative
basis forms as distinct elements, while in the corresponding
group algebra over R, the distinction between positive and
negative bases is not made. The group algebra must therefore
be divided by the group of two elements {1, — 1} =Z,.

The elements of the Clifford algebra in this realization
are antisymmetric tensor fields expanded on the basis p
forms, or equivalently, linear combinations of the p forms.
These possess algebraic properties above and beyond those
expected from the usual exterior algebra, in particular the
possibility of division, since the basis is endowed with the vee
product. The vee product between the basis (2,3) gives a set of
rules for the product of the field components. This product
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has been previously discussed in Ref. 5 and is not needed in
the present analysis.

ill. THE VEE-GROUP STRUCTURE

In this section, we give a construction of the vee group
of differential forms G " in each n-dimensional Riemannian
space by using group-theoretical methods.

We first recall some results from Refs. 1, 4, and 5.

In the vee multiplication, the volume element " anti-
commutes with all the forms in G " when n = even, and com-
mutes when » = odd. Hence, the center of each group will
contain the elements {1, — 1} for n = even, and {1, — 10",

— w"} when n = odd. The actual groups defined by the cor-
responding centers depend upon whether (w")* = + 1 or

— 1, which is in turn determined by the signature and di-
mension of the metric in each case. The center of each group
of forms is given by the following theorem.® Here, Z, is the
cyclic group of order 2; Z, is the cyclic group of order 4,
isomorphic to the complex group; and D, is the dihedral
group of order 4, isomorphic to the Gauss—Klein Veer-
gruppe Z,® Z,.

Theorem 1: The center of the vee group G " is isomor-
phic to the finite group Z,, when n = even; Z,, when
n=oddand (©")’ = — 1;and Z,® Z, = D, when n = odd
and (")} = + 1.

Using Theorem 1, we gave in Ref. 5 a key result of the
group structure as the following theorem:

Theorem 2: The factor group G " modulo the center of
G ", is the abelian group (Z,)" = Z, ® -- ® Z, (n times); and is
given by the three distinct cases:

n=even, G"/Zy=(Zyf = D), (5a)
n = odd, (wn)z = -1 GYVZ,=(Z,)" " "= (D,)" " 2,
(Sb)
n=odd, (@ =1 G"/D,=(Z,) '=(Dy)" V2
(5¢)

We proceed to apply some general group-theoretical
results to the construction of the vee groups. First, since the
vee group G "is of order 2" * ', it is referred to as a “2-group”
in the mathematical literature.'' Second, Theorem 2 demon-
strates that the vee groups G " are ‘“‘extra-special 2-groups,”
defined as follows'":

Definition 2: G is an “‘extra-special 2-group” iff
G /center (G ) = abelian, and center (G ) is a 2-group.

We now recall a general theorem from the theory of
group representations':

Theorem 3: Every extra-special p-group G is the Kron-
ecker product of nonabelian p groups of order p*, and so has
order p*™ * ! for some m.

In the special case of interest, p = 2 for the vee groups
G". There are only two nonisomorphic nonabelian vee
groups of order 2° = 8, and they are the quaternion group @,
and the dihedral group of order 8, D,.’

In Ref. 5, Table IV, we gave the following result (as
N,@N,=N,®N,).

0.0, =D,8D,. {6)

Hence, all mixed Kronecker products of m copies of the

Nikos Salingaros 2



groups Q, and D, will reduce to either (D,)" or @, ® (D,)" ~ .
Putting these results together, we obtain the corollary
to the Frobenius—Schur theorem.'!!?

Theorem 4: For any extra-special 2-group G of order
22/( + ]’

G=(D)) or G=Q,8(D,) .

Theorem 4 can be rewritten as a corollary after identify-
ing the extra-special 2-groups with the vee groups. From
Theorems 1 and 2, Definition 1, and recalling the order of G *
as 2"+, we have the

Corollary to Theorem 4: For any vee group G >,

G =(Dy) or G*=Q,®(D,) . (7}

This corollary will be utilized in the next section to con-
struct all the Clifford algebra 4 7 as the groups algebras of
the vee groups. Previously we derived some relations be-
tween the vee groups which were listed in Table IV, Ref. 5.
They in fact provided explicit proofs of special cases of Theo-
rem 4 and its corollary.

IV. CLASSIFICATION OF CLIFFORD ALGEBRAS

The Ref. 5, we identified the Clifford algebras 4 #4, cor-
responding to each Riemannian space M #9, by direct con-
struction. [The notation used in the following: the metric of
the space M 79 contains p plus ones and g minus ones on the
diagonal, zeros elsewhere, and it is used in the definition of
the vee product (2,3). The dimension of the space is
n=p+gq]

The most remarkable result of the construction is the
demonstration that certain algebras of the same dimension
but distinct signature are in fact isomorphic. These isomor-
phisms prompted the notation for the Clifford algebras in-
troduced in Ref. 5, and which is discussed below. In this
section, we show how these isomorphisms are a direct conse-
quence of the Frobenius—Schur theorem.'? This appears to
be the first simple explanation of this fundamental property
of the Clifford algebras.

A novel feature of our discussion is the utilization of the
abelian algebra  in a key manner.  is isomorphic to the
Clifford algebra 4 ' which is generated by a basis one-form
w with the property that @wvw = + 1. Every element aeQ is
of the form a = x + wy; x,yeR. It is easy to see the similarity
to complex algebra C, which is itself isomorphic to the Clif-
ford algebra 4 *'. A detailed discussion of the properties of
1, as well as the reason why 0 is not a conventional field,
was given in Ref. 9.

We present below as Theorem 5, the construction and
classification of all the Clifford algebras. The notation is as
follows: V, = H is the familiar quaternion algebra and N, is
an algebra with three anticommuting elements whose
squares are + 1, + 1, — 1, respectively.'* N, [elsewhere
denoted R(2) or M,(R)] is isomorphic to the group algebra
(Z,-graded) of the dihedral group D,.° Finally note that the
definition of the algebras N5 and N, given in Ref. 5 has been
interchanged.

Theorem 5;

(a) The Clifford algebras are constructed from the real
algebras with three anticommuting elements N, and N, = H
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(which are of dimension 4), and from the abelian algebras £
and C (which are of dimension 2],

(b} There are only two nonisomorphic algebras of di-
mension 2% They are labelled as &,,, m = odd or even, and
they are obtained as Kronecker products of the algebras N,
and N, = H as follows:

Ny =N {8a)
and

Ny =N (N L. (8b)

(c) There are only three nonisomorphic algebras of di-
mension 2°* * !, They are labelled as S, , k = integer, and

12, ,m = odd or even, and are given by the Kroenecker
product of the N algebras with Q and C.

Sl( =N2k ®C2N2k,1 ®C; (93)
Dy =Ny _, 89, (9b)
£ =Ny 2L (9c)

{d) The identification of the Clifford algebras with each
Riemannian space is given by their position in Table I. The
table can be indefinitely extended downwards for the S, al-
gebras with k& = integer, and for the N,, and {2, algebras,
with m = odd or even.

{e) The periodicity of the Clifford algebras is generated
by N,, the Clifford algebra in Minkowski spacetime.

The proof of Theorem 5 will be indicated here: part (b)
follows from translating the corollary to Theorem 4 [Eq. (7)]
from the vee groups to the Clifford algebras; part (c) com-
bines results first obtained in Refs. 9 and 14, which essential-
ly follow from Theorem 1 of this paper; part (d) is an exten-
sion of the results of Ref. 5; part () is intrinsically related to
the Bott periodicity,® and can be graphically deduced from
Table I.

There is a large amount of information contained in this
theorem, which we proceed to discuss in stages. First, we
indicate which of the Clifford algebras are otherwise known
in physics.

Of the N algebras, NV, is related to the elementary (real)
spinors,'® while N, is isomorphic to the quaternion algebra
H7>'> N, was first realized by the 4 X 4 real matrices of Ma-
jorana.>'* N, is isomorphic to the Clifford algebra in Min-
kowski spacetime, which has been discussed in Ref. 5 and
14-16.

Of the S algebras, S, is isomorphic to the algebra of
Pauli matrices,>'* while S, is isomorphic to the algebra of
Dirac matrices.>'* These two algebras are related to the
complex spinors of dimension 2 and 4, respectively, as is well
known (see Sec. 5).

Of the {2 algebras, only one has been given an explicit
realization: {2, (elsewhere denoted H @ H ) is isomorphic to
the “biquaternions” of Clifford.”

We note that the V, S, and {2 algebras are frequently
referred to in terms of their matrix representation space.
This is discussed in Sec. 7 of this paper. Theorem 8 [Eq. (19)]
can be used to relate the matrix notation of the Clifford alge-
bras to the one discussed here.

The Clifford algebra corresponding to a Riemannian
space can be found from its position on the triangular grid of
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TABLE 1. Classification of Clifford algebras in each Riemannian space.

Dimension of Algebra

64
128
256
512

1024

Dimension of Riemann Space

n=0

1

2

Table I. The coordinates of the grid (p,g) correspond to the
metric of the Riemannian space M 77, each row has the same
dimension n = p + g, and the entries are ordered from left to
rightas(p=n,g=0),p=n—1,9=1),...,p=0,9g =n).
To give a specific example, the algebra 4 2% is defined by
the anticommutation relation {o*,0”} = 2g*", u, v = 1,...,4,
with the metric g = diagonal (+ 1, + 1, — 1, — 1). 4 > is
related to a Riemannian space of dimension n = 4, and is an
algebra of dimension 2* = 16. The entries on the #n = 4 line
of TableIcorrespondtothealgebras4 %%, 4 *' 422 4 '3 and
A **, respectively. Hence, the Clifford algebra 4 22 corre-
sponds to N,, which happens to be isomorphic to the algebra
of the Majorana matrices.®
As an example of the isomorphism between algebras of
the same dimension but distinct metric, the Clifford algebras
of dimension 32 are given in Table I, row n = 5, as

A S‘Ozﬂ4, A+ =S, A 3‘2z03,
AP=S, AY=n, A4%=S,. (10)

From (10) we have the result that the Clifford algebras
A*, 4% and 4 °° are all isomorphic to the Dirac algebra
S,=D.

A remark is necessary on the nature of the Clifford alge-
bra isomorphisms. In the differential form realization, the
elements of each Clifford algebra are antisymmetric tensor
fields, or linear combinations thereof. A sharp distinction is
made between tensor fields of distinct rank, because of the
geometry. Hence each Clifford algebra 4 # is geometrically
distinct, for each distinct space M 79, However, when one
ignores the geometrical construction (i.e., when one has an
abstract or matrix representation), one can distinguish alge-
bras only if their underlying vee-groups are distinct. The
Clifford algebras that are algebraically distinct are in fact
those given by Theorem 5. One should therefore always keep
in mind that the concept of an isomorphism is an algebraic
one and not a geometrical one.

Theorem 5 gives relations which have direct physical

4 J. Math. Phys., Val. 23, No. 1, January 1982

relevance. For example, it clears up the old question con-
cerning the relationship of the Dirac algebra to the spaces
withmetric(+ 1,4+ 1,+1,— lJand(—1,—1,— 1, + 1).
From Table I, row n = 4, we identify the algebras corre-
sponding to these two metricsas 4 *' =N,and 4 "}~ N,, re-
spectively. Hence the different metrics give rise to two dis-
tinct algebras. N, is isomorphic to algebra of the Majorana
matrices, while N, is isomorphic to the Clifford algebra in
Minkowski spacetime. The Dirac algebra D = §, appears
only on the row n = 5 of Table I, and therefore corresponds
to a Clifford algebra in five dimensions. This surprising re-
sult can be explained by Theorem 5. Equation (9a) for k =2
gives the relation §, = N, ® C= N, & C. Hence, the Dirac al-
gebra is isomorphic to the complexification of the real Clif-
ford algebra in Minkowski spacetime N, or equivalently, to
the complexification of the algebra of the real Majorana ma-
trices V,."* Since field theory usually involves complex
quantities, the above distinction is not noticed in actual prac-
tice. When one deals with real spinor fields, however, the
difference is crucial (see also the following section).

The structural properties of the Clifford algebras are
summarized in Table II, where we have listed the distinct

TABLE I1. Structure of the Clifford algebras in terms of finite groups.

Dimension of

Dimension of Corresponding  corresponding
algebra Algebra vee group Riemann space
1 R z, 0
2 (1] D,=2Z,82, 1

C z,
2 Ny (D) 2k
k=123 Ny, Q.8(D,) !
22kt S, Z,® (D) 2k +1

2y Z,e (DY

125 Z,8Q,8(D,) "
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Clifford algebras in each dimension, along with the corre-
sponding vee groups. Once an algebra has been identified
from Table 1, one can obtain its underlying group structure
from Table II.

We note that in previous treatments, the abelian algebra
€ was not utilized in the same capacity as the complex field
C. Instead, the vector space isomorphism 2 = R & R was
employed to give the {2 algebras as N, @ N, instead of NV,
@ = N, @ wN,.° While the identification N, ® N, is cor-
rect in the matrix representation space,** it should not be
used in the present discussion, as it conceals the vee-group
structure of the algebra €2 (see discussion in Ref. 9).

The connection to other work®* is made by noting that
Theorem 5 implies the following recursion relations ob-
tained by iterating Eq. (8), and using Eq. (6).

Ny 1 8N, =Ny @ Ny =Ny 5, (k1) (11a)

Ny 1 @N =Ny 8 Ny=Ny . (11b)

Specific cases of these relations were derived in Ref. 5
(Table IV), by direct calculation.

Withtheidentification4 >~ N,and4 **~ N, = H(Ta-
bleI), and the application of (11a) and (11b) and (9a), (9b), and

(9c) to the edges of Table I, we can verify the following rela-
tions for compact spaces.

AO'"SA 2'°zA n+2,0’ (lza)
A"'O®A0‘2:AO'"+2. (12b)

These relations were used as a starting point for the
construction of Clifford algebras in Ref. 3.

V. SPINORS AND SPIN ALGEBRAS

In this section, we show how spinors in # dimensions
are related to some of the Clifford algebras. The main result
is the demonstration that there exist Clifford algebras which
cannot be directly related to the spinor formalism; among
them is the real Clifford algebra in Minkowski spacetime V.

A second result is that even in those cases where Clif-
ford algebras are related to spinors, we can realize a related
Lie algebra that is in fact larger than that obtained by the
usual spinor methods. This has the practical consequence
that we can derive isomorphisms between Lie algebras useful
in physics in a very simple manner (Table IV).

We have explicitly shown the relationship between the
elementary (real two-component) spinors 3 and the Clifford
algebra N, in Ref. 13. This relationship can be written as

YN, {13)

Spinors are objects in matrix representation space. The
demonstration of relation (13) in Ref. 13. was given in the
representation space of N, which is R(2) (2 X 2 real matri-
ces). We can, however, utilize the group theoretical results of
this paper in order to discuss spinors in » dimensions with-
out having to enter the representation space of the Clifford
algebras. (This will be done in turn in the following section
after we have given the representation space of the Clifford
algebras.)

Spinors in # dimensions are constructed from Kron-
ecker products of the elementary spinors 1 as follows>®®:

V'=y; Y"=@)"=¢e--o, n times. (14)
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The complex spinors are obtained by complexifying the
spinor field. In order to distinguish between real and com-
plex spinors in # dimensions, we will occasionally specify the
field, as ¢"(R) or ¢"(C).

Definition 3: "(C) = ¥"(R) @ C. (15)

The relationship of the Clifford algebras to spinors in n
dimensions is given by the following theorem.

Theorem 6:

(a) The real spinors in 2k dimensions are related to the
odd N algebras as

¢k (R)o>Ny - (16a)

(b) The complex spinors in 2k dimensions are related to
the S algebras as

P+ (C)eS,. {16b)

The proof of Theorem 6 is obtained from Theorem 5
and relationships (13)—(15). A few comments are in order.

Most important is the fact that the algebras V.., and £2
cannot be related to the spinor formalism. This includes the
Clifford algebra in Minkowski spacetime, 4 '* = N,.

The dimension of the spinor space corresponds to the
dimension of the corresponding Riemann space in the real
case (Table II); in the complex case the spinors are consid-
ered over the field C, hence the dimension is one less than the
corresponding Riemann space.

Our result differs in a significant way from other work
in that we were able to maintain a clear distinction between
the real and complex algebras and spinors. This is not always
possible using the traditional spinor methods. Consider for
example the construction of the Dirac spinors ¥*(C) (related
to the Dirac algebra D = §,) as the Kronecker product of
two copies of the Pauli spinors ¢'(C) (related to the Pauli
algebra S, by Theorem 6). From Eq. (14) the relation is

¥'(C) e ¢'(C) = ¥*(C). (17)
It is clear that the analogous construction for real spin-
ors gives the Majorana spinors ¢*(R) (which are related to the

Majorana algebra N, by Theorem 6). The relation for the real
case is

Y'(R)® ¢'(R) = ¢*(R). (18)

It is therefore impossible to obtain spinors correspond-
ing to the real Clifford algebra in Minkowski spacetime N ,;
we can only obtain their complexification, which by Eq. (92)
and (15) are the Dirac spinors. Furthermore, the algebras V,
and N, do not have the same properties; for instance, we
show below that the corresponding Lie algebras are distinct
(Table III) (see also the discussion in Ref. 14).

We can now discuss the relation between spinors in n
dimensions and Clifford algebras by constructing the associ-
ated Lie algebras. From the spinors, we construct the “spin”
Lie algebras spin (n), which are locally isomorphic to SO(n).
Globally, spin (n) provides the double covering of SO(n). The
relationship to the Clifford algebras is given by the following
theorem.

Theorem 7:
(a) The two-forms of the Clifford algebra 4 77 corre-
sponding to the Riemann space M 7 provide a representa-
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tion of the Lie algebra spin (p,q) =SO{p,q), via the Lie
bracket.

{b) The (inner) automorphism group of the tensor fields
in the Riemannian space M ?9 is the Lie group correspond-
ing to the Lie algebra SO(p,q). This is known as the ““Clifford
group of automorphisms.”

Parts (a) and (b) are separately well known.

We have previously drawn attention to the fact that one
can include all the differential form basis of a Clifford alge-
bra 4 7?inrealizing a Lie algebra via the Lie bracket, and not
just the two-forms. This was done in Ref. 5, where we deter-
mined the Lie algebras corresponding to each Clifford alge-
bra. It is obvious that the Lie algebra obtained by including
all the basis forms must necessarily be larger than the Lie
algebra given by Theorem 7, and must include the Lie alge-
bra of Theorem 7 as a subalgebra.

These have been directly constructed in Ref. 5 by com-
puting the Killing—Cartan form of the enveloped rotation
group. The results for the first few algebras, which are of
interest in physics, are listed in Table II1. For comparison,
we have also listed the Lie algebras given by Theorem 7.

Because the Lie algebras corresponding to the Clifford
algebras are topological, they are better described in terms of
the matrix representation space. This has been done in the
following section [Theorem 9, Eq. (23)].

We remark moreover on why the full rotation algebras
of Table Il have not been singled out previously. The reason
for this is that in the usual spinor construction, one is natu-
rally led to the group of automorphisms, hence to Theorem
7. Second, the matrix representations of the automorphism
algebras in fact exhaust the representation space and one
cannot represent the larger full algebras in the same space.
We have been able to construct the full algebras in Table III
only by utilizing the differential forms basis (see Ref. 5).

17,18

VI. MATRIX REPRESENTATIONS AND LIE ALGEBRAS

In this section we give the matrix representation space
of each Clifford algebra. This makes possible an alternative
discussion on the relationship between spinors in » dimen-
sions and Clifford algebras. We next determine the Lie alge-
bra associated with each Clifford algebra, and derive some

TABLE III. Rotation algebras represented by Clifford algebras.

Lie algebra from full
Clifford algebra

Lie algebra from

Riemann space two-forms only

useful isomorphisms. In particular, we show how the results
of this paper can be utilized to give the real forms of certain
Lie algebras.

The matrix representation space of the Clifford alge-
bras has been determined in the classic paper of Atiyah, Bott,
and Shapiro,* which we recall here. Let F(k ) [also denoted as
M, (F)], be the k X k matrix with entries from the field F. F is
either R, C, €, or H. Since £ is not a conventional field, we
employ the vector space isomorphism 2 ~R & R (see Ref. 9).
The matrix representation space of the Clifford algebras is
obtained by combining the results of Sec. IV with those of
Ref. 3, and is given as follows.

Theorem 8: The matrix representation space of each
Clifford algebra is

Ny =R(2k), (19a)
Ny =H k), (19b)
S, =~C(2k), (19¢)
2, | =Q2k)=R(2k)e R(2k), (19d)
0, ~QeH)k)=Hk)eHk). (19€)

These are the irreducible representations. For calcula-
tional purposes, we can obtain reducible representations in
terms of the familiar real and complex matrix algebras R(n)
and C(n), forthecases H (k ), Q(k ),and @ ® H (k ), by recalling
the well-known inclusion relations

H (k)CC(2k)
and

Qk)=R(k)o Rk )CR(2k). (20b)
Hence, for cases (19b), (19d), and (19¢) we have from identi-

ties (20a), and (20b) reducible representations for the
following:

(20a)

N,, CC2k), (21a)
2,,_, CR(4k), (21b)
02,, CClak). (21c)

This analysis shows two things:

(i) The only Clifford algebras with irreducible represen-
tations over R and C are in fact those corresponding to spin-
ors in n dimensions, and

(ii) if one constructs (as is traditionally done) matrix re-
presentations over R and C, then one cannot distinguish be-
tween the following sets of algebras in representation space.
(Recall that £2, = Q.

{ Ny _ 821}, k=12,3,... (22a)

M3 SO(2,1) S0(2) . . 22b
M SO(1,2) SO(1,1) {Sk)Nzk)ﬂk}' ( )
M": S0(0,3) $0(0,2)
MJ,(I .
M2 :88'3 288)1) TABLE IV. Isomorphisms among Lie algebras.
M'? SO(1,3) SO(1,2)
M SO(0,4) SO(0,3) SO(2,1)=SL{2;R)

SO(3) =SL(L;H)
MO SO(5,1) SO(4) SO(3,1)=SL(2;,C)
M S0(3,3) SO(3,1) SO(2,2)=~SL(2;R) ® SL(2;R)
M2 $0(3,3) S0(2,2) SO{4) =SL{I;H )& SL(LH)
M'? SO(1,5) SO(1,3) SO(5,1)=SL(2;H)
M4 SO(1,5} SO(0,4) SO(3,3)=SL{4R)
6 J. Math. Phys., Vol. 23, No. 1, January 1982 Nikos Salingaros 6



Since spinors are vectors in representation space, it is
impossible to construct spinors corresponding to the cases
(19b), (19d), and (19¢). This provides a demonstration of
Theorem 6, in representation space.

From Theorem 8, we can obtain the Lie algebra corre-
sponding to each Clifford algebra. We use the construction
of the Lie algebra SL(k,F) defined via the Lie bracket on the
full matrix algebra F(k ) [or M, (F)]. The restriction to matri-
ces of unit determinant results in no loss of generality. The
Lie algebras corresponding to the Clifford algebras are given
by the following theorem.

Theorem 9: The Lie algebra corresponding to every
Clifford algebra of Table I is given as

N, _, ~SL{2k;R),

Ny ~SL{k:H ),

S, ~SL(2k;C),

2, - ~SL(2k;Q) ~SL(2k;R) ® SL(2k;R),

12, ~SL(k;Q @ H)=SL(k;H ) & SL(k;H ). (23)

It is possible to relate the correspondence between Clif-
ford algebras and Lie algebras in representation space to the
group-theoretical discussion of the previous section. By
comparing the rotation algebras given separately in Table
III with the Lie algebras given by Theorem 9, Eq. (23), we
can give isomorphisms between the Lie algebras of small
order. For each rotation algebra in Table III, identify the
corresponding Clifford algebra in Table I, then find the Lie
algebra from (23) to obtain the following well-known rela-
tions (Table IV). [Recall that SO{p,q) =~ SO(g,p).]

This result is given as an example of the utility and ap-
plication of the methods of this paper. We note that these
relations (Table I'V) cannot be obtained via the usual spinor
methods.

The above connection between Clifford and Lie alge-
bras makes possible yet another useful observation. All the
structural relations for the Clifford algebras, Eq. (9) and (11},
can be translated to give relations among the Lie algebras.
For instance, Eq. (9a) with identification (23) gives

SL(2k;C)=SL{k;H )® C=SL(2k;R) ® C. (24)

This is precisely the determination of the two real forms
SL(2k;R) and SL(k;H ) of the complex Lie algebra SL(2k;C),
as is well known. !¢

The recursion relations (11) translate into

SL(2k;R) ® SL(1;H ) = SL(k;H ) @ SL(2;R) ~SL(k + L;H ),
(25a)

SL(2k;R) ® SL(2;R) = SL(k;H ) & SL(1;H ) =SL(2k + 2ZR).
(25b)

These recursion relations (25) can be used to obtain
many useful structural identities for the Lie algebras.

This demonstrates the utility of the construction given
in this paper, since it enables us to obtain nontrivial results in
a very simple manner. Conversely, our discussion indicates
that the classic work of Cartan on the classification of com-
plex Lie algebras and their real forms in many ways antici-
pated later results on Clifford algebras.

7 ©J. Math. Phys,, Vol. 23, No. 1, January 1982

VIl. CONCLUSION

In this paper, we gave a simple classification of all the
Clifford algebras in terms of their underlying group struc-
ture (Tables I and II). An interesting result is that by con-
structing all the Clifford algebras over the real field R, we
obtained the complex Clifford algebras in odd-dimensional
Riemannian spaces.

We then compared the Clifford algebras to spinors in n
dimensions, and showed that two classes of Clifford algebras
cannot be related to spinors. Among these is the real Clifford
algebra in Minkowski spacetime 4 '* =~ N,, which is distinct
from both the algebra of Dirac matrices, and the algebra of
Majorana matrices. This discussion showed how the Clif-
ford algebras provide a broader framework than the tradi-
tional spinor methods in the description of physical tensor
fields.

A discussion of the Lie algebras related to the Clifford
algebras resulted in a very simple derivation of isomor-
phisms between some of the Lie algebras useful in physics
(Tables III and IV).

In conclusion, we believe that this paper has clarified
the relationship between the algebraic frameworks on which
much of physics is done. We have also provided a direct
method for the utilization of the unfamiliar Clifford algebras
in the construction of physical models.
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The fourth-order indices for Lie algebras have been defined and studied by Patera, Sharp, and

Winternitz. We show that it may be more convenient to modify the original definition and that the
modified fourth-order indices are intimately related to eigenvalues of symmetrized fourth-order
Casimir invariants. Explicit expressions for these quantities are given and we also find a quartic
trace identity involving the generic element of these Lie algebras. We discuss the triality principle
for the Lie algebra D, in connection with identical vanishing of the modified fourth-order index

for this algebra.
PACS numbers: 02.20.Sv

1. INTRODUCTION AND SUMMARY OF MAIN RESULTS

Let L be a simple Lie algebra over the complex field or
more generally over any algebraically closed field of charac-
teristic zero. Let { p} be a representation of L. The second-
order index of Dynkin' is then defined by

Lip) =§(M,M), (1.1)

where the summation is over all weights M of the representa-
tion { p} and (M,M )is the standard symmetric bilinear form®
in the root space of L. The Dynkin index has many nice

properties. Let { p, } and { p, | be two irreducible represen-

tations of L and decompose the product { p,} ® { p} intoa
direct sum of N irreducible components as
PACIVAES EIPA) 12)
Then, /,( p) satisfies B
dipabips)+d(psllps) = Zl pi): (1.3)

Jj=1
Here, d ( p) designates the dimension of the irreducible repre-
sentation { p}. Also, it has been noted in an earlier paper®
which will hereafter be referred to as (I), that we have a qua-
dratic-sum rule

Lipaips) I p4) Lips) |?
422208 d(pd (ps
dlpg K PP TP
z,»;d(p,.) [L(p)]%, (1.4)

where { p,} hereafter designates the adjoint representation
of L.

Patera, Sharp, and Winternitz* introduced notion of
higher-order indices. In particular, the fourth-order index
L, p) is defined by

L(p) = ;(M,M)z- (1.5)

Then for the decomposition Eq. (1.2), they showed the valid-
ity of

2(n + 2
d(p )il pg) +d(pally pa) + 2 . )1y .Vl )
N
= ; L{p;h (1.6)
8 J. Math. Phys. 23(1), January 1982

0022-2488,/82/010008-13%02.50

where # is the rank of the simple Lie algebra L. Numerical
values of /5( p) and /,{ p) for many low-dimensional irreduci-
ble representations { p} of any simple Lie algebras with rank
less than eight have been tabulated by McKay and Patera.’
Moreover, many interesting properties of these indices have
recently been found by Patera and his coworkers.®
We note the following. Defining the modified fourth-

order index L, p) by

T — _ (n+ 2)d (po)
14(/7)—14(/)) n[d(p0)+2]

L p)

_ 1 L po) I
4 ) 2 p)s

6 d(p,l

Egs. (1.3), (1.4), and (1.6) imply the validity of
STip) (18)

J=1

d(PA) A pg)+4d| PB)14(PA

which shares the same simpler structure as Eq. (1.3) for /,( p).
Moreover, we can show that /,( p) is identically zero, i.e.,

Tip)=0 (19)
for any irreducible representation §{ p} of all exceptional Lie
algebras G,, F,, E, E,, and Ej, as well as for 4,, 4,, B,, and
D,. The validity of Eq. (1.9) for these algebras, except for B,
and D,, has been proved in I. As we shall see in Sec. 4, the
validity for D, is connected with the so-called triality princi-
ple” in D,. These facts suggest that L p) rather than /,( p)
may have the more basic properties. One purpose of this note
is to show first that /,( p) is indeed intimately connected with
fourth-order Casimir invariants of L and that higher order
indices may also be defined in terms of suitable higher order
Casimir invariants. Moreover, we will generalize the quartic
trace identity found in I to all classical Lie algebras.

For our purpose, it is convenient to classify all simple
Lie algebras into the following three categories:

(i) 4, 4,5, Gy, Fy, Eg, Eq, Ey;
(ii) 4,(n>3), B,(n>2), C,{n>2), D, (n>5),
(iii) D,.
Next, let¢,, t,,...,t, Withdy=d ( p,)be an ordered basis of the
simple (abstract) Lie algebra L with commutation relation

[2..6,1=C.t,, (1.11)

where C7, (u,v = 1,2,...,d,) are the structure constants of L
with respect to this basis. Also, we adopt hereafter the usual

(1.10)

(pv=12,..4d,),
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summation convention about repeated Greek indices, unless
it is otherwise stated. Let x, (u = 1,2,...,d,) be representa-
tion matrices of 7, in an arbitrary but fixed irreducible repre-
sentation {4 } which we call reference representation and set
1

Pospireos, = ; ; Tr(x, X, X, ) (1.12)
where the summation is over p! permutations P of p indices
Kifhayid,. Clearly, b, , . is completely symmetric in p
indices 4 ,,145,..14,. Wehave h, = Oforp = 1. Forp = 2, itis
well known? that A .. = tr{x, x, ) is independent of the choice
of a particular representation {4 }, apart from a multiplica-
tive constant. Hence, we set

h,, =trx,x,) = Cyld)g,, (1.13)

for a nonzero constant C(4 ), where g, is the Killing form,
with its inverse g#*. In Sec. 3 we will choose a special normal-
ization Cy(A ) = 1 with {4 ] being the basic (i.e., lowest-di-
mensional) representation of L. We can now raise and/or
lower Greek indices as usual by means of g*"and g,,, and set

(1.14)

where the product on the right side refers to that in the uni-
versal enveloping algebra® U (L )of L. We can readily verify*®
that /, are Casimir invariants of L. Let { p} be hereafter a
generic irreducible representation of L and let X, be repre-
sentation matrices of z,, in { p}. We write the common eigen-
value of I, in { p} as I,(p) so that

h l‘l.“:'“:upXH'X‘u: ...X#p = Ip( p)E, (1' 15)

where E is the identity matrix in { p}. Since 4,, .., depends
upon the choice of the reference representation {4 |, we often
write 7,( p) as I, p;4 ) whenever we want to emphasize its
dependence upon {4 }. Taking the trace of both sides of Eq.
(1.15), we then find a reciprocity relation

LipA ) (p)=I,(Ap)d (1 ). (1.16)

In view of Eq. (1.13), the second-order Casimir invar-
iant I, is essentially unique, apart from a multiplicative nor-
malization constant which depends upon {4 }. Similarly, the
symmetrized third-order Casimir invariant I, is again
unique'”"'" in this sense. Actually, itis known'*"'' that I, = 0
identically for all simple Lie algebras except for the algebra
A, (n>2). However, the situation is different for the fourth-
order Casimir invariant I,. Infact, ,{ p;4 ) changes in general
its form when we change {4 }. This is related to the fact that
the square of I, is also a fourth-order Casimir invariant.
Hence, if 1, is a fourth-order Casimir invariant, then so is

Ii=1,+ C(Iz)2
for arbitrary constant C. In order to remove this ambiguity,
we proceed as follows. We call the reference representation

{4 } exceptional, if we can find a constant C such that we
have an identity

h,uwz/} = C ih,uvh(z[} + h,uahv[j + h;t/)’hvn }

.y My
Ip =h Ll "'tﬂp’

= CC{(8,08ap + 8uaBus + Busliua }- (1.17)
Otherwise, we call {4 | nonexceptional. We know? that any
irreducible representation {4 } of the type (i) algebras of Eq.
(1.10}, e.g., 4\, 4;, G,, F,, E,, E;, and E, is always exception-
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al. This is related to the fact that any fourth-order Casimir
invariant I, of these algebras is simply proportional to (I,)>.
In other words, for type (i) algebras, we have no genuine
fourth-order Casimir invariant'' so that the problem does
not arise. For the type (ii) as well as type {iii) Lie algebras, we
define

gy,vaB = [2 + d(po)]hyvaﬁ

H(A
- ( ) {gyvgaﬁ +g/,tagvﬁ +guﬁgva}’ (1'18)
Ld)
where we have set
H(p) = [L(p)]* = L polla( p) (1.19)

for a later purpose. It is simple to see the orthogonality
relation

guvgaﬂgyvaﬁ = h #Vh aﬁg;n'aB = O (120)
Moreover, g,,,,.5 is identically zero for all type (i) Lie alge-

bras. At any rate, we now define the modified fourth-order
Casimir invariant J, by

Jo=g" P11, (1.21a)
so that its eigenvalue J,( p) is given by
d (po)
Jdp)=2+d(p)ldp)— 3 —=L2 HA)H (p).
(p)=1 (po) 11 p) LA (A )H (p)
(1.21b)

When we want to emphasize the dependence of J,( p) upon
the reference representation {4 |, we write it as J,( p,4 ).
Then, the reciprocity relation (1.16) leads to

d( PV pA) =d (A Vi) (1.22)

when we note Eq. (1.13). For all type (i) algebras, we have
identically

Jip)=0. (1.23)

For all types (ii) and (iii) Lie algebras, we choose {1 | to be
nonexceptional. Then J, is not identically zero. Moreover,
for the type (ii) cases, J, is independent of the particular
choice of nonexceptional representation {1 }, except for an
overall normalization constant, just as 7, and I, are. For the
type (iii) algebra, i.e., D, the situation is more involved. Ac-
tually, D, possesses one more fourth-order Casimir invariant
I,, in addition to J, and (I,)>. Discussion of this case will be
given in Sec. 4.

We now define modified Dynkin indices D "7 p)
(p=234)by

D% p)=d|p)yp),
D p)=d(p),( p),

D“(p)=d(pM,{ p).

Then, for the product decomposition Eq. (1.2), we will prove
in the next section the validity of

(1.24)

d(p4)D'(pg)+d(ps)D " py) = _iD"”(pj) (1.25)

Jj=1
for p = 2,3,4. We may note that D ?( p) is essentially equiv-
alent to /,( p) since

D®(p) = (DA /LA DL p) = constx L[ p),  (1.26)
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while D *)( p) is nothing but the anomaly coefficient'®'? of
the triangular anomaly in grand unified gauge theory. Since
Eq. (1.25) for p = 4 has the same form as Eq. (1.8) for /,( p),
we may guess that they must be related to each other. We
shall prove in the next section that indeed we have

L{p) = CD"(p) (1.27)

for a constant C, which may depend upon the reference re-
presentation {4 | but not on { p}. However, we can not nec-
essarily express D ¥ p) in terms of /,{ p) since the constant C
could be zero for some cases. Indeed, this happens for the
case of the Lie algebras D, and B,, so that we have /,( p) = 0
also for this case, though D *( p)#0 in general. For this rea-
son, we made the distinction between /,{ p)and D *( p). Also,
for the Lie algebra D,, we can define additional fourth-order
index D “( p) by

D“(p) =d(p)p), (1.28)

which also satisfies Eq. (1.25). Cin Eq. (1.27) will be comput-
ed in the Appendix.

Let : and X be generic elements of L and its representa-
tion in the generic irreducible representation { p}, respec-
tively. Expressing ¢ as

t:§“tﬂ (129)

for some complex numbers £* (u = 1,2,...,d,,), we have, of
course,

X=£"X,.

It is well known that we have

(1.30)

(2)
TI'(/Y“X\,) — d(P)Iz(P) h;w — D (P) h
d(A)(4) D™(4)
Therefore, we find
TeX > = Cr)D % p)

when we set
1 .
CZ(t ) = W h;tvé‘ﬂg .

Note that C,(t | depends upon {4 } but not on {p}. Similarly,
for the Lie algebra 4, (n>2), we find

(1.31)

v

(1.32)

TeX * = Cy(t)D Y p). (1.33)

If { p,} and { p,} are any two irreducible representation of
L, then these relations imply

T2X?/TrVxY? = D(pi( Pz)/D(p)(Pl) (1‘34)
for p = 2 and 3, where Tr'/ (j = 1,2) refers to the trace with
respect to the space {p; }. This relation has been utilized re-

cently" to prove uniqueness of grand-unified groups SU(5)
and SO(10). Similarly, we can prove

6

d Ad B 14 4 +I4 B T oo
(Pa)d(pa)ildpa) (;0)+d(/{)[12(/”]2

10 J. Math. Phys., Vol. 23, No. 1, January 1982

and SO(10). Similarly, we can prove

TrX* — K (p)(TrX ) = C,(r)D “¥( p) {1.35)
when we set
- dpy) ‘ L{py)
K = 6 — —1, (1.36
P = v dipdip) Izw} !

The relation {1.35) is valid for all simple Lie algebras, except
for D,, as well as some special class of irreducible representa-
tions { p} for D,, which will be specified in Sec. 4. For all
types (i) algebras, we have

TrX* = K (p)(TrX 22 (1.37)

for these algebras, reproducing the result of (I}. Also, some
class of irreducible representation | p} for D, satisfy Eq.
(1.37). For other cases, Eq. (1.35) implies the validity of

Tr2X* — K (p)[T*X > _ D%(py)

Te'X — K (p)[TrX?]? — D%(p))
for twoirreducible representations { p,} and | p,] of type (i)
Lie algebras. Some applications of Eq. (1.38) will be given
elsewhere.

In this work, we adopt the lexicographical ordering of
simple root systems as in Ref. 4 as well as in Ref. 14. Writing
the corresponding fundamental weight system as
{A,A..,A, |, the highest weight A of any irreducible re-
presentation is given by

(1.38)

A=m,/1|+m3/12+"'+m,,/1,,, (139)
in terms of nonnegative integers m; (j = 1,2,..,n). We often
use the notation {A | for { p} whenever its highest weight A

is known.

2. DERIVATION OF MAIN IDENTITY

First we will prove the validity of Eq. (1.25). Let X !
and X |*' be representation matrices of ¢, in irreducible re-
presentations {p, } and {p,}, respectively, and set

X, =X"®E, +E, 0 X" (2.1)

n?

which defines the representation matrix of ¢, in the product
space { p,} ®{ ps}. Here, E, and E are unit matrices in
the respective spaces. Computing both sides of

A TrX, X, ) =L{p, ®p5)
of course this immediately gives the well-known result

d(pad (ps )l pa) + Lipalk = T p)llp)), (22)

J=1
since Tr(X,,) = 0. Similarly, calculating both sides of

WP TrX, X X Xp) =L pa ®Ps),

we find

H@p M pa)| = 3 d1piip)) 2.3
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where H (4 ) is defined by Eq. (1.19). In deriving Eq. (2.3) we
used

by, = Cold g,., A" = Cold 18", (2.4a)
ciny= 24y, (2.4b)
d (po)
as well as a relation
h ‘”"Bhwhaﬁ =dAHQA), (2.5)

which will be proved shortly. Also, we have® a quadratic
relation
L{pai,{pg)
d(po)
Z d(p)[L{p)]T% (2.6)
j=1
which is equivalent to Eq. (1.4). Therefore, when we set

- 3 d(p) _
Jip) =12 +d(po)lLp) 3d(/1)[12(/l)]2HM)H(p)(’27)

d(pa)d(psh4 + [12(pA)+12(p8)]2]

Egs. {2.2), (2.3), and (2.6) lead to

d{p, d (pa Il (pa)+Jd Pal} zd PN p;), (2.8)

Jj=1
which is equivalent to Eq. (1.25) for p = 4. The case forp = 3
can be proved similarly. The reciprocity relation Eq. (1.22)
can be proved from Eq. (1.16) and Eq. (2.4).
Hereafter in this note, { p} always refers to the generic
irreducible representation of L with X, being the matrix re-
presentations of z, in { p}. For simplicity, let us set

H,plp)= % 3 THX, X, X, X,), (2.9)

which is completely symmetric in indices u,v,a, and . If we
set { p} = {4 1, this gives

Byvep = Hppopld). (2.10)
When we note a trivial identity
Tr([X, X, X, X,X,;]) =0,
we find
CounH aplp)+ CLH, p(p) + CL,HWa(p)
+ ClopH, 0. (p) = (2.11)

Let ¥ denote a vector space spaned by all completely sym-
metric quartic forms K, ., satisfying the condition

C;yKrvaB + C yfa/} + C/laKyv‘rB + C/IB uvar — =0.

(2.12)
Then the validity of Eq. (2.11) implies
H, . .s(pEV.
Similarly, when we set
K =3 8u8us + 8ualis + 858va ) (2.13)
we can easily prove
KO z€V {2.14)
when we note that
Cou8av="ruw (2.15)

" J. Math. Phys., Vol. 23, No. 1, January 1982

is completely antisymmetric in the three indices A,,v. In (I),
we proved that
1, for type (i) algebras
DimV = {2, for type (ii) algebras ,
3, for type (iii) algebra D,
where Dim means the dimension of V. As we noted in (I), the
validity of Eq. (2.16) is intimately related to the fact that
types (i)~(iii) Lie algebras have'' precisely 0, 1, and 2 funda-
mental fourth-order Casimir invariants, respectively, in the
universal enveloping algebra U (L ).
Next, let us set

(2.16)

1
G,uvaﬁ(p) = _4—'2 Tr(XyXVXaX[j)
1 “p

- %K( pPHITEX, X, (TrX, X,)

+ (TrX, X, )(TrX, X,5)
+ X, X )TrX, X, )}, (2.17)

where K ( p) is given by Eq. (1.36). We may rewrite Eq. (2.17)
also as

1 d(pH(p)
G vay =H vay -
el V= Hves | P) = 5 o a0
X{gy.vgaﬁ +gy.agvﬁ +g,uﬁgva }' (2'18)
It may be stressed that G,,,.;( p) is really independent of the

choice of the reference representation {4 ] in view of Eq.
(2.4). We can readily verify

h*h PH,,,05(p) = d (p)H (p) (2.19)

on the basis of Eqs. (2.4), (2.15), and (1.31). This also gives the
orthogonality condition
O)yvaﬁG

g‘wgagG;.zvaB(p) = nvaﬁ(p) = 0 (220)

Then Egs. (2.5) and (1.20) are special cases of Egs. (2.19) and
(2.20), respectively, for { p} = {4 }. The modified fourth-or-
der Casimir invariant J,( p) is evidently given by

D®™(p)=d{pWp)
= [24+d(po))h**PG,,,ap( p)
=g"H,.5(p) (2.21)

From this, we can derive Eq. (1.22).
Let us now first consider the type (i) Lie algebras of Eq.
(1.10). For this case, we have Dim ¥ = 1. Since we have

KK O, = 1d (po)d (o) + 21 0,

1t follows that K ) _; #0. Therefore, any K., and especial-

G,,..s( p) must be proportional to K fLaB However, the
orthogonality condition Eq. (2.20) then requires

G/,n/aﬁ(p) = 0 (222)

for all type (i) algebras, so that J,( p) = 0. For type (ii) cases,
we have Dim V' = 2 and hence G, p) must be a linear
combination of g,,,,; and K 1?5, when we note that both are
linearly independent of each other for a choice of {4 } being
nonexceptional. Again, the orthogonality condition
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Eq. (2.20) requires then that we have

B(p)

— (2.23)
2+d(po)

G,uvaﬁ(p) = guvaﬁ
for all type (ii) Lie algebras, where B ( p)is a constant. We may
regard all type (i) Lie algebras also as special cases of Eq.
(2.23), with B ( p) = 0. Multiplying both sides of Eq. (2.23) by
h***# and noting Eq. (2.21), we get

d(pMy(p) = B(p)d (A WA ).

If we have J,(1 ) = 0, then this requires J,( p) = 0 for all ge-
neric irreducible representations { p}. This is clearly not
possible for type (i) Lie algebras, as we will see from explicit
computation of J,( p) in Sec. 3. Therefore, we conclude
J4(A )#0 for any nonexceptional reference representation
{A } of type (ii) Lie algebras, and hence

dAM1)  D™R)

for any type (ii) Lie algebras. Then we may rewrite Eq. (2.23)
as

(2.24)

[2+d(p)] 4 _ 1
d(pW4p) | P) dAA) B

In particular, we have g,,..p = [2 + d(po)] G, qp(d ). As we
already remarked just after Eq. (2.18), G, .( p) does not de-
pend upon {4 }. Therefore, Eq. (2.25) implies that g,,,,, is
really independent of a particular choice of { A |, apartfroma
multiplicative constant. This, together with Eq. (2.21),
proves the uniqueness of the modified fourth-order Casimir
invariant J,( p) for type (ii) Lie algebras, apart from an over-
all normalization constant, as long as we choose {4 } to be
nonexceptional.

Now multiplying both sides of Eq. (2.23) or Eq. (2.25) by
EHEVEEP we immediately obtain Eq. (1.35). In order to
derive Eq. (1.27), let h; (j = 1,2,...,n) and e, be the standard
Cartan—Weyl basis. Here, n is the rank of the Lie algebra. Let
H; (j=1,2,..,n) be representation matrices of &; in { p}.
Then, /,( p) and /,( p) are evidently expressed as

Wp)= S g TrHH,),

k=1

(2.25)

(2.26)
14 p)=Tr( 3 g""Hij)z.

jk=1

Then the modified fourth-order index I, p) is given by

Lp= S g%"Gulp) (2.27)
inki=1
when we note
[H,H]=0, 3 &% =25,
j=1
Tr(H.H) = L p) 8 (Ljk=12,.,n) (2.28)

n
and whenwesetX, = H;, X, = H,, X, = H,,and X; = H,
in Eq. (2.17), and note Eq. (1.36). Similarly, when we multi-
ply both sides of Eq. (2.25) by g%g"', we find the desired
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formula

D(M(p)
D 143(/1 )
This proves the validity of Eq. (1.27) for the type {ii} Lie
algebras. Similarly, starting with Eq. (2.22), we find [,{ p) =0
for type (i) Lie algebras. The multiplicative constant in Eq.
{2.29) is computed in the Appendix.

The validity of Eq. {2.25) also implies that a necessary
and sufficient condition for {1 } to be exceptional for type (ii)
Lie algebras is to have J,(4 ) = 0. For example, {1 } = {A,]}
for C, is exceptional since we have J,(A,) = 0 for C,, as will
be shown in the next section. If {4 } is exceptional, we have
also

Trx* = K (4)(Trx?)?

for x = §%x, of type (ii) Lie algebras.

Finally for the type (ii) Lie algebras, the uniqueness of
Ji p;A ) except for its normalization, together with the reci-
procity relation Eq. (1.22}, implies the validity of

Jiphy = LEVLA) 5 o)
d(AWA:A)

for any two reference representations {4 | and {4 '}. There-

fore, once we know J,( p;A ) for a given nonexceptional {4 |,

we can calculate J{ p;4 ') for any {4 '}.

For the remaining case of the type (iii) Lie algebra D,
we have DimFV = 3, so that the argument presented in this
section must be modified accordingly. This case will be dis-
cussed in detail in Sec. 4.

Lip)= 1A ) = const X D' p). (2.29)

(2.30)

3. EIGENVALUES OF FOURTH-ORDER CASIMIR
INVARIANTS

The purpose of this section is to give explicit expres-
sions for J,{ p}in terms of » nonnegative integers m; (1< j<n)
specifying the highest weight A of { p} asin Eq. {1.39). Since
we have J,( p) = 0 identically for all type (i) Lie algebras, it
suffices to consider only classical Lie algebras 4,,, B,,, C,,
and D,.

Using the lexicographical ordering of simple roots as in
Ref. 5 and/or Ref. 14, the basic, or defining, representation
of all type (ii} Lie algebras is given by {4}, which is nonex-
ceptional. Also, the adjoint representation { p,} is found to
be nonexceptional for all type (ii) algebras, although the lat-
ter is exceptional for D,. Therefore, for our purpose, we
could use either {A,} or { p,} for the choice of the reference
representation {4 }, since J,( p;4 ) must be independent of
{4 | except for overall normalization as in Eq. (2.30}. In this

section, we use {4 } = {A,] to be definite, and normalize
8 =h,, =trlx,x,); (3.1)
hence
d(A)h(A) =d(po), (3-2)
d(pi(p) :
Lip)=n : (3.2')
d(po)

Moreover, all formulas given in this section are also applica-
ble to Lie algebras 4, 4,, and D,, which are not of type i), as
well as D, where D; = A4;.
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Let us now set
b, . = Tr(xmxﬂz---x#p),

Ml
1%(p)E = b"""X, X, X, .

Then I )3( p) is the eigenvalue of nonsymmetrized pth order
Casimir invariant I ) in the irreducible representation { p}.
The explicit expressions for I )'S( p) have been given by many
authors,'>">? from which we can compute I,( p) and J( p).
However, the calculation is very tedious and complicated,.
although it is straightforward. We report results of the calcu-
lation following the notation and method given in Ref. 20.

A.Algebra A, (n>1)

We embed the Lie algebra A4, into the Lie algebra of the
unitary group U(n + 1) whose irreducible representation is
labeled”* by n + 1 integers f; (1< j<n + 1), satisfying

fi2fo3fi> 2 f0 i (3.3)
Then the nonnegative integers m; (1< j<n)in Eq. (1.39) speci-

fying the generic irreducible representation { p} of the alge-
bra 4, are related to the f;’s by

mo=f—f. (1<j<n) (3.4)
For simplicity, we set hereafter
N=”+1’ N>27 (3‘5)

so that we are dealing with the Lie algebra 4, _, of the
SU(N ) group. Following the notation of Ref. 10, we set

=5+ —(N+1)—1— — sz,

k =1
(1< jKN), (3.6)
which satisfy conditions

O\ > 0> >0y, (3.7a)
N
> g, =0. {3.79)
i=1
The o; are related to the m; (1< j<N — 1) by
m=0,—0,  —1 (I<j<N—-1), (3.8a}
1 N
0= LIS N—km, +1)= S kim, +1)}.
N = K=
(3.8b)

Now, eigenvalues of symmetrized Casimir invariants 7,( p),
I( p), and I,( p) are calculated®* as

Blpr= 3 o - [T
L{p) = ,-2 (o)),
- z o - 001} = 22
+—7%N(N2—1)(11N2—9)) (3.9)

13 J. Math. Phys,, Vol. 23, No. 1, January 1982

where we have set

oV =4N+1)—}, (3.10)
SO that
S [ = SN 1)
i [6”) = N(N2 1)3N2—-7),
ﬁajm— s [a}°']3=0. (3.11)
Then J,( p) is calculated to be
J(p)=N*+1) g {io;) — [¢°1'}
2N? -3 o
st (DT I A
~_—(N2+1)§(a}.)‘— N [Z(O’ ]
+ ?N(NZ NN?—4NZ=09) (3.12)

We note that J,( p) contains only quartic polynomials of g;’s
in addition to a constant. We can verify the fact that J,{ p) is
identically zerofor N=2and N = 3, corresponding to 4,
and A, smce we have an identity }(a® + b-

Tt =a+b* + ¢*for any three numbers @, b, and c sat-
isfyinga + b+ ¢ =

We note that the fundamental representations {A; }

(1< j<N — 1) correspond to completely antisymmetric ten-
sor representations, while {kA ] for (k>1) are completely
symmetric representations in the sense of Young’s tableau.
For possible applications to particle physics, which will be
reported elsewhere, we will give below an explicit formula
for eigenvalues of fourth-order Casimir invariants in these
representatlons

— N 2
ILA) = e _](N JHNAN? + 6N +6)

23

—6(N?+ 3N +3)j(N—)} (1<j<N —1).
W (3.13a)
+ 1)(N + 2)(N + 3) . .
JA) = -
(4;) N JIN —))
X{N N+ 1) — 6N —j)} (1<j<N —1).
(N — 1N — 2)(N — 3] .
JkA ) =" — A
(kA,) N k(N +k)
X{NWN -1+ 6k(N+k)} (k>1) (3.13¢)
Also, we note that
N+1 . . .
5A)) = N JN =), (I<j<N - 1),
1) = PR iy v 2 1< jen - 1),
I,{ pg) = 2N,
1
J4 1= - 2_ 2
(4,) 6N(N NZ— 4N —9),
1 , ,
i po) = ?N(N —4)(N* —9). (3.14)
Susumu Okubo 13



Since J,( py) #0, for 4, (n>3), the adjoint representation

{ po} for 4, (n>3)is not exceptional. However, for N = 8, we
find J,(4,) = Osothat {A,} for 4, is exceptional. Therefore,
we must have a special identity

TH = A(TrX 7 {1.37)

for any generic element X of the Lie algebra 4, [SU(8) group)
in the irreducible representation {A,}. But this fact is not
accidental for the following reason. The 56-dimensional re-
presentation {A} of the exceptional algebra E, decom-
poses’ into a direct sum {A,} ® {A} of its subalgebra 4.
Noting that { A} is contragradient to {A,] for 4, the valid-
ity of the quartic identity (1.37’) for {A,} of 4, follows from
the corresponding relation Eq. (1.37) for E,. Similarly, re-
stricting ourselves to SO(8} and/or Sp(8) subgroups ofSU(8),
we expect to have the validity of the same relation (1.37') for
the irreducible representation {A,} of these subalgebras by
similar reasoning. This fact will be verified shortly for both
C,and D,.

Corresponding to the decomposition

{A]e (4] = {41024},
we must have a sum rule
Z[d A 1)]214(/1 1) =d (A2V4(A2)+ d (2A 1)‘]4(2A t)

by Eq. (2.8). The validity of this identity can be verified easily
by the numerical results of Eq. (3.13) together with

dia)= Y= 1)--.]-1(1\7_ I N — 1.
d(kA,) = N(N+1)..};('N+k—1)’ k1),

Note that the general dimensional formula for d ( p} is given
by
nj’ik(gj—ak) NoO; —Uk

LN =1) ko — o

It may be interesting to note that 1,(jA,), 15(jA,),
J4(jA,), and d (jA,) for the completely symmetric represen-
tation { jA} are identical in form to I,(A;), I5(4;), J,(A;),
and d (4, ) for the completely antisymmetrlc one {A,}, ex-
cept possibly for signs, when we formally change the dimen-
sion Nto — M.

d(p)=

B. Algebra 8, (n>2)
We use again the Weyl’s symbol f; (1< j<n) so that
f=m+m  +tm, | +im,. (3.15)

All f;’s are simultaneously integers or half-integers, corre-
sponding to tensor or spinor representations of B, . We set

L=f+n—j+} (1<j<n), (3.16)
I =n—j+1 (1<j<n)
Then we find
2u4(p)= Y (4P — (7]
i=
n 1
= 1-2—'_—'42_1, 317a
j;x(’) 12n( " ) | |

14 J. Math. Phys., Vol. 23, No. 1, January 1982

81,(p) = ]; ) =]
- %(2,1 — 1)4n + 1)
X 2] () — (7]
= S~ —{2n — 1n + 1)
xé“l(tj)z + ﬂ’;;_o—_ll (44n% — 20n + 11), (3.17b)
8/ p) = (2n* + n +2) 2 [ — @]

J=1

s - om]

F=1 j=1

— (4n + 1)[

et +n+2 S —tn+ 1) Sp|

j=1 j=1

4L in® = dn? — 120 + 320 — 7). (3.17¢)

360
We observe that J,( p), in contrast to I,{ p}, contains only
quartic polynomials of /;. The same property is also shared
by other Lie algebras C, and D, as we will see.
We also give expressions for J,(A;) and J,(kA ) below.
240,(A;) = (n + 12n + 3)j2n + 1 — )

X{{rn 4+ H2n+ 1) =32n + 1 —jj} {I<j<n — 1), (3.18a)

2J,(A,) = — In(n® — \)dn> — 1)2n +3) (j = n),(3.18b)
2T kA,) = (n — 1)2n — Dk (2n — 1 + k)
X{(2n2 —n+3)+3k(2n— 1+ k)] (k>1), (3.18¢)

for A = A; (1< j<n)and A = kA (k>1). Again we can ver-
ify the validity of

2[d (A V4A)) = d (AW 4(A)) + d (24,14(24)), (3.19)
corresponding to
(Adeid ] =(4,1e(24,}e (0}, (3-20)

for B, (n>3), where {0} refers to the trivial representation.
Also, we note

Iy(po) = I{A,) = 2n — 1,
LiA)=n,
127, po) = (n* — 1)(2n + 3)(2n — 1)(2n — T)#0.

Weremark that, forn = 13andj = 6, wefind J (44} = Oand
hence that { A4} for B, is exceptional. Finally, the dimen-
sion formula is

d(p) = 1,—3[—"——(H1)H[<1)2—(1k)2

(n>3),

i<k
so that
(2n + 1! .
diA)= T F g —1,
) Aen+1—)) U<j<n —1)
m+2k—1(2n+k—2)
dkA,) = k>1).
et k! ST
dA,)=2" (j=n).
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C. Lie algebra C,(n>2)
We set
fSi=mi4+mi  + o+ m, (3.21a)
L=fi+n—j+1, (3.21b)
I=n—j+1, (3.21¢)
forj = 1,2,...,n. Then we calculate
2L(p)= 3 [(F - (1 oy
1-1
2(1 - — n(n + 1)2n + 1), (3.22a)
J=1
8L(p) = 3 L) — U]

j=1

- —;—(n + )dn + 1)

x 3107 - PPl
= }":(1)4_ —3—-n+ an +1) (P

j
i=n J=1

4 — n(n + 1)2n + 1)[29n* + 64n + 32],
% (3.22b)

as well as

8J4p)=(2n" + n+2) Z () = O]

i=1

— (4n + 1){[ 2(11-)2]2 - [ i (1}0))2]2]

j=1 j=1

=(2n+n+2) 2(1) —(4n+1) Z(l)]

i=1 j=1

1 2 __ 2 _ 4
150 nin 1)(4n 1}2n + 3)(n + 4).

We calculate also
24J,(A)) = (n+ 1)2n + 3} j(2n + 2 — )
X {(2n% + 3n + 4) — 3j2n + 2 — j)}, (3.24a)
24 (kA ) =(n — 1)2n — 1}k (2n + k)
X {n(2n — 1) + 3k (2n + k }} (3.24b)

for the completely antisymmetric representation {A, ]

(1< j<n) and for the completely symmetric representation
{kA,} (k>1). We can check the validity of Eq. (3.19) corre-
sponding to Eq. (3.20) for this case, using Eq. (3.24). We note
also

L{py) = I,2A,) = 2(n + 1),

LA)=4(2n + 1),

Ju po) =424 ) = Ln* — 1)2n — 1)(2n + 3)
X{n + 4)7#0.

In particular, the adjoint representation { p,} is nonexcep-
tional. We have, however, J,(A4,) = 0 for n = 4 so that

{4} = {A,] for C, is exceptional. Therefore, for

{ p} = {A,} of C,, we have the validity of Eq. (1.37).

" (3.23)

16 J. Math. Phys., Vol. 23, No. 1, January 1982

The dimensional formula for C, is

dlp)= m_(zl—_ﬁ<nl>

x {107 = ()]

j<k
In particular, we have

_2Ant 1) @1t
WA = = oy I
dika)= Bntk=1 gy,
K'2n — 1)t
D. Lie algebra D,(n>3)
We define
f=m+m et m, ,+im,_ +m,)
1< j<n —2, (3.25)
f;1—l =:l)(mn71 +mn)Y f;l 2%(—mn—l +mn)’
and set
:f, + n —jy
(3.26)
I =n—j,
for 1< j<n. We then calculate
2ip) = 5 [0F — 0PI
= 2 (LR — —n(n — 1)2n — 1), (3.27a)
81, (p)= Z ) — ]
j=1
— n = jan = 1) 3 [0~ 00P)
- i}(lj)“ - l(n — 1)an — 1)
X 2(1 P+ —n(n —1)2n—1)
X [1122 — 16n + 8], (3.27b)
as well as
8J,(p)=(2n* —n +2) i (1) = (1]
~tn =l Sr]'= [ S]]
=Q2n —n+2) _z(lj)“—(4n ) [ 2(1)
4 nn® = 14n2 = )n — 42n —3).  (3.28)

180
For the special case A = A, (1< j<n)and A = kA (k>1), we
find

24J,(A;) = (n + )(2n + 1)j2n — j)

X {n@2n + 1) = 3j2n —j)} (1< j<n —=2),
(3.29a)
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2J,A,) =24JA, )= — —:-;—n(nz — 1){dn? — 1)

n-—1

X{2n —3),{j=n—1and n)
(3.29b)
240,kA)=(n - 1)2n — 3k [2n — 2 + k]
x{(2n* —3n+4) + 3k 2n -2+ k)},
(3.29¢)

from which we again verify the validity of Eq. (3.19). Setting
j=2in Eq. (3.29a), we find

L{po) =2(n—1), L{A)=i2n-1),
Ja(po) = Un* — 1)2n + 1)(2n — 3)(n — 4),
JiA)) = fn* — 1){4n* — 1)(2n — 3),

so that J,( p,) #0 for n>5, but J,( py) = 0 for D,. The dimen-
sional formula for D, is given by

on - 1 n s ,
aran —ap 20— T
T (11)2’“(lk)2

-1 (P — o

j<k

(3.30)

d(p)=

In particular, we have

(2n)! .
d = &SJSH — 2,
{A;) 2 i (1< jgn - 2)
dn )= Aotk otk =30
k! (2n — 2}
d(A,)=d(A,_,)=2""".

Again, we find that I,(A;), J4(4;), and d (A;) of C,, (D, ) will
transform into I,( jA,), J,(jA ), and d (jA ) of D, (C,,), apart
from signs when we make a formal change n— — n, pro-
vided that we restrict ourselves to 1< j<n — 2.

E. Equivalences 5, = C, and D, = As

It is well known that we have equivalences B, = C, and
A, = D,. Here we will discuss the effects of these equiva-
lences on Casimir invariants.

First consider B, and C,. We label all relevant quanti-
ties, such as /; in B,, as l: by adding bars, while unbarred
quantities refer to those of the algebra C,. The correspon-
dence B, = C, implies

(3.31)

which is effected by interchange of two simple roots &, and
a, in Dynkin diagrams of these algebras. Then we find

52—2:"3], ’—ﬁ-lzmz,

L=\lL+0L), L=yl ~1h) (3.32)
and can verify that
Lip)=1iL{p),
(3.33)

Jdpl= — Wil p)
from expressions for these quantities given in this section.
The differences between normalization factors for I, and I,
in Eq. (3.33) are due to the fact that {4 } = {A,] of B, trans-
forms to {A,] but not {A,} of C, by Eq. (3.31).
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Similarly, we use the barred symbols such as 77, for the
algebra A, while unbarred ones refer to the algebra D,.
Then, an inspection of Dynkin diagrams of 45 and D, re-
quires identification of

M, =m, M,=m,; mM;=m, (3.34)
so that we find
o =4 +5L-15h),
oy =3 +15L—1),
{3.35)

03 = %(lz +l3_l|)’
04 = — %(ll + 5L+ 1),

for o; (1< j<4)of the Lie algebra 4,. We can verify the valid-
ity of the identities

AR +RA R =12 +12+12, (3.36a)
a}‘+a‘§+a§+02:%-(l?+1§+1§)2
_%(;1 LIt 1Y), (3.36b)
so that we have
(3.37)
Jip)= —4Jp).

4_LIE ALGEBRA O, AND TRIALITY

We have to discuss the case of D, separately in view of
DimV = 3. It is convenient for our purpose to write the Lie
algebra D, in a non-Cartan form

[Xab ’Xcd] = 5adec + 6chad - 6achd - 5banc (41)

Xab = —Xbu (42)

where latin indices a,b,¢,d assume eight values 1,2,...,8. Cor-
respondingly, we often write

X, =Xy, p=I(ab) (4.3)
Choosing {4 } = {A,] again, which is the eight-dimensional
defining (or basic) representation, the matrix element of x,, is
given by

(xab )cd = aac‘sbd - 6ad8bc’ (44)
while the Killing metric tensor g,,, also has the same form
Siab)lcd) — 2[5ad5bc — 8,644 ]v (4.5)

for our normalization Eq. (3.1). We define g,,,,4 and J, by

Egs. (1.18) and (1.21), respectively. Now, D, possesses one

additional fourth-order Casimir invariant /,, which can be
constructed as follows. Let

w =la,b,), j=1234

and set

(4.6a)

Crptaprur, = ea.b\a:b:a‘b\alm’ (4'6b)
where €, .., is the completely antisymmetric Levi-Civita
symbol in eight-dimensional space. Then, we set
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A 1
14(p)E = ? eﬂ‘uww“XmX#:X#me

o 1 6a|b|azbz”\bx‘14b4
4124
X Xap, Xap Xap Ko, (4.7)
Using the same notation as is given in the previous section,
I p) is then given by'*162°
Lip)=libhly 1>5L>1> L. (4.8)
Now, we note that g,,,4, €,vqs, and
Ki?\]faﬁ = %( g;tvgaﬁ + g;uxgv/] + g,uﬁgva ) are mutua"y Orthog“
onal in the sense that
§ K Ll = VK Dy = 8"V pap =0, (49
and these three quantities now span the vector space V.
Setting
D% p) =d(pW(p)
(4.10)

D¥(p)=d(p)p),
both satisfy Eq. {1.25), so that we have two modified fourth-

order indices.

We now define G,,,,5( p) by Eq. (2.18), as before. How-

ever, since DimFV = 3, we have to modify Eq. (2.23) as
[2 + d(p)]G;uaB(p) = B(p)g,uvaﬂ + C(p)eyvaﬁ (41 1)
for some constants B ( p) and C{( p). Multiplying both sides of

Eq. (4.11) by g***# and ¢***” and noting the orthogonality
relation Eq. (4.9), we obtain

d(pVip)=B(p)d (AW A),

[2+d(po)d(p)ip) = %eﬂ"“‘*epvaﬁC(p)- (4.12b)

(4.12a)

Since for {4 } = [A,], we haveJ (4 )#0, as we will see from
Eq. {3.29a), the expression for B { p) is the same as before and
is given by Eq. (2.24).

Next, choosing X, = H,, X, = H;, X, = H, and
X; = H,, multiplying both sides of Eq. (4.11) by g’%g* and
noting that

gggkle;;:\-z =0,
ik =1
we find that the term proportional to C( p) vanishes. There-
fore, from Eq. (2.27), we obtain again Eq. (2.29), and hence
Eq. (1.27),i.e,

T p)=CD™(p)

for the present case also, where C is a constant.

Now, from the table of McKay and Patera,’ we calcu-
late /(A ) = Ofor { p} = {A,}. On the other hand, Eq. (3.30)
requires D “(A,)#0. Therefore, Eq. (4.13) requires that
C = 0, and we conclude that

Lip)=0 (4.14)
identically for all irreducible representations { p} of the Lie
algebra D,. Actually, the validity of Eq. (4.14) is not acciden-
tal but is intimately connected with the existence of the tria-

lity principle’ for the Lie algebra D,. We explain this fact
below. It is well known®® that the Lie algebra D, is very

(4.13)
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exceptional in the sense that it alone among all simple Lie
algebras has the maximum number of outer automorphisms.
Let

G= outer-automorphism group

- - (4.15)
inner-automorphism group

be the quotient group of outer automorphisms over inner
automorphisms. Then G is the identity for 4, G,, ¥, E, Ey,
B, (n>2),and C, (n>2), while G is the cyclic group Z, for 4,
{n>2), D, (n>5)and E,. However, Gis Z, for D,, where Z,, is
the cyclic group of p objects. Moreover, it is known that G is
isomorphic to the invariance group of Dynkin diagrams for
these Lie algebras.

As we see from the Dynkin diagram of D, (see Fig. 1j,
then G = Z, is identified as the permutation group of three
simple roots |, @, and a,, while the center root a, remains
invariant. To see this more clearly, let us introduce

K% R*= —R" andR,, = —R,, (u,v=1234)as
follows™***
K'L\L = %{ - X;w - X,u +4v+4 i[X;t,v+ 4 Xp. + 4,v ]}’

By o vie __ l{ _
R - R -3 X,uv X,u + 4, + 4

—i[Xpis + X san )b (4.16)
R,=—-R,, = %{ ~ X + X, favia
— [ Xys + Xy an 1}
Then they satisfy commutation relations
[K4KG]=85K% —8KY,
[K¥R’])= —8R" —§PR™,
[K4R.s]1=8:R,; +84R,.., (4.17)

[R‘“,,R )= 5ﬁK? + 5(3,K;f — (5‘,’,Kﬁ - (SﬁK“’,,
[R Ra/}] =0= [R 'u‘"R aﬁ]’

,U.\"
for u,v,a,8 = 1,2,3,4. The Cartan subalgebra elements H,
{j = 1,2,3,4) may then be identified as

H, = K/(no summation onj), j=12,34, (4.18)

while all other K {(u#v), R, and R*" correspond to E,’s

for some nonzero root a. If v™ is the maximal (or highest)

vector? in the irreducible representation | p}, then we have
Hy' = fu", (4.19)

where f; (j = 1,2,3,4) are given by Eq. (3.25). We now define
two outer automorphisms, 7 and o, in D, as follows. First,
we define 7 by

(i) p #4, v#4,

m(K%)=K"*, mR")=R",

7(R,.) =R,.,

(i =4, v#4,

m(K.)= —Ri, m(R,)= —KJ,

(i) u#4, v =4,

7(K4)=R", #7(R")=KY,

(ivig=v=4

T(K$)= —K3. (4.20)
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FIG. 1. Numbering of simple roots for the Dynkin diagram of D,.

We can verify that 7 is an outer automorphism of D,. Now,
in view of Egs. (4.19) and (4.20), 7 induces a mapping of
weight systems of D, into itself in the same representation

space { p}, keeping the maximal vector v* intact. In
particular,
77':]}—»]}, [j—>lj (j#4),
for—fo L —1, (j=4) (4.21)

Then, by Eq. (3.25), this is equivalent to interchanging of m,
and m, while m, and m, remain unchanged. Therefore, we
can interpret 7 to be the element of the permutation group
Z, which interchanges two simple roots @, and a, in the
Dynkin diagram.

Next, consider another mapping o defined by

4
Kios— K +—1«s; Sk,
A=1

N - .
R¥o = = 3 €upR s, (4.22)
aB =1
1 & vaf3
R#‘,—v— — Z €"R .z,
2 aff=1

forpu,v = 1,2,3,4, where €,,,,5 = € is the completely anti-
symmetric Levi-Civita symbol in four-dimensional space.
Although o is also an outer automorphism of D,, this is not
so convenient for our purpose, since the maximal vector v™
can be seen to be not invariant under ¢. For this reason, we
consider another mapping 7 defined as follows. Let W be an
operation which interchanges labels 1 and 4 and 2 and 3
{14 and 2«3} and set

= Wo. (4.23a)

We simply remark that W corresponds to an inner automor-
phism. The explicit operation of  in D, is now given by

| Q. -
R¥—>— — Y €,..;R®, 4.23b
- 2 a,ﬁz—_—l N B ( )
R L S eromip
v afl»
wTT T

where I = 5 — u etc. so that
1=4,2=33=2and4=1

We can verify that 7 is an outer automorphism of D,. Study-
ing the effect of 7 on the maximal vector v+, we see that it
induces the mapping
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fl“‘*fl = %(fl +f2 +f3 _f:t)’

fz*’fz =Yfi+fr—-Li+1i)
(4.24a)
fx“’fs =fi—fi+Fi+ 1)
fofo= Y= A+ o+ i+ 1),
or equivalently,
L—l, = Wi+ L+ hL—1)
12"’7-2 = %_(ll + lz - [3 + 14)v
(4.24b)
LI, = Wy—hL+ 1+ 1),
14—’1_4:‘ W—=hL+L+L+1)
or
1—»4 =i +L+L+0) -1 {4.24¢)
Note that the ordering relation
L>hL>L> |l (4.25)

is still preserved. In terms of m,’s, this is equivalent to the
interchange of m«<>m., so that we interpret 7 to imply the
permutation of two simple roots @, and a,. In terms of 7 and
7, the action of the six elements of Z, are given by

1. L:identity,
2. T3>0y,
3. T, A3,
(4.26)
4. TTH = TTT:Q \\«>0y,
5. T — A3 — |,
6. TT )\ —Q 0 — .

Let us label the irreducible representation { p} as
(f1» [ f5, f3)- Then, for example, we find

[(1 ,0,0,0+(1,0,0,0)

(Lhbao s — 3
[u000«%é5 %.
(R aadt BN

In other words, three eight-dimensional irreducible repre-
sentations, corresponding to the vector (1,0,0,0), the spinor
(3,3,4,4), and the mirror spinor {4,4,4, — }), interchange among
themselves by actions of Z,. This is one of the well-known
manifestations®® of the triality principle’ of D,. The dimen-
sion d ( p) is, of course, invariant under Z,.

We first observe that I,( p) is invariant under Z, if we
note

Ryl D=1 412412412, (4.27)

where Ij are defined by Eq. (4.24b). However, the fourth-
order Casimir invariants are not invariant. We can readily
see

iy p)— — T p)
However, by 7, we find
_ SN,
SEr=- 5 Sur+o] 30
j= j=1 j=1
- 611121314, (4.29a)
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after some calculations. Since Eq. (3.28) for n = 4 gives

spr= {2 B~ | S]] (.30

j=1
for D,, Eq. (4.29) 1mp11es

. 1 1 ) (4.31)
Lipl—— = 7
o P} 30J4(P)+ 214(,0)

Then Egs. (4.28) and (4.31) show that J,( p) and L,(p) [and
hence D ¥( p) and D “( p)] form a basis of two-dimensional
irreducible representations of Z;. Note that if we had used
I,( p) instead of J,( p), this conclusion would not apply. This
is another indication of the naturalness of the modified
fourth-order Casimir invariant J,( p) in contrast to I,( p).
Also, this implies the impossibility of finding the unique
fourth-order Casimir invariant for D,, which is independent
of the reference representation {4 }.

Now, let us return to the discussion of /,( p). When we
note g, = ¢'6;, for a constant ¢’ which does not concern us
here, we find

4 4 _

¢S PHH =S K)P= 3K
johk =1 j=1 j=1

Therefore, ,( p) is invariant under Z, since its invariance
under 7 is also evident. Then, the validity of Eq. (4.13) re-
quires C = 0 and hence [, p) = 0 identically, since D ¥ p)
belongs to a doublet representation of Z,. This is the reason
why I p)} = Ois not accidental but is related to the triality.

Also, we remark the following. Any irreducible repre-
sentation { p| = (f}, f>, [+, /4) satisfying

fi=fi+/fe fi=0
is invariant under Z, since

A=Lfild,+ A+ Ay + (> — f3)A,, so that in view of Eq.
(4.31), we must have

Jap)=1Lilp)=0.
This can be directly verified*” also from Eqgs. (4.8) and (4.30).
Then Eq. (4.11) requires G, .5( p) = O for any such represen-
tation. In particular, we have the validity of Eq. (1.37), i.e.,

TeX * = K (p)(TrX 22 (4.33)

for any irreducible representation { p} satisfying the condi-
tion Eq. (4.32). Especially the adjoint representation

{ po} = (1,1,0,0) must satisfy Eq. (4.33), as was already noted
by Cvitanovic®® some time ago.

As another application of triality, we note that if £, = 0,
then a similar consideration of Eq. (4.11) leads to the validity
of Eq. (1.35). However, we can generalize this into the fol-
lowing type of representations:

(4.32)

E pl} = (.{I’fzrf,ho)
{ p2} = (o s s i (4.34a)
I p1; flv.f’vfb f:t
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where f; satisfies the condition

fi=fi-fi~fs {4.34b)
Then Eq. (1.35) is valid for three types of representations:
{ p1],{ p2},and { p;}. Thereason s as follows. By the action

of Z,, the type { p,} representation transforms into { p,}
and/or { p;}. Then we identify

fi=Yfi+La+ 1),

H=UA+Fi—Sih

(4.35)
A=Ufi—fr+ 1)
L=l —fi+fit+ i)

But for { p,], we have L 1) =0, so that Eq. (4.31) requires
I{p,) = 1 J p;)forj =2 and 3. Then, from Eqs. (4.11) and
(4.12), we find the validity of Eq. (1.35) also for { p,} and
{ ps], although the value of C,(¢) changes.

We note that if Eq. (4.32) is satisfied, then

{p ) =1{p} =1{ps] Alsoifwesetf,=f,=0andf| =
in Eq. (4.35), then three representations
(p,0,0,0),
(L PP L)
227272/

(&ﬂﬁ_ﬂ)
22727 2

transform among themselves under Z,. The case p = 1 cor-
responds to the eight-dimensional representation.
In concluding this section, we simply note that

4 zu f-s| S [ 3]

=1
(4.36)
—4 Z(i)"_s[ Sy ” S, )z]
J=1 k=1
is invariant under Z,. This fact is relevant to the study of

sixth-order Casimir invariants of D,, which can again be
classified by actions of Z,.
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APPENDIX
As we noted in Eq. (1.27), we have

Lip)=Cd(pWp). (A1)

Since the constant Cis independent of the generic irreducible
representation { p}, we can compute it by

C= —;(Al)/d(Al)J4(Al)’ (AZ)

where we can calculate J,(A ,} by the formulas of Sec. 3. We
may evaluate /,(A,) and /,(A,) directly from the defining
equations (1.1) and (1.5). However, our normalization condi-
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tion Egs. (3.2) and (3.2') imply

LA, =n, (A3)
which differs by a factor of 2 for algebras B, (n>2)and D,
(n>3)from those adopted by McKay and Patera.” In order to
make a definite comparison to results of Ref. 5, we renorma-
lize our inner product by

(a’a)mux = 2 (A4)

for simple roots, as in their paper, while formally retaining
explicit expressions for J,{ p) given in Sec. 3. With this under-
standing, we recalculate and find

LA, (n>1)
LA)=n=N—1, Lia)="o =W=1"
n+1 N
(AS)
Ty = WUV -2V - 3)
3N+
C= 2
(N+ 1N+ 2N+ 3HN2+ 1)
2.8, (n>2)
LiA ) =1{A) =2n,
)= = —2)
32n +n+2)
16(n — 2)

C =
(n+ 1)2n +3)4n* — )2n* +n +2)

3.C, (n>2)

Lid)=n, ILiA) =§,

Tay=tr=bn—2
32n* +n+2)
Co 4(n —2)
(n 4+ 1)2n 4+ 3)4n* — )2n* +n +2)

4.D, (n>3)
IZ(AI) = 14(A 1) =2n,
5 4n(n — 1)n — 4)
Ija)= ==~
el 2 —n+2)
C— 16(n — 4)
(n+ 1)2n —3)4n*> — 1)2n* —n +2)

From these, we see I( p) = O identically again for D,. How-
ever, we find also /,{ p) = 0 for B, and C,. The reason behind
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the validity for the latter algebras is rather obscure in con-
trast to that for D,, which has been discussed in Sec. 4.
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The connection between singularities of the Faddeev-Popov determinant and the local gauge
degeneracy is discussed. / criterion relating the two phenomena is given. It is proved that a whole
neighborhood of the local gauge copy is filled with copies of transverse potentials.

PACS numbers: 02.30.Jr

1. INTRODUCTION

Let us define a gauge as a section of the connection
bundle' 4 /Zover A /G, where A denotes the space of connec-
tions and Z the center of the compact semisimple gauge
group G. Usually one defines the gauge by imposing the Cou-
lomb condition upon potentials 4 ;,

3, 47=0. (1)
This work is devoted to analysis of the local uniqueness of
gauge from the standpoint of bifurcation theory. We deal
with the Euclidean manifolds with a boundary as well as
with R? and R* noncompact spaces.

Gribov? argued that:

{i) if the Faddeev-Popov determinant is singular at
some transverse potentials [i.e., ones satisfying (1)], then the
condition (1) does not assure uniqueness—there are local de-
generacies;

(ii) the gauge is locally unique for sufficiently weak
potentials.

It should be noted that the singularity of the Faddeev-
Popov determinant corresponds to a nonzero solution of our
equation (4}, which is the result of the linearization of the
transversality condition (3). It should be stressed, that Gri-
bov’s statement (i) is not at all obvious, since solutions to
linearized equations may not be tangent to any curve of exact
solutions to a full nonlinear equation (see a counter example
in Berger?). The validity of (i) will be corroborated only par-
tially in this paper, under some assumptions about the multi-
plicity of solutions to the linearized Eq. (4). This will be done
in Theorem O: its possible generalization including the non-
compact R " case is discussed in Sec. 5.

We will show that the locally degenerate potentials can
have nonvanishing measure in path integral quantization
(that fact was pointed out by Moncrief,* but he dealt with
global copies and used different techniques). Two examples
of copied potentials are contained in Sec. 3.

The local uniqueness for weak potentials, so important
from the perturbation theory viewpoint, is well known and
probably proved previously (its generalization for noncom-
pact R case was done essentially by Moncrief*). I will discuss
it in Sec. 4 and 5 only for completeness.

2. MAIN RESULTS

Let us define the element of the gauge group G by
g = exp{ — ia{x)-of(, where o is the generator of the Lie alge-
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bra G. We assume a basis for the Lie algebra G in which the
structure constants /¢ are completely antisymmetric. The
potentials transform under the gauge transformation ac-
cording to a pseudotensor rule:

(hdf=hg"'4;g+ig”'dg (2)
The parameter 4 may be interpreted as the intensity of the
potential 4;, after suitable renormalization. Such redefini-
tion of 4, is always possible and it has the following advan-
tage: that we may use bifurcation theory methods treating 4
as a bifurcation parameter. The bifurcating solutions g ob-
tained below are analytical functions of 4.

The Coulomb condition is, inserting (2) into (1):

d;(hg~'Alo,g +ig” '9,g) =0. (3)

Suppose that 4 ¢ and a © are of class C *({2 ) and on the
boundary

a’(on) =0.

(As a matter of fact I should prove our theorems previously
in suitable Holder or Sobolev spaces and then use the Sobo-
lev embedding theorem® to show that obtained solutions a *
are of class C . I omit such technical details now and
elsewhere).

Expanding in (3) the functions g near ¢ = 0 give (includ-
ing terms to first order)

Aa® + 2hf*, 49,07 =0. (4)

If these equations have a nontrivial solution at 4 = A, van-
ishing on the boundary, and the critical values of # are isolat-
ed, then the full nonlinear equation (3) may have bifurcating
solutions g# 1, g{dN2) = 1.

The linearized operator D defined above [the Frechet
derivative of (3) at @ “ = 0] is skew-symmetric, with elliptic
symbol>® so its kernel is finite, dim kerD < oo, (ii) kerD *

= cokerD = kerD.>”7 Under our assumptions about the dif-
ferentiability of potentials and gauge transformations, tak-
ing into account {i) and (ii} we conclude that ker DrRangeD
= 0, and the operator D acts bijectively between C (12 )/
ker D—C =(£2)/ker D.

Hence, as a direct consequence of the theorem 4.2.3.°
we get:

Theorem 1: If Eq. (4) have an odd number of solutions at
h = h,, then Eq. (3) have nontrivial solutions & “{x,h — hg) of
class C =, such that a *—0 as h—h,,. These solutions are ap-
proximated to first-order by some combinations of the ele-
ments of kerD.
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The case of simple multiplicity may be examined in
more detail by using the Lyapunov-Schmidt procedure.”
The computations yield

a’ = f%h — hy)Xconst + O (h — h,), (5)
where f°e kerD, O (h — ho)/(h — ho)—0  (h—h,).

In order to avoid misunderstandings we stress that for trans-
verse A { and A fixed there is only one element g near the
unity of gauge group, such that Eq. (3) hold (assuming simple
multiplicity). The fixed transverse potential 4 4, with 4 suffi-
ciently near 4, has a transverse gauge copy (4, ) where

g = exp{ — ia ‘o, ), and consequently a curve of transverse
copied potentials (h4,)* parametrized by (h — h,) corre-
sponds to a curve A A, [if (h — A,) is small enough]. Both
curves originate from the point A, 4 ¢ which has no small
gauge copy itself.

Now we prove

Theorem 2: The bifurcating solution
g = exp( — ia “o,), where a“ is taken from (5), is locally
unique.

Proof: Our thesis follows from the implicit function
theorem which asserts that bifurcating solutions are unique
in a sufficiently small neighborhood of critical points
(ho»ct ©).5%7 These results are valid in two, three, and four
Euclidean dimensions.

It follows from the Theorem 2 that the Frechet deriva-
tive D does not vanish at (4 {,a ?) if h £ h,, and h=hgla? is
the bifurcating solution). Therefore the implicit function
theorem assures the existence of a locally unique C * con-
tinuation gi4 ?) on some open transverse neighborhood ¥ of

A ¢. [ Note that the operator defined by

¢ (hA ¢, @) = 9, [exp( + i@, )hAexp|
+ iexp( + io"o,)d,expl — ia"o,)" |

—ido,)

acting between (C * transverse potentials) X (C * Lie alge-
bra G valued functions}—{C = Lie algebra G valued func-
tions), annihilates (4 {,a %), but d¢ °/da’ | . _ . is nonzero
if h = hyj.

Hence we conclude that a whole neighborhood of each
local gauge copy (h4 {)* is filled with copies of transverse
potentials near 4,4 ¢, 4 %eV. This fact means that the degen-
erate potentials can have nonvanishing measure in path inte-
gral quantization. Section 3 presents two families of such
potentials. Moncrief* obtained the result, but contrary to the
way it was presented above, he requires that the global copies
of small potentials are known; since they are not obtainable
by linearization, it is rather difficult to find some explicit
examples.

3. EXAMPLES

[Throughout this section we put G = SU(2}].
(a) Let £2 belong to R °, with a sphere as a boundary.
Suppose

A% =8, kre  x,d,cosv, (6)

where 6, is the Kronecker’s symbol.
Then Eq. (4) are
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Af*R) — 2hk (re,, xi 3, cosv 3, fH(x) =

Af(R) + 2hk (Fe,, X, 3, cosv 3,f2(x) =

Af'(x)=0. {7)

The boundary conditions are /4912 ) =
while £ and f* may be found in the form

f2%) = singP j(v)f*(r),

SAX = cospP j(v)f(r). (8)

The equations for £°(r) and f(r) are

3 I+1 2hk (r

e )
J’ 2 4 I+1
arr  r or r —
Putk(rl= —rand/= 1.:[;}£n
A= =r"*s7,, (y 2k r), where /7, , is the Bessel
function. The boundary condition ¢, , \/ 2h Ry) =0ef-
fects a quantization of 4. Nonzero solutions exist for suffi-
ciently large # and a smallest possible value of 4, say A,

corresponds to a simple multiplicity. The solution bifurcat-
ing from g = 1 is (to first order)

g(x) = exp[ ~ i(h — ho)constP } (v}, £, (/ 2k 1]
X (o,8ing + g5c0s8@.}] (10)
(b) The same analysis in a two-dimensional case, under
the assumption

0. f'is zero,

2hk (r)f2

=0. (9)

P =0a€xxk (), €6y = — €, €,=1, (11)

yields the following form of the solutions to the linearized
equations:

Sfx)=0,

f2(x) = cosgf(r),

f3(x) = singf(r), (12)
where f(r) is a solution of

fredy - sp- 2o prg=0. (3

(R, is a radius of a boundary).
Suppose & (r) = const = ¢ (such choice corresponds to a
constant magnetic field along the third axis in the three-

dimensional context). Then f= ¢ 2(2\/ — 2her ), and the

critical values of / are given by #5(2,/ — 2hcR,) =0
The bifurcating solution is

gx) = expl — ik — ho)oonst, 7,2, — 2hev/r)
X {(d,cos@ + d,sing.)] (14)

4. THE COMPACT CASE

The Frechet derivative of the operator defined in (3) at
h =0, a® = 0is simply the Laplacian. The Laplacian acts
isomorphically between C°, (12 (spaces of functions vanish-
ing on the boundary 32 ) —C = ({2 ), and more generally, be-
tween CL+2+d,C*+4 (Holder) or WE T2 WX
(Sobolev) spaces.**” So from the implicit function theorem
we obtain:
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Theorem 3: The gauge exists locally for sufficiently
weak potentials [i.e., there exists such neighborhood of g = 1
where Eq. (3) has no solutions g#1].

5. THE NONCOMPACT CASE

Consider the case when £2 is replaced by R . The
Holder or Sobolev spaces are not correct now.® We will use
those of Cantor-Nirenberg-Walker, M25(R",R ™). M % is
the completion of C § functions wiht compact support in the
following norm || ||, ,.s = Zpuc, | (f 1 +72)* D],
where 6€R, 50 an integer, ||, denotes the usual L, norm on
R"and D “isd,, /9x{-dx,’ corresponding to a multi-index
a. The Laplacian acts isomorphically between
Mbs—M?L_ 55, 0, forp>n/in—2), 1/p+ 1/p' =1,

—n/p<b< —2+ n/p (see Cantor®).

Theorem 4: For sufficiently weak fields the gauge exists
locally in three or four Euclidean dimensions.

Proof: This is a direct consequence of the above men-
tioned Laplacian property, for p > 3 (in three dimensions} or
p > 2 (in four dimensions); our thesis follows now from the
implicit function theorem, as in Theorem 3.

Note that this result was obtained essentially by Mon-
crief* who proved injectivity of our operator D for small
potentials 4 { (that is all that we used).

The results of Sec. 2 cannot be obtained in the noncom-
pact case so simply. The methods used beforehand do not
work since the zeroes of the Frechet derivative D are not
isolated in the parameter space 4. One must then put a sub-
sidiary condition (correctly stated); if the linearized equa-
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tions have nonzero solutions at discrete values 4, it is possi-
ble to get result analogous to our Theorem 1 (it is necessary
to prove beforehand the splitting property* of D in the spaces
MZ2g).

6. REMARKS

The Gribov ambiguities include also phenomena of
nonlocal nature (e.g., Gribov showed that even the potential
A = 0 has a nontrivial gauge copy, far from the unity ele-
ment); they are not explainable in the framework of bifurca-
tion theory. One can study bifurcation from g # 1; especially
interesting seems to be that case when a global g connects
A = 0 and a nonzero transverse field. Unfortunately, such g
is not known explicitly as yet, so the analytical method is
inapplicable.
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We develop a general approach to solve the transmission problem for a scalar macroscopic field in
an anisotropic stratified medium. The method is based on a chainlike set of functional equations of
the Lippmann — Schwinger type. A typical example of the fields under consideration is the wave
field of a particle in the effective mass tensor approximation.

PACS numbers: 03.40.Kf, 03.65.Nk

I. INTRODUCTION

In this paper, we develop a general approach based on
equations of the Lippmann—Schwinger type to solve the
problem of the propagation of scalar waves of any kind in an
anisotropic plane-stratified medium. In the general case, the
system under consideration consists of an arbitrary number
of macroscopic crystalline layers of arbitrary thickness. The
layers can be different from one another in their crystal sym-
metries, orientations of the crystallographic axes relative to
the separation planes and in their physical characteristics. A
typical example of the fields under consideration is the wave
field of a particle in the effective mass tensor approximation.

For any dynamic field in a stratified medium (as well as
in any other medium, homogeneous or inhomogeneous), two
interrelated problems of practical and theoretical interest
can be formulated, viz., the problem of the field of an arbi-
trary “extraneous” source (the “forced” field) and the prob-
lem of a free field. The former is reduced to the problem of
calculating the Green’s function (i.e., the field of a point
source) for the given system. This problem was solved in Ref.

1. The problem of a free field is considered in the present
paper.

In a stratified medium, two kinds of states of a scalar
field are possible. A state of the first kind arises as a result of
all conceivable scatterings {i.e., multiple reflections and re-
fractions by all existing interfaces) of an initial plane wave
impinging at an arbitrary angle on the nearest separation
plane. The field in such a state is different from zero in the
whole infinite or in some semi-infinite space and can there-
fore be called nonlocalized. On the contrary, the field in a
state of the second kind is different from zero only in aregion
which is limited from both ends in the direction normal to
the interfaces. Such a state can propagate in the form of a
traveling wave only in the directions parallel to the interfaces
and can therefore be called localized. In this paper, we con-
sider both kinds of states of a free scalar field.

In Ref. 1, our approach was based on a chainlike set of
functional equations of Dyson’s type in the mixed coordi-

*Permanent address.
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nate-propagation vector representation. In the present pa-
per, in order to solve the problem of the propagation of a free
macroscopic field in a stratified medium as described above,
we also formulate a chainlike set of functional equations in
the mixed coordinate-propagation vector representation.
However, these equations are now equations for the scatter-
ing amplitudes, and not for the Green’s function, and should
therefore be of the Lippmann-Schwinger type.” Thus, we
generalize the conventional collision theory*” to the prob-
lem which is, in fact, classical.

The structure of the set of Lippman-Schwinger equa-
tions proves to be similar to that of Dyson’s equation. This
similarity can be used in two ways. Firstly, the set of Lipp-
mann-Schwinger equations can be solved straightforwardly
by essentially the same method as suggested in Ref. 1. Sec-
ondly, the scattering amplitudes can be expressed in terms of
the corresponding total Green’s function. Thus the problem
of a free field reduces to the problem of the field of a point
source. Naturally, the final results for the scattering ampli-
tudes obtained in these two ways are the same.

The method of the Lippmann—-Schwinger equations de-
veloped in this paper for a scalar field in an anisotropic strati-
fied media is of importance from both the practical and theo-
retical points of view. Practically, this is an extremely
effective method of finding the eigenstates of the field in an
anisotropic stratified system and also of solving the corre-
sponding transmission problem. The most essential advan-
tage of our approach over conventional methods is that our
approach enables us to reduce the amount of calculations
needed for solving each specific problem to a minimum. This
is demonstrated in Sec. VII by a rather complicate example
of an arbitrary anisotropic three-layer medium. Theoretical-
ly, our method is a generalization of the conventional colli-
sion theory>> to the problems which are essentially classical.
Also, the scalar field is the simplest field in mathematical
physics. The problem of the propagation of the acoustic or
electromagnetic field in an anisotropic stratified medium
can be solved by the same method but is technically much
more complicated (compare, e.g., Refs. 1 and 4). Therefore,
aside from the interest which results obtained present in
themselves, the considerations of this paper can serve as an
introduction to the corresponding theory of the more com-
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plicated fields just mentioned. This theory will be discussed
elsewhere.

Il. FORMULATION OF THE PROBLEM

A. The basic equation

Let us consider a free scalar macroscopic field of fre-
quency w,

Yir,t) = Ylrwle ~“, (2.1)
in an anisotropic stratified medium. The class of the fields
and the properties of the media under consideration are as-
sumed to be the same as in Ref. 1.

Regarding a stratified system as a particular case of a
spatially inhomogeneous medium, one can write the equa-
tion for ¥{r;w) in the form

>0,

[w(r) + Vie* (r)V* 1¥fr;w) = 0, (2.2)
where
w(r)=E — U(r) + iyr), ¢ir)—»+0, (2.3)

€*(r) is a material characteristic of the medium

(6* = €}, U|(r)isapotential, and (r)is a small phenomeno-
logical parameter. The form of E depends on whether the
original time-dependent equation for ¢(r,? ) is of Schro-
dinger’s type or a conventional classical equation, viz.,

E - [ﬁa) for Schrodinger’s field, (2.4)
~ lw? for aclassical field. (2.5)

Similarly, y should be associated with the inverse lifetime of
the state of energy E in the quantum case, or with the absorp-
tion of the field in the classical case.

We deal with a medium consisting of anisotropic flat
layers of arbitrary thicknesses in contact. In the general case,
the layers are assumed to be different from one another in
their energy-like (or frequencylike) parameters w,, , material
characteristics eﬂ‘, and in the orientations of the crystallogra-
phic axes with respect to the separation planes. The quanti-
ties w, and €/} are constants. The integer subscript 4 num-
bers the layers successively.

Choosing the x-axis along a normal to the interfaces, we
have'

wir)= 3 s.xw,, €5r) = 3 s, (xlek, (2.6)
where

s.(x)=0x—d,_)—0(x—d,),

d, \<d,, p=1-n—1

(2.7)

Solx) = 0(dy — x), s,(x)=0(x—d, ;)

dy= — o, d, = w.
We can also write

Yirw) = ¢ix)e"™,  Yxi=vixf,,{w,}) (2.8)

where the mark || stands for the orthogonal projection of a
vector onto they yz-plane (e.g., onto any one of the inter-
faces). As a result, Eq. (2.2) becomes
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3 [w,5,x) + €4d.s, (x)9 oix) = 0, (2.9)

where

¥ =g -aa; +iff, £ =(0.12 1) =0,/ 1),
(2.10)

w,=E, +iy,, E,=E-U,, y,—>+0. (211)

In this paper, we retain the main notation of Ref. 1. In par-
ticular, x = d,, is the separation plane between the (1 — 1)th
and the uth layers, s, (x) is the shape function of the uth
layer, 6 (x) = }(1 + sgnx) is the unit step function, » is the
total number of interfaces. The total number of layers is
equal to n + 1. According to Eqs. (2.7), the zeroth ( u = 0)
and the last (4 = n) layers are assumed to be semi-infinite
spaces x <d, and x >d, _ ,, respectively. In Egs. (2.8) and
(2.9), the subscript v is used instead of .

From the complex conjugate of Eq. (2.9) and from the
definitition of ¥{x) [see Egs. (2.8)], it follows that

Pxf), (w, ) = 9ix — ), fwd]) = ¢ — xify, {w))):

(2.12)

In the case of Schrodinger’s field, the state ¥* is time-re-
versed to 1.” Hence, #(x;f;,{w}}) should, according to Eg.
(2.12), be regarded as a state which is time-reversed to
Y(x; — f,,{w, }). By analogy, we retain this definition also
for a classical field. It should, however, be remembered that
the original time-dependent equation for a classical field is of
the second order in d /3t and therefore this definition is pure-
ly formal.

B. Waves in a homogeneous medium

If €*(r) = €} and U (r) = U, in the whole infinite space,
Eq. (2.1) becomes

(£, + €xv'V*)g,(r)=0, (2.13)

where we have substituted &, for w,, and ¢, (r) for ¥(r;w).
Equation (2.13) gives the eigenfunctions and eigenvalues of
the field in an infinite medium of the uth kind, viz.,

B.r)=a,e", &,=8,0=e€Sf">0, (2.14)
where f is a propagation vector, and g,, is a normalization
coefficient. The quadratic form & , (f) is assumed to be posi-
tive definite.

The eigenfrequencies © = w,, (f) can be found by com-
bining the relation

E=%,0+U, (2.15)

with Eq. (2.4) or (2.5). At the same time, the group velocity of
a wave packet,

Ve (f) = da,, (£)/3f", (2.16)
is expressed in terms of the quantity
v, ()= 9% ,(80/9f = 2elf* (2.17)
by a simple relation. This is
v )= [ﬁ‘ 'vi (f) for Schrédinger’s field, (2.18)
He \E V2%l (f) for a classical field,  (2.19)
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where the square root is positive (E = o > 0).

C. The stationary scattering problem

Our purpose is to represent the stationary state of the
field in a stratified medium, which is formed as a result of all
possible multiple scatterings (i.e., reflections and refractions)
by all existing interfaces of a plane wave coming from infin-
ity. We assume that such a wave of frequency @ comes from
the semi-infinite space x < d; and strikes the interface x = d;
at an arbitrary angle. We can therefore write

Ux) = dolx — do) + xolx), x <d,, (2.20)
where @(x) is the incident wave in the {x,f,) representation
Yolx) is associated with the wave reflected into the interior of
the region x < d,,.

In accordance with Egs. (2.8), (2.14), and (2.15), the inci-
dent wave is given by the relations
o) =ae’™, E=8(,)+ Uy fi =84 +f),

(2.21)

where f_ is its propagation vector, and E is connected with
the frequency of the wave by Eq. (2.4) or (2.5). The magni-
tude of the normalization coefficient a, = a,(f, } is unimpor-
tant in the problem under consideration, because we are in-
terested only in the ratio of the wave amplitude in each layer
to a,. The constant phase factor exp ( — if”, d,), which ap-
pears in the expression for ¢(x — d) [see Eq. (2.20)], is intro-
duced for convenience and can, in principle, be included in
a,.

In addition to the characteristics of the “bare” plane
wave, which are given by Eqgs. (2.21), we introduce the sign
index of the x-component of its group velocity, viz.,

5, =sgnvy = sgnuy,(f, ), (2.22)
where
v, =vh(f,) = €, (f, )/, =2exf%, (2.23)

in accordance with Eq. (2.17). The fact that the signs of 5 (£, )
and vg, (f, ) are the same follows from Egs. (2.18) and (2.19).
It is clear that
5, = +1

s, = —1

for forward propagation in time, (2.24)

for backward propagation in time.
(2.25)

The case of s, = + 1 corresponds to the stationary scatter-
ing problem as was formulated at the beginning of this sub-
section. If s, = — 1, we arrive at the stationary state which
should be regarded as a time-reversed state, in accordance
with the definition of Sec. ITA (compare with conventional
collision theory?). In this paper, we consider both kinds of
stationary solutions of the problem.

It should be noted that, generally, there is no single-
valued correlation between the signs of v5(f, ) and f7, . At
each given s, the component f7, can, in principle, have ei-
ther sign. Only in the case of an isotropic medium,
sgnf, = s, . In fact, the sign of v5(f, ), but not of £, is
important in the problem under consideration.
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D. Boundary conditions

At each separation plane, say x = d,,, the quantity #(x)
satisfies the boundary conditions

Yd, —0)=y(d, +0)=y(d,),

md, —0)=1d, +0=I1d,)
where, by definition,

11 (x) = — € Yx),

(2.26)
(2.27)

d, <x<d,, p=01,.,n.
(2.28)

Equation (2.26) means that, at any separation plane, the field
under consideration is assumed to be a continuous function
of the position vector. Integrating both sides of Eq. (2.9) with
respect to x between d,, — & and d,, + 6, and taking into
account Eq. (2.26) and the definition of 17 (x), Eq. (2.28), we
arrive at Eq. (2.27) as 6— + 0.

If the nth region is impenetrable to the given field, we
have

l/](x):o! x>dn~l'
As a consequence, Eq. (2.26) for u = n takes the form
Y,  —0)=¢ld,)=0, (2.30)

while Eq. (2.27) for 4 = n becomes ineffective. Thus, we ar-
rive at the scattering problem for a stratified semi-infinite
space x <d, ; with the rigid boundary condition at

x =d, , as given by Eq. (2.30).

(2.29)

n -

E. Equations of motion

Making use of Egs. (2.7), and (2.27), and (2.28), and tak-
ing into account that d@ (x)/dx = 8{x), one can rewrite Eq.
(2.9} in the form of the set of differential equations

(w, +€exddnx) =0, d,_, <x<d,, p=01,.n
(2.31)

Since
[%o(f,) + €53.9; Jdolx) = O, (2.32)
substitution of Eq. (2.20) into Eq. (2.31) with z = 0 gives

(wo + €53°%)yo =0, x<dy, 1 =0, (2.33)
where
wy=E, + iy, = 59‘00(1.*) + iy (2.34)

[for Eqgs. (2.32) and (2.34), see Egs. (2.10), (2.11), and (2.13)-
(2.15)]. Equations (2.31) with z = 1,2,...,n and Eqgs. (2.33)
form the complete set of equations of motion for the problem
under consideration.

F. The quantum-mechanical interpretation
Writing
€ = i m, )%, (2.35)
we can regard Eq. (2.9) as a time-independent equation of
Schrodinger’s type for quasiparticles in the effective mass
tensor approximation. The original time-dependent equa-
tion for #(r,? ) can obviously be written
#idw/ot = Hy,

where

(2.36)
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A=Ve*mv + U, U= Ss.mU, (237)

[for €*(r) and 5, (x), see Eqs. (2.6) and (2.7)].

Making use of Eqgs. (2.36) and (2.37), we arrive in the
usual way (see e.g., Ref. 5, pp. 56, 57) at the continuity
equation

aly|*/dt = Vi,
where the current density is written as
=/ @V —g*vy) [ =€), ¥ =dire)).

(2.39)
An asterisk stands for complex conjugation.AIn devgloping
Eq. (2.39), we have taken into account that #* = H and
ek = e~

Combination of Eq. (2.39) with Egs. (2.1), (2.6), and (2.8)
gives

J =ji(x§f|| Jw, 1)

= | 5 s.tvie | wtmaterio — vmieiatuta),
(2.40)
where J% is defined by Eq. (2.10). Owing to Egs. {2.26)—(2.28),
J' = j(x) proves to be continuous at each interface, i.c.,
jid, —0)=jd, +0), p=01,..n—1,

as it should be.

Substitution of €l for €* and ¢, (r) for ¢ [see Eqs. (2.13)
and (2.14})] into Eq. (2.39) gives the current density of quasi-
particles in an infinite medium of the g th kind,

Ju = la, [Pv(6), (2.42)
where v, (f) is the group velocity as defined by Egs. (2.17)
and (2.18). Setting z = O and f = f_ in Eq. (2.42), we obtain

the current density of the incident particles or, more general-
ly, the “bare” current density. Making use of the relation

|¥,1g ()| *=0lug (A0 ()
— 4ﬁ_2(€/2‘ )ilffff'k — ﬁZ(m# —Z)ikff'fk,
we can normalize j;, to any desired intensity.

(2.38)

(2.41)

{(2.43)

Ill. THE RETARDED AND THE ADVANCED
“STANDARD” GREEN’S FUNCTIONS

Like conventional collision theory,* our formalism is
based on the use of the properly defined retarded and ad-
vanced “‘standard” Green’s functions in the (x,f, }-represen-
tation. Below, we introduce these functions and discuss their
main properties.

The “standard” (unperturbed) Green’s function for the
pth medium in the (x,f, )-representation,
D, (x)=D,, (x;f,,w,), is, by definition, the solution of the
equation'

(w, + €53.95)D,,(x) = 8(x), — o <x< o, (3.1)
where d, is given by Eq. (2.10), and w,, is an arbitrary com-
plex parameter. It was shown in Ref. 1 that

D,lx)= —(28,) e, (x),
T,(x)= — 9D, (x) = —ls.e,(x),

(3.2)
(3.3)
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where
(3.4)
and f* = f,"" = £.""(f,,w,) is the solution of the equation
gﬂ(ﬂzéﬂyk=wy (3.5)
with respect to f*, which satisfies the condition
s, (3.6)
In addition to D, (x) itself, the quantity T, (x) as defined by
Eq. (3.3) is of fundamental importance in our formalism.
Equation (3.5) is quadratic in f* and has therefore two
solutions. These can be written

e, (x) = expl(if, by, s, = sgnx,

(sxbx __

sgn Imf,,

fr=f = w,)=p, +isq,, s=+1, (3.7
where

P, = —€)'€S 9. = (€78,

B, =€) u, —w,), (3.8)

w = ABSES0, Al = —(er) e,

{ik ) = {yz}, (3.9)

sgn Reg, =sgn ReB, =sgn(e)'* = + 1. (3.10)

Inserting Eq. (3.7) into Eq. (3.6) and taking into account Eq.
(3.10), we find thats = s, .

The quantity u, has a simple physical meaning. Let us
find the minimum of & () as a function of f*(f, = const).
From the equation vj; (f) = O [see Eq. (2.17)], it follows that

f =fimin = — €)' € | =Pp»

Frumin =8"f soin + [ =8"p. + £} (3.11)

After simple reduction, we find that the desired quantity can
be written

& pwin B )=8 (i) = 1., (3.12)
where u,, is exactly that as defined by Egs. (3.9). Since, by
assumption, & ,(f) is positive for any f, the quadratic form
u, = u,(f,) is also positive definite.

In all further considerations, we assume that
w, = E, +iy,,inaccordance with Egs. (2.11). If y, — + 0,
the quantity D, (x) can be called the retarded Green’s func-
tion. If y,— — O, we deal with the advanced Green’s
function.

In order to find the retarded and the advanced Green’s
functions, we write

f”=fx+f77,

[i=8"f"+f), F'=8F+f (3.13)
where
fr=fir= yllni Sl +v)
=p# +is(€;x)‘lﬁ-#. (314)
We also write
B, =B,1+i,), (3.15)
where
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R
|

[(efj‘)”z\/ u, —E, ifE, <u, (3.16)
I - 3.17
—tsy“(e';]'/z\/E# ~u, ifE,>u,, (3.17)
5, =[2E, —u,)] "7, 5, = SENY,., (3.18)

with the square roots being positive. The sign factors on the
right-hand sides of Egs. (3.16) and (3.7) are chosen so that 3,,,
Eq. (3.15), satisfies the condition (3.10).

The quantity 7 can be found if we insert Eq. (3.15) into
Eq. (3.7) [g, = (€ 'B,., see Eqgs. (3.8)] and compare the
resulting expression for f* with that given by the first of Egs.
(3.13). Thus we obtain

n=n= —isy,/2B, =y, /i) (3.19)

In writing the final result in Eq. (3.19), we have made use of
the relation

v ) = 2677 + €1 = 2isB,.,
which follows from Eq. (2.17), in view of the definitions of
Fi [see Egs. (3.14) and (3.15)] and p,, [see Egs. (3.8)].

Equations (3.14) and (3.19) can alternatively be derived
if we insert /* as defined by Egs. (3.13) into Eq. (3.5) and then
write Eq. (3.5) in the linear approximation in 7 as

&0+ muf)=E, +iy,

{for vy, (?)_, see Eq. (2.17)]. Thus we recover Eq. (3.19). Also, we
get &, (f) = E,,, which is equivalent to Eq. (3.14).

In order to identify f* = £, > with f if"x one should set
s =5, in Egs. (3.13}+(3.17), (3.19), and (3.20).

From Egs. (3.16) and (3.17), it follows that there is a
difference between the retarded and the advanced Green’s
functions only if E, > u,,. In this case, Eqs. (3.14) and (3.20)
become

fx =ftlx___:f“ [o,1x =D, + o, (Qx‘x)#l‘ﬁﬂ l’

(3.20)

s =20,18,], E,>u,, (3.21)
where
o, =55, = +1 (3.22)

Since f* and vy ?y ) so obtained are real, combination of
Eq. (3.6) with Egs. (3.13) and (3.19) gives

sgnug (f) =s,5, if E, >u, (3.23)
[fors, ,see Egs. (3.18)]. This relation justifies the above defi-
nition of the retarded and the advanced Green’s functions: If

Sy, = * 1, the quantity D, (x) is associated with waves com-
ing out from the plane x = 0 (sgnv;; = sgnx); if s, = =1
the waves are incoming (sgnv;, = — sgnx).

From the first of Egs. (3.21), it follows that

_f’[‘a]x + 2P,u =fLa]x _ 2(62)‘)_16—;/7'}7],(,
(3.24)

f—[\a]x__‘_
u
o= 1+ 1.

In writing this result, we have taken into account the defini-
tion of p,, as given in Eqs. (3.8).

In tensor notation independent of the system of coordi-
nates chosen, Eq. (3.24) can be written
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Fit = PUfi =Fi = anly, £, (3.25)
where

Pk =% _ 2y nk,

v, = (€n°n®) " 'eifnk, (3.26)

and n is a unit vector in the x-direction. A tilde stands for
transposition.

According to Refs. 1 and 6, PZ‘ as defined by Egs. (3.26)
is the operator of the generalized image in the plane r-n = 0
which is the boundary of an anisotropic half-space (r-n <0 or
r-n> 0) of the uth kind. In other words, the generalized im-
ager;,, of a space point r belonging to the half-space is writ-
ten as

Pg =PIF =7 — 2v,, (r-n). (3.27)

If now one defines the generalized image f,,,, of a propaga-
tion vector f by requiring that rf =r,,_-f,.., the result is

fimg =Pifi=f"—2niv, ). (3.28)
This can readily be verified by means of the relation
PIpPik=Piph=g§* (3.29)

Calculations of v}, (f,..) by Eqs. (2.17) and (2.38) give
V., (Fimg ) =260 f1,,, = 260 PIEf* = 2P0 kf
=PIV, (f) = v, (f) — 2v/, (v, (f)}n). (3.30)
In developing this result, we have made use of the relation
EiPlk = Pl = e — 2enn V¥, (3.31)
which follows from Eqs. (3.26). Thus, under the generalized
image transformation, the quantity v, (f} and hence, the
group velocity [see Egs. (2.18) and (2.19)] are transformed
like a position vector [compare Eqs. (3.27) and (3.30)].
Let us multiply Eq. (3.28) by v/, and Eq. (3.30) by n‘.
Since v, *n = 1, this gives
v;l .fimg = n'vp. (fimg) = - n.vy (ﬂ (332)
As a consequence, Egs. (3.28) and (3.30) are invariant under
the permutations f,, =fand v, (f, ., Jev,, (f), respectively, in
agreement with Eq. (3.29). For an isotropic medium, we have

(3.33)

~wv,f

€r=€,8% v, =n
and therefore /7, = — f*, as it should be.

Comparing Eq. (3.25) with Eq. (3.28), we conclude that
the vector £ can be regarded as the generalized image of
the vector £ u ) in the plane r-n = 0. The physical meaning
of the generalized image is as follows (see also Sec. V A): If
f= ?}j” is the propagation vector of a plane wave which
propagates in an anisotropic half-space, rrn <0 or r-n > 0, of
theuth kind and strikes the plane r-n = x = Oseparating this
half-space from a medium of a different kind, then
e = .f;'f 7] is the propagation vector of the reflected wave.
The x-components of group velocities of the incident and
reflected waves are given by the second of Egs. (3.21), which
is in agreement with the second of Eqgs. (3.32) (n' = §%).

We recall that the ““bare” plane wave is given in the
region x < d,,, which corresponds to ¢ = 0. Without loss of
generality, we can assume that d, = 0. In view of Eq. (2.34),
Eq. (3.17) with # = 0 becomes
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Bo= — "Syoiffkf'; | = —is,s, é'g’ff'; = — s, 5,0,
(3.34)
In developing the final result in Eq. (3.34), we have taken into
account Eqgs. (2.22) and (2.23).
Substitution of Eq. (3.34) together with the expression
for p, [see Egs. (3.8)] into Eq. (3.21) withy = Qands =35,
gives

JEFSR IS =T — (1= 91 e
where

(3.35)
§=15,5,5, (3.36)

and f* is defined in Egs. (2.21). Equation (3.35) can be writ-
ten in covariant form as

ﬁ)ux)iEf[me]iE]‘éﬂi =fi — (1 = §vef, ' (3.37)
or, equivalently,
Fom = BIFE = £ vt PV = fL, (3.38)

where P and v}, are defined by Egs. (3.26). Thus, £}~ ' is
the generalized image of /°, in the plane rn =x = 0.
Setting fi, =f 7'V, f'=f%,and . = Oin the second

of Egs. (3.32), and taking into account that n’' = 5™, we have
vl ) = —u3(E,) = — v} (3.39)

* '

As a consequence, Eq. (3.23) with f = f(‘) ~"andu = 0be-

comess,s, = —s,,inagreement with the fact that

§= — 1 [see Egs. (2.22), (2.23), (3.35), and (3.36)). Since

s, = — l(x <d, = 0), the relation obtained reduces to

Sy =Sy
This result is a particular case of the general condition
Sy =S4 M= o,1,...,n, (3.40)

which, evidently, must be imposed on s, [see the criteria
(2.24), (2.25), and the discussion following Eq. (3.23)].

According to Egs. (2.24), (2.25), and (3.40), one should
use the retarded Green’s functions when constructing the
usual causal solutions of the stationary scattering problem,
and the advanced Green’s functions in constructing the
time-reserved states. This is in agreement with conventional
collision theory.”

IV. LIPPMAN-SCHWINGER EQUATIONS

In analogy with what was done in deriving the set of
Dyson’s equations in Ref. 1, we multiply the equation for the
scattering amplitude in the uth layer [i.e., Eq. (2.33)ifu = 0,
and Eq. (2.31) if u = 1,2,...,n] by the corresponding “stan-
dard” Green’s function, D, (x, — x), where x, is an arbitrary
fixed point on the x-axis. Then we integrate both sides of the
resulting expression with respect to x between d, ,+dband
d, — &, respectively, thus obtaining

,— 8
r Dyix, — x)w, + €53, o(x)dx =0, u =0,

;‘"5

D, (x, — x)w, + €x3. 0 x)dx =0, p=1.2,.,n,

d, ,+86

where § is a positive infinitesimal (d_, = — «, d, = ).
In these equations, we integrate by parts the terms contain-
ing derivatives with respect to x [see Eqgs. (2.10)]. Lastly,
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making use of Eq. (3.1) and the notation given by Egs. (2.28)
and (3.3), we arrive at the equations

ss)aj(x)l’o(x) — Dyfx —do + O oldy — 6)
— Tolx —do + S)xoldo — 8) =0, p =0,
sxypix) + D, (x —d, _ —8)1d,_, +9)
—-D,(x—d,+8lld, -8+T,(x—d,_, —6)
Xy, + 68— T,(x —d, + 8Yld, — &)
=0, u= 1,2,.,n —1,
sOx)gix) + D, x —d,_ — M (d, 1 +9)
+ Tn(x_dn—l —6)¢'(dn—l +5)=0' #zn’
where
Fox) = — e xolx) = I (x) — Aglx —do),  x<dy, (4.4)
Aolx) = — 50 dolx) = — €3 4 Bolx) = — Yivy bolx), (4.5)
sOx)=6(x —d,_, —6)—8ix—d, + 8),
u=12,..,n-—1,
) = 9(dy—x—8), sPx)=60(x—d,_—b). (4.6)
In writing Eqs. (4.1)—(4.3), we have substituted x for x,. In
Eqgs. (4.1) and (4.3), we have also taken into account that
D,(+ w)=0andT,(+ o)=0d_,= — w0, d, = ).
The final expression for I'y(x) in Eq. (4.4) is apparent from
Eqgs. (2.20) and (2.28).
Inserting the expressions
Xoldo — 8) = ¥ldo — 6) — by — b),
Iyldy — 6) =H(d0—5) — Ay _‘5)»
which follow from Egs. (2.20) and (4.4), into Eq. (4.1), we
obtain
56 (x)¥olx) — Dolx — dy + 8)IT (dy — 6)
— Tolx —do + 8)Yld, — 6) = — Folx —d, + 6, — §),
pn=0, (4.7)
where
Folx,x0) = D()(XMO(XO) + Tolxoldolxo)-
From Eqgs. (3.2)—(3.4), it follows that

T,x)=D, xRS, R =D O)T,(s, X0) =5,8,.

(4.1)

(4.2)

(4.3)

(4.8)

H
(4.9)
Equation (4.8) can therefore be rewritten as
Fofx,xo) = Do) 57'xo), (4.10)
where
D 57(x) = D 5 (O)Ffs,. X 0,x). (4.11)

Passing in Eq. (4.8) to the limit x— + 0, and taking into
account Eqs (3.2)—(3.4), (3.34), and (4.5), we obtain that

Folse X0x0) = — 4(s, + 5,5, dolx,)- (4.12)
At the same time,
Dy0) = — (28,71, (4.13)

where B, is understood as its limiting value /3, given by Eq.
(3.34).

Combination of Eqgs. (3.34) and (4.12) with Eq. (3.40)
yields

Bo=PBo= —iekfk = — vk, (4.14)
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Fofs, X0,x0) = — 6 (x)olxy). (4.15)

Let us now pass in Eqgs. (4.2), (4.3), and (4.7) to the
limé-» + 0 and take into account that

(4.16)

lim s(x) =, (x), x#d, ,d,,
5 -+4+0

where s, (x) are defined by Eqgs. (2.7). Then making use of
Eqgs. (2.26) and (2.27), we arrive at a chainlike set of function-
al equations of the Lippmann-Schwinger type, viz.,
8 (do — X)xolx) — 4 §lx — do) = — Fylx — dy,0), =0,
(4.17)
s, (xWx) + A% " Vx—d, ) —A4¥Nx—d,)=0,
p=12,...n—1,

Olx—d, Jx)+4] " "x—d,_)=0, p=n,

(4.18)
(4.19)

where

Afx —d,)=D,(x—d, )+ T,(x—d,gd.,),

A=v=pu—loru=1+1,v=y, (4.20)
and
Fylx — do,0) = 6 (x — do)Dy(x — do)® ,+ 1(0), (4.21)
DLt ”(0) = —-Dy 1(0)¢0(0) = —a,D gy (0) = 2a,8,,
(4.22)

in accordance with Egs. (4.10), (4.11), and (4.15) [for D, (0),
see Eqs. (4.13) and (4.14)].

The structure of the set of Lippmann-Schwinger equa-
tions is similar to the structure of Dyson’s equations consid-
ered in Ref. 1. Each of Eqgs. (4.17)—(4.19) relates to one defi-
nite layer. However, formally each of them holds in the
whole infinite space ( — o <X < o0}, except for the points on
the separation planes (x;éd#, p=01,., n—1). Thisis
achieved by using the shape functions s, (x). The quantities
¥(d,) and IT(d,,) in Eqs. (4.20) are unknowns to be found in
the course of solving Eqgs. (4.17)—{(4.19).

It should be emphasized that Egs. (4.17)—(4.19) deter-
mine both the usual *““causal’ solutions of the stationary scat-
tering problem and the time-reversed states. The character
of the solution depends on whether the retarded or the ad-
vanced “standard” Green’s functions are used in Eqs. (4.20)-
(4.22).

V. SOLUTION OF THE LIPPMANN-SCHWINGER
EQUATIONS

Equations (4.17)—(4.19) can be solved by the method
used in Ref. 1 for solving a similar set of Dyson’s equations.
Following this method, we set x = x," in Eq. (4.17),x = X,
and x = x,; in Eq. (4.18), and x = x,; in Eq. (4.19), where
x, and x, are arbitrary fixed points satisfying the inequal-
itiesx,” <d, ,andx, >d,, respectively. In particular, we
can set

x=x;=d, -0, x=x=d, +0. (5.1)
As a result, we obtain a chainlike set of 27 linear algebraic
equations with respect to 2» unknowns ¥(d,,) and /7 (d,, )

(e = 0,1,..., n — 1). All these equations, except for the first,
are homogeneous. Since
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D(-0=D,(+0)=D,0), T,(—0)~—

M

T.(+0)=1
(5.2)
[see Egs. (3.2) and (3.3)], the same set of equations can also be
obtained by the substitutionsx =d,, ;, +0andx=d, — 0
instead of those given by Egs. (5.1). Having found #(d, ) and
11(d,,), we can insert them back into Eqs. (4.17)-(4.19) and
thus obtain the scattering amplitudes for all values of x.

In what follows, we consider a transformation which
proves to be very useful in solving Eqgs. (4.17)—(4.19). Also,
we need this transformation in the further discussion (see the
next section).

Settingx =d, + 0in Eq. (4.17)andx=d, _, —Oin
Eq. (4.19), we solve the resulting equations with respect to
II({d,)and IT(d, ), respectively. In view of Egs. (4.20) and
(4.21), we obtain

1 (do) = D4+ 10) — R " "Y(dy), (5.3)
1md, )= —R,""d, ), (5.4)
where R |} is defined in Egs. (4.9).
Substitution of Eq. (5.3) into Eqs. (4.17) and (4.18) with
1 =1, and of Eq. (5.4) into Egs. (4.18) withu = n — 1 and
(4.19) gives
0{do — x)xolx) = 6 (do — x)Dy(x — do)D ¢ '(0)
X [¥ldo) — 640)], =0,
$,(x)¢(x) — Dy(x —d )M (d,) — T\(x — d,)¢{d))
+ 647 x —doidy) = — Dy(x —d\)@,"N0), p=1,
(5.6)

(5.5)

Sp 1 (XWx)+ D, _(x—d, ,)ld,_,)
+7, (x—d, ,)¥d, ,)

-0, \x—d, \Wd, })=0, p=n—1, (57)
Oix —d, \Wx)=0(x—d, ,)D,(x—d,_,)

XD, OWd, ), n=n, (5.8)
where
Olix) = T,(x) = D, (xR = D,(xR 5%, 5= =1,
(5.9)
R S"‘;S‘J =R (VSV) —R ij“) = SVBV =8Py SusS, = + 1
(5.10)

[see Eqgs. (4.9)]. In Egs. (5.5) and (5.8), the coefficient of ¢(d,)
and ¥(d, _ ,) appear originally in the form of © 4§ "(x — d,)
and 8!, "(x —d, _,), respectively. In view of Egs. (4.9),
(5.2), and (5.9), these can be written

6. (x)=s0(—sx)D,(x)D (0} (s= 1, p= O,nz-5 0

In deriving Eq. (5.5), we have also taken into account Egs.
(4.11) and (4.15).

Thus, we have eliminated the unknown constants /7 (d,)
and I7(d,, _,)and reduced the original set of n + 1 Lipp-
mann-Schwinger equations to a set of # — 1 interdependent
functional equations. These are Eq. (5.6), Egs. (4.8) with
p=23,..,n~—2,and Eq. (5.7). Equations (5.5) and (5.8) are
independent of those equations and of each other. On finding
Ydy) and ¢id,, _ ), Egs. (5.5) and (5.8) determine y(x)

(x <d,) and ¥(x) for x >d, _,, respectively. Equation (5.5)
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for x > d, and Eq. (5.8) for x > d,, _, become identities of the
type 0=0.

Moving from the beginning and from the end of the
reduced set of n — 1 equations towards its middle, we can
continue the process of successive elimination of the remain-
ing unknown constants ¥(d,, )and /7 (d,, ) until the original set
of Lippmann-Schwinger equations is completely solved.

Combination of Eqs. (4.20) with Eqgs. (3.2){3.4) gives

A ,‘77 N — d,u— = - ao“:f UCXP[’f:f W — d;‘k )l
x>d, .,

AU+ x —d,)=aul, Vexp[if x —d,)]x<d,,(5.12)

where

at "= (2a8,)" ' 1d,_,)+B.¥d, )],

a = —(2a48,)"'[I1d,) —B.¥d,)] (5.13)
are constants independent of 2,. In Egs. (5.12) and in all
equations below, £} is understood as its limiting value
as y, — =+ 0 (see Sec. III).

Inserting Eqs. (5.12) into Eqs. (4.17)—-4.19), we express

the scattering amplitudes in the form of superpositions of
plane waves, viz.,

Fls)x
n

Xolx) = agary” Vexp[if i x — do)], x<d,, =0,
(5.14)

Yx) = ao{aL+ Yexp[if,t x —d, )]
+al,” YVexp[if,” M(x — dﬂ)]}, d, ,<x<d,

w=12,.,n—1, (5.15)
Yix) = apal exp [if;t Mix —d, )],
x>d,_,, g=n. (5.16)

In writing Eq. (5.14), we have taken into account that
Fyix — d,,0) = 0if x < d, [see Eq. (4.21)].

Each given wave in Eqgs. (5.15)and (5.16) is either travel-
ling or spatially damped depending on whether the corre-
sponding quantity f\* " = f!* " is real or complex (see Sec.
III). However, in any case, we have

for M= = = 2Ave k) = — £ - 2

(5.17)
[see Eqgs. (3.26), (3.35)—(3.38), and (3.40); n’ = §™]. Thus, y,(x)
as given by Eq. {5.14) always corresponds to a traveling
wave. According to Eq. (3.30), the group velocity of this
wave is determined by the relation

volfo ) = vo(f, ) — 2 (vg(f, )m)
=v, — 20 (&) e (5.18)
[see also Eqs. (2.18) and (2.19)]. If the medium is isotropic, we
have f;” '™ = — f% , as it should be
From Egs. (5.14) and (5.16), it follows that

ayt " =ag 'yoldy) al"V=a 'Yd,_ ) (5.19)

Formally, these relations can be proved with the help of Egs.
(5.3), (5.4), and (5.13) [see also Eqs. (5.5) and (5.8)].
Equations (4.17)~(4.19) and the related discussion cor-
respond to a stratified infinite space. In the case of a stratified
semi-infinite space x <d, _,, one should omit Eq. (4.19)and
combine the last of Eqs. (4.18) (i.e., for 4 = n — 1) with Eq.
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(2.30). The set of functional equations so obtained can be
treated in the same way as above.

IV. THE REFLECTION AND TRANSMISSION
COEFFICIENTS

We define the reflection (R ) and transmission (7) coeffi-
cients of a stratified medium as

R= lim lim | fra(x)/| 7l
(dy —X)—=+ 0 Yo— 0

T= lim lim |/~ (x)|/| 7% (6.1)
(x—dy. >+ Yi>t0

where j,., j.!x), and j,. (x) are the current densities of the
incident, reflected, and transmitted waves, respectively, The
limiting transitions in Egs. (6.1) should be understood in the
sense that

76~V <ldo — %)< 5], x<dy

’77(n+ ”l<(‘x_dn—l)—l<lffn+ l]x" x>dnvl’ (6'2)

where S5 and 75} are defined by Eqs. (3.13)3.19) [see also

Eq. (5.17)]. Thus the limiting transition y,— + 0 or
¥.— + 0 must be performed before the corresponding limit-
ing transition with respect to x.

It should be emphasized that all ¥, must be of the same
sign, in accordance with Eq. (3.40). Also, they should have
been taken to be positive, in view of the criterion (2.24). How-
ever, in fact, the final results for R and T prove to be indepen-
dent of the choice of the sign index s, .

Substitution of @y(x} (x <dp), yolx) (x < dy) or ¥ix)
{x>d, ,)asgivenbyEq.(2.21),(5.14), or(5.16), for ¥(x} into
Eq. (2.40) yields

jin = |a0|2v0;(f* )!
jreﬂ (x) = |XO(x)|2Rev05 (f07 l))’ X <d03
Jie(x) = [#x)"Rev, (.7 1), x>d

where v, (f, ), Voo (fo "), and v, (f,* ") are the group veloci-
ties of the incident, reflected and transmitted waves,
respectively.

Inserting Eqgs. (6.3) into Egs. (6.1), and taking into ac-
count Eq. (2.18), we obtain

R = lah” "Plosf= "/ vsE,)] = lab A (6.4)
et P lox (8, /v (e, )| = el V28, /1Bl

if £, >u,, (6.5)
0 if £, <u, (6.6)

(6.3)

n—1»

T=

In developing Eqgs. (6.4) and (6.5), we have made use of the
second of Eqs. (3.21) and Eq. (4.14); B, and B, are understood
asB,and B3, , respectivley. In order to prove Eq. (6.6), we note
that, in the case of E, <u,, the quantity f,* ' is complex
and v, (f,* ") is pure imaginary as y,— + 0 [see Egs. (3.14),
(3.16), and (3.20}). Therefore both factors |y(x)|* and Re v,,
in the expression for j, (x) [see Eqs. (6.3)] vanish if x is large
enough and y,— + 0.

The quantities R and T as given by Egs. (6.4)—(6.6) satis-
fy the relation

R=1-T (6.7)
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This can be proved in the general form in analogy with what
is done in quantum mechanics (see, e.g., Ref. 5, pp. 75-78). In
each particular case, Eq. (6.7) can also be verified by straight-
forward calculations (see, e.g., the next section).

The above results were derived for Schrodinger’s field.
In the case of a classical field, the only difference is that one
should use Eq. (2.19) instead of Eq. (2.18). Therefore Egs.
(6.1}, (6.3), (6.4), and (6.6) remain in force. The same applies
to Eq. {6.5) if we assume that U, = U, = 0 and therefore

#of)= 8,0 ") = E=0’ (6.8)
[see Egs. (2.11), (2.21), and (3.5)).

Vil. EXAMPLES

A. Two half-spaces in contact (7 = 1)

By way of example let us consider the simplest case of
two semi-infinite spaces x < d,;, and x > d,, is contact. This
corresponds to n = 1. More complicated cases of a three-
layer medium and a compound semi-infinite space will be
considered in Secs. VIIB and VIIC.

Equating the right-hand sides of Egs. (5.3) and (5.4)

(n = 1) for IT (d,), we obtain

¢(d): 1*’1»+1)”1¢l+1()

where use has been made of Eqgs. (4.2
Combination of Egs. (5.19) {(n =
(2.21), and (7 1) gives

ao =By — B/ By + By),

2a8,/(Bo + B)), (7.1)

2), (4.13), and (5.10).
1} with Eqgs. (2.20),

alt V= 2B/ (Bo + Bi)-
(7.2)

As before, a bar over 5, is omitted.

One can easily verify that R and T as given by Eqgs. (6.4)
and (6.5) (n = 1), subject to Egs. (7.2), do satisfy Eq. {6.7).
Also, in view of the definition of B, [see Eq. (4.14)] and 5, [see
Egs. (3.16) and (3.17)}, it follows from Egs. (7.2) that
lab" V| = 1if E, <u,, and |a) " "| < 1 if E, > u,.

If |B,| > (i.e., Ui~ o0 Or €0, |¢,| < o), Egs. (7.2)
become

alt =0, (7.3)

which corresponds to the semi-infinite space x < d, with a
rigid boundary x = d,,.

-1
al() '——19

B. A three-layer medium (1 = 2)

In the case of a medium consisting of three layers in
contact, viz., a flat slab d, < x <d, and two semi-infinite
spaces x < d, and x > d,, one should set n = 2 in all general
relations. Combining Eqgs. (5.3} and (5.7) or (5.4) and (5.6), we
obtain the same equation, namely
$1(x)ip(x) + O 6 Nx — dolyldo) — O47 x — d i)

= —Dx—d)," 0} p=1 (74

In order to solve this equation, we evaluate it at
x =d,— 0and x =d, + 0in turn. Thus, we get the set of
two linear algebraic equations

o (= Oj(dy) — B4 (= 1)¥(d)) = — D\(0)@,* 1(0),
(7.5)
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B4 L Widy) — B4 ( + 0ld)) = — D\(1)® 4" (0),
where, according to Egs. (3.2), (5.9), and (5.10),
4 (= 0)=(28))""B\ + Bo)
Oui )= —(28)7 "B — Bule,ll)),
(7.6)
04 [+ 0= —(28))7 (B, + Ba),
64y N —1)=128)""18, — Be,( — 1),
and
l,=d, —d, (7.7)
is the thickness of the slab.
From Eq. (7.5), it follows that
Yldy) = MoS 1P (0),
(7.8)
Y(d)) =2B.e(1)S 1P (0},
where we use the notation
Sa, = (B, + 0B)B: + Ba) — B — o Bu)B, — )
xexpl —2g,l,), oy= +1, (7.9}

My :ﬁl +B;t +(ﬂl _ﬂ/t)exp(_qull)’ :u’=0’2
{7.10)
Substitution of Egs. (3.2) and (7.8) into Egs. (5.5), (5.8)
(n = 2), and (7.4) gives Eqgs. (5.14), (5.15) (u = 1), and (5.16)
{n = 2) with
a, V=a,; ldo) — $ol0)]

=28M,S ;) —1=—S 51,
ait V= (‘10S+1)A1(ﬂ1 +Bz)¢0* "(0)
=2BB1 + B2 1,
(7.11)
a\ ™" =(apS,,) (B — Bl @5+ "(0)
=2B,B, —B)S & Lexplif| " 1),

ay’ "=ag 'Yd,) =4BBS | 1‘3XP(if(1+ 1)

[see also Egs. {5.13) with = 1 and (5.19) with n = 2]. In
developing these results, we have made use of Egs. (5.9),
(5.10), (7.9), and (7.10). We have also taken into account the
definitions of @y(x), e, (x), and @+ V(0) [see Egs. (2.21), (3.4),
and (4.22), respectlvely] As before, we omit bars over all
variables. Thus, 8, withp = 1,2, is given by Egs. (3.16) and
(3.17) together w1th Eq. (3.40); B, is given by Eq. (4.14). The
quantities g, and £ ''* are expressed in terms of B, by Egs.
(3.8) and (3.14).

Since 3, is always pure imaginary, and 3, can be either
real or pure imaginary, it is convenient to rewrite Eq. {7.9)in
the form

S, = +t2 S, (7.12)
where
S, =8"%8",
= B,\B,coshgq,l, + B.sinhg,l,), (7.13)

S” = B,(B,coshq,l, + Bysinhg,l,) if E;<u, B, is real)

or
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5. =5 452,
SV =—is «BillBol £ |B,|)coshg,/;,
S§% =(1£B7 — |Bol|B,|)sinhg,/,

(B, is imagnary).
In order to derive Egs. (7.14) from Egs. (7.13), we rearrange
somewhat the terms in Eqgs. (7.13) and make use of Egs. (3.17)
and (3.40) with i = 2 [see also Egs. (2.22) and (4.14)).
Taking into account Egs. (3.16) and (3.17) with u = 1,
one can readily see from Eqs. (7.13) and (7.14) that S ' or S !/
is pure imaginary (real) and simultaneously, S ” or S ) isreal
(pure imaginary) if 3, is real (pure imaginary). Hence,
IS, P=IS"1P+|S"* if Ey<u,
1S, P=[SYI+I1ST P = BHBo]* + 18a])
X cosh’q,ly + (1B|* 4 |Bo|*|B.|*)|sinhg,/,|?
+ 2|8y 18:*1B,)  if E,>u,. (7.16)
In developing Eq. (7.16), we have made use of the identity
B |sinhg,/,|*=|B,|*sinh’q,/, (g, = (])"'B)  (7.17)
which is valid if 5, is real or pure imaginary.
Combination of Egs. (7.11) and (7.12) gives
a "=S5_/S,, ay""=2BB8,""/S,
(see also Eq. (3.7)). Therefore, Egs. (6.4) and {6.5) become
= [S_I/IS, 2 T= 4Bl IB.*IBul /IS, 2. (7.18)

In view of Eqs. (7.15)and (7.16), R = 1if E, <u,,and R < 1if
E, > u,. Also, one can readily verify that R and T as given by
Eqgs. (7.18) subject to Eq. (7.16) satisfy Eq. (6.7).

(7.14)

if E,>u,

(7.15)

If B, =, li.e., € = €* and U, = U,), Eq. (7.16)
becomes
1S, 12 = (|Bo|? + |B,]??Isinhg,/,|?
+40, |Bl’IBi)? o, =1, 0_=0, (1.19)

where we have again made use of Eq. (7.17).

C. A compound half-space

If |B;| > (i.e., Uy—>c0 OF €& >0, |q,| < ), Egs.
(7.11) subject to Eqgs. (7.12) and (7.13) become

A =88t gl = Beth /S
(7.20)
ait = —Be?'/S' =, ayt =0,
where
S'=) = B.sinhg,/, + B,coshg,/,. (7.21)

Evidently, S =) = le*" M,, where M,, is defined by Eq. (7.10).
In this case, Egs. (5.14) and (5.15) (4 = 1) give the scat-

tering amplitudes in a medium consisting of a flat slab

d, < x <d, with a rigid boundary x = d, and a semi-infinite

space x <d, in contact (¥(x) = at™ " = 0 if x>d,). In anal-

ogy with Eq. (7.15), one can readily see that

|S'2? = |Bol|sinhg,/,|* + |B,[*(coshg /)%, (7.22)
and therefore R = |§='|?/|S¥)|> = 1, as it should be
expected.
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VIIl. RELATIONS BETWEEN THE SCATTERING
AMPLITUDES AND THE TOTAL GREEN’S FUNCTION

A. The total Green’s function

In Ref. 1, we derived the set of Dyson’s equations for
the total Green’s function of a stratified medium in the (x.f)
representation, D (x,xo)=D (x,xyf,{w, }). In analogy with
Eqgs. (4.17)—(4.19), those equations can be written

@(dy — x)D (x,x,) — B e — do,xo)

= 0(do — xo)Dofx — Xo), p =0, (8.1)
5, (x)D {x ,x0)+B""”(x— 1’x0)_BW+1(x— d, )

=5, XD, (x — %), p=12,...,n—1, (8.2)
O(x —d, D (xx)) + B~ x—d,_x)

=0(xo—d,_1)1D,(x —x), p=n, (8.3)
where

Bi:“(x —d,x) = D,u(x —d,\P(d,.x)

+ T,(x—d,)D(d,xo),
A=v=u—lord=pu+1l,v=uy, (8.4)
D(d.x,)=DI(d, —0xo) = D(d, + 0,x,), (8.5)
Pld,x))=Pd, —Ox,)=P(d, +0x,), x,#d,,

(8.6)
Plxx,) = — D (xx), d, \<x<d,,
— 0 <Xg< 0, p=01,.,n (8.7)

[see Eqgs. (2.12)—2.17) of Ref. 1]. The quantities D (d, ,x,) and
P(d,x,) are unknowns to be found in the course of solving
the Dyson’s equations [compare with ¢(d, ) and /T (d, ) in the
case of Lippmann-Schwinger equations).

In the general case, the total Green’s function of a
stratified medium can be written as

Dxx,) = z Z 5, (x)s,,, (X0)D,,, (X:Xo), (8.8)
=0y, =0
where

‘u‘u (X,x()) y.;t (x - xO) + A,u,u(, (x’xo)’ (89)

;L# (x:xo)
= Z D/.t( d ) yy(,n(,Dy.“(d vy —x0)9

v=p — Ly, =y — Ly,

(8.10)
while X, .. =K, ... (f,{w,})is a matrix which depends

neither on x nor on x,. In each particular case, this matrix
can be found in the course of solving the corresponding set of
Dyson’s equations.

From the reciprocity relation'

D(x,xo;fH,{wA}):D(xo,x;—f”,{wi}), (8.11)
if follows that

Aﬂy(,(x,xo;f“ Jw, }) =4, xe x; — f”!{w/l ) (8.12)
and therefore

K/—‘#uv""o(f” ’ { w'{ }) - #nl-‘ VoV( - f” ;{w/l } )' (8‘ 13)

In order to derive Eqs. (8.8)—(8.10), we insert Eq. (8.4)
into Eqgs. (8.1)-(8.3) and make use of Eqs. (4.9). Thus, we
arrive at Egs. (8.8) and (8.9) with
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A,u.;t(, (x!xo) = Z Du ('x - dv )Luy”,v(xo)’ (8 14)
v=p—lLu
where
L;t,u“,;t _ixe)= — P(du —1:%0) _ByD (dy _1+%0)
(8.15)

Luu”,,u (XO) =P (dy YxO) - B,uD (du ’XO)
[cf. Egs. (5.13)]. In writing these results, we have taken into
account that u and g, in Egs. (8.9) and (8.10) are indices of
layers which contain x and x,, respectively [see Egs. (2.7) and
(8.8)]. Therefore the right-hand sides of Egs. (8.15) depend on
Mo implicitly. Since

D, (x;fyw,) =D, (—x; — f,w,), (8.16)

combination of Egs. (8.12) and (8.14) immediately gives Eq.
{8.10).

According to Egs. (3.2), (3.4),and (3.7), D, (x) is continu-
ous on the whole x-axis. From Egs. (8.5), (8.8)-(8.10), it
therefore follows that D (x,x,) is a continuous (and hence
bounded) function of both x and x,,, i.e.,

Dx + 6,x5) =D (x,xy + 8) = D (x,x,), (8.17)

where 6 is a positive infinitesimal. Equation (8.17) holds for
|x — x4|>68 as well as for |x — x| <8 (i.e., for x = x). In
particular, x or x, or both can be equal to d,,.

On the other hand, the quantity P (x,x,) as defined by
Eq. (8.7) satisfies the relations

0 if |x —x,[>6,(8.18)
1 if |x — xo|€6.(8.19)
This result can immediately be obtained by integrating both
sides of Eq. (2.9) of Ref. 1 with respect to x between x;, — 6
and x, + 8, where x, is any fixed point on the x-axis, and § is,
as before, a positive infinitesimal. Taking into account Eqgs.
(8.7)and (8.17) and replacing x, by x, we arrive at the desired
result.

Thus, in calculating P {x + 8,x,) as x—x, and 6— + 0,
the order of the limiting transitions with respect tox and 6 is
essential.

It should also be noted that Eq. (8.6) is a particular case
of Eq. (8.18), which corresponds to |x —d, |5 and
|xo —d, 16

Plx —8,xy) — P(x +6,x5) = [

B. The scattering amplitudes
Setting x, = dy, — 0 in Eqgs. (8.1)~(8.3), we obtain
6 (dy — x)D (x,do — 0) — B\x — dy,dy — 0) = Dolx — d),

©=0, (8.20)
s, (x)D (x,dy —0)+ B~ Yx —d, _,,dy—0)
— B+ Vx—d, d,—0)=0, p=12,..n—1,
(8.21)
8x —d,_,)D(x,dy—0)+BY " Yx—d,_,dy—0=0,
©=n. (8.22)

Equation (8.20) and Eq. (8.21) with & = 1 involve the
quantities D (d,,d, — O)and P (d,d, — 0) which should beun-
derstood as the limiting values

D(dyd,—0)= lim lim D(d,+ 8,,d, — &), (8:23)

5y~ +08—+0
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Pldpd,—0)= lim lim P(d,+ 8,d, — &), (8.24)

408, ++0
where §, tends to zero first. This follows from the definitions
of D(d, x,) and P(d, ,x,), Egs. (8.5) and (8.6)
(ix — do| €|xo — do|).

On account of the continuity of D (x,x,) (see Eq. (8.17)),
we have

Dxd,—0)=D(x,d,+ 0)=Dx,d,) (8.25)
and, in particular,
D(dydy —0) =D (dyd, + 0) = D (d,d,). {8.26)

This means that the order of the limiting transitions in Eq.
(8.23) can be changed. On the other hand, the same limiting
transitions in Eq. (8.24) are not permutable because P (x,x,) is
discontinuous at x = x,,. It should be noted that we do not
need Eqs. (8.25) and (8.26) in the further considerations.
However, these equations can be useful in specific calcula-
tions [see, for example, Eq. (8. 37) and the related
discussion].

We observe that the sets of Egs. (4.17)—(4.19) and (8.20)-
(8.22) have the same “‘matrix of coefficients”, and the unk-
nowns which are involved in these equations, except for
Yolx), satisfy the boundary conditions of the same kind [com-
pare Eqgs. (2.26) and (2.27) with Egs. (8.5) and (8.6)]. Howev-
er, the fact that y(x) and D (x,d, — 0) satisfy completely dif-
ferent boundary conditions at x = d, [see Egs. (2.20)], (2.26)
and (2.27) does not enable us to express the solution of Egs.
(4.17)—{4.19) directly in terms of D (x,d, — 0}, which is the
solution of Eqgs. (8.20)—(8.22).

This difficulty can be avoided by elminating Egs. (4.17)
and (8.20). Equation (4.17) is eliminated by the transforma-
tion considered in Sec. V. Likewise, in order to eliminate Eq.
(8.20), we evaluate it at x = d,, + 0O, thus obtaining

P(dyd,—0)= — 1 —R\*"D(dyd, — 0), (8.27)

where R {|* is defined in Eqgs. (4.9). Substitution of Eq. (8.27)
back into Eq. (8.20) and into Eq. (8.21) with z = 1 gives, in
analogy with Egs. (5.5) and (5.6), that

0 (d, — x)D (x,dy, — 0)

= 6(dy, — x)Dyx — do)D 5 (0D (dpdy—0), p=0,
(8.28)

5,(x)D (x,dy — 0) — D(x — d,)P(d,dy— 0)— T\(x — d,)
xXD(d,dy—0)+ 6] Yx —dy)D{d,dy, —0)
=Dx—d) u=1, (8.29)

where @4 (x — d,) is defined by Eqgs. (5.9} and (5.10).

Let us now consider two reduced sets of functional
equations, Lippmann—Schwinger and Dyson’s. The first
consists of Egs. (5.6), (4.18) withyu = 2,3,...,n — 1,and (4.19).
The second consists of Egs. (8.29), (8.21) with
1 =23,.,n—1,and (8.22). It is essential that these sets of
equations involve only such unknown functions [viz., #(x)
and D (x,d, — 0), respectively] which satisfy the boundary
conditions of the same kind at all separation planes x =d,,,
p=01..n—1

We multiply Egs. (8.21) with ¢ = 2,3,...,n — 1, (8.22),
and (8.29) by @4+ "(0). Then putting
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Yix) = — D (x.do— 0} V(0) = — 2ao8,D (x.dy — O),

x>d,, (8.30)
as well as
#d,)= —D(d,d,—0)@,* (0)
= —2aB,D(d,.d, —0), (8.31)
d,)= — P(d,.d, — 0)®,* "(0)
= — 2a,B,P(P,,d, — 0) (8.32)

for all x = 0,1,...,n — 1, we arrive at the set of » functional
equations, which exactly coincides with the reduced set of
Lippmann-Schwinger equations [for @ ,* '(0), see Egs.
(4.22), (4.13), and (4.14)]. Since this set of equations has a
unique solution, the quantity 1(x) as defined by Eq. (8.30)
should be identified with the scattering amplitude, while the
quantity /7(d,) as defined by Eq. (8.32) is identical with
I1(d,) given by Eq. (2.27) and (2.28). Equation (8.31) is, obvi-
ously, the particular case of Eq. (8.30), which corresponds to
x = d,,. It should also be noted that the reduced sets of Lipp-
mann-Schwinger and Dyson’s equations involve /7 (d, } and
P(d,,d, — 0) with all i, except for u = 0. Nevertheless, Eq.
(8.32) remains in force for 4 = 0 as well. This can be seen if
we multiply Eq. (8.27) by @ {* '0) and compare the resulting
with Eq. (5.3).

Inserting ¥{(d,) as given by Eq. {8.31} into Eq. (5.5} and
making use of Eq. (8.28), we obtain
Yolx) = [D (x,dy — 0) — Dolx — do)1D 5~ '(0)(0)

= — a,{2B,D (x,d, — 0) + exp (6~ M — do)]},

x <dg, {8.33)

where 5, and £, ', are understood as B, and £, ', respec-

tively [see Eqgs. (4.14) and (5.17)].
It is convenient to write

dx)= 3 s, (K% x>d,

u=1
where s, (x) are given by Eqgs. (2.7). Thus, we introduce the
notation

(8.34)

Y=y, x), d, <x<d,, p=12,.,n (8.35)

[for u = O, see Eq. (2.20)]. Then making use of Egs. (8.8) and
(8.9), we can rewrite Eqgs. (8.30) and (8.33) in the form

XuX) = —2a080d,0(x,dy —0), d, _, <x <d,,
p=0,1,..n (8.36)
Equations (8.30} and (8.33) or, equivalently, Egs. (8.36) are
the desired relations which express the scattering amplitudes
in terms of the total Green’s function. Combining these
equations with the corresponding expressions for D (x,x,) of
Ref. 1, we recover the results of Sec. VII.

In connection with Eqgs. (8.30) and (8.33), we recall that
the first step in the calculation of D (x,x,) consists of solving a
set of linear algebraic equations in the unknowns D (d,, ,x,)
and P(d, .x,)t = 0,1,...,n — 1. These equations follow from
Eqgs. (8.1)—(8.3) as a result of any of the series of the substitu-
tions mentioned in Sec. V. Having, in particular, found
D {dy,x,), we can make use of Egs. (8.11) and (8.25) to write

D(x,dy — Oty {w,}) = D (dox; — £, {w, }). (8.37)
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Thus, in order to calculate the scattering amplitudes by Eqgs.
(8.30) and (8.33), we need not calculate D (x,x,) for arbitrary x
and x, and can confine ourselves to the first step in solving

the Dyson’s equations.

C. Space inversion

So far, we considered the stationary scattering problem
in the case where the “bare” plane wave was given in the
semi-infinite space x < d,. If the “bare” plane wave is given
in the semi-infinite space x > d, _ |, one should write, instead
of Eq. (2.20), that

Yx) =, (x —d, )+ x.x), (8.38)
In this case, the “bare” wave ¢, {x) can be defined by substi-

tuting the subscript 4 = n for u = 0 in Eqgs. (2.21) which
define ¢y(x). Also, we have now, by definition,that

x>d, .

s, = sgnu(f, ), (8.39)

in place of Eq. (2.22). Therefore the index s, should be re-
placed by — s, inthe criteria (2.24), (2.25), and in all related
considerations. In particular, Eq. (3.40) turns into

S5y, = T S

u=0,1,.,n. (8.40)

In analogy with what was done in Sec. IV, one can read-
ily show that the set of Lippmann-Schwinger equations con-
sists now of Egs. (4.18) and the equations

6(do — x)Pix) — A§'(x —dp) =0, p=0, (8.41)
Ox~d, _J.x)+45 Yx—d,_|)=F,(x~d,_,,0),

u=n, (8.42)
where

F,x—-d, 0)=0(d,_, —x)D,(x—d, ,)®,”"(0),

(8.43)
@~ "0) =D, (O)F,(—00) =D, 04,00 = —2a,8,
(8.44)

n—1

{[compare with Eqs. (4.21) and (4.22)]. The quantities

A l'f’(x —d, ) are, as before, defined by Egs. (4.20). In order to
make sure of the validity of Egs. (8.43) and (8.44), we note
that Egs. (3.34) and (4.8)—(4.13) can be rewritten correctly by
substituting the subscript # (or, in general, any u) for the
subscript 0. However, on account of Eq. (8.40), Egs. (4.14)
and (4.15) are replaced now by

B, =B, = iekf* = Livi(f, ),

F, (55 X0,x) = 6 ( — X, (xo). (8.45)

The set of Lippmann-Schwinger equations so obtained
can be solved in a straightforward way as was described in
Sec. V. Alternatively, the scattering amplitudes can be ex-
pressed in terms of the total Green'’s function in analogy with
what was done in the previous subsection.

Following the latter method, we make the substitution
xo=d, , +0in Egs. (8.1)-(8.3). Thus we arrive at equa-
tions similar to Eqgs. (8.21) as well as at the equations

8d,—xDxd, , +0)—BY(xd,_, +0)=0,

4=0, (8.46)
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G(x—d,,fn)D(x’d,.fl +0)
+B(n"v”(x’dn—l+0)=Dn(x_dnfl)!
p=n, (8.47)

which appear instead of Eqs. (8.20) and (8.22), respectively.
On eliminating Eqs. (8.42) and (8.47) (by the substitution
x=d,_, —0), we proceed as in the previous subsection.
The final results can be written as
Yx)=Dxd,_, + 0@, "0
= - zaanD (xsdn —1 + O); (848)
X.x)=[D(xd,_, +0)—D,lx —d,_,)]D, "(0)¢,(0)
= —a,{28,Dxd,_, +0)
+explift, "x —d,_ )]}, x>d,_\, 849)

Yd,)=Dd,d,_, +0)®,”"0)

x<d, |,

= —2a,8,Dd,d, , +0), (8.50)
1d,)=Pd,d,_, + 0@, "0)
= —2a,8,Pd,d,_, +0) (8.51)
(u=0,1,..., n — 1), where
£ = = fy = Uen) e (8:52)
[compare with Eq. (5.17}].
In analogy with Eq. (8.34), we write
dx) =S s, 0, x<d. (8.53)

u=0

thus introducing the notation as given by Eq. (8.35) with
u=0,1,.,n—1,[y,(x)is defined by Eq. (8.38)]. As a conse-
quence, Eqs. (8.48) and (8.49) become

XulX)= —2a,B,4,,xd, +0), pu=01,.,n
(8.54)
[compare with Eq. (8.36)].

1X. DISCUSSION

A. Stationary states

Equations {2.20), (8.30), and (8.33), on the one hand, or
Egs. (8.38), (8.48), and (8.49), on the other hand, determine
the stationary states of the field, which can be denoted as
Yolxsfy, { E, £ i0}) or ¢, (x;f,,{ E, + i0}), respectively. The
state ¢, (x.f,,{ E, + i0}) (u = O,n)is associated with a wave
process which develops in the usval causal time sequence. In
accordance with Eq. (2.12), the state ¢, (x;f,,{ E, — i0}) is
then time-reversed to ¢, (x; — f;{ £, 4 i0}). The corre-
sponding quantity D (x,x;f,{ E, + i0}) or
D {x,xy;f,,{ E, — i0}) should therefore be identified as the
total retarded or advanced Green’s function, respectively.

B. Localized states

We have studied the stationary states which have the
asymptotic form of an incident (‘‘bare”) plane wave plus a
reflected plane wave either in the semi-infinite space x < d,
or in the semi-infinite space x > d, _ . In addition, there can
exist stationary states of the field, which penetrate neither of
the two semi-infinite spaces. Such states can be called
localized.
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Putting formally that y,(x) = #(x) and @,(x) = 0 in Eq.
(4.17)or y,(x) = ¥(x)and ¢, (x) = 0in Eq. (8.42), we find that
the complete set of Lippmann—Schwinger equations for lo-
calized states consists of Eqgs. (8.41), (4.18), and (4.19). By any
of the three series of substitutions mentioned in Sec. V, we
reduce these equations to a set of linear homogeneous alge-
braic equations with respect to ¥(d,, ) and I7 d.),

# =0,1,..,n — 1. Since the number of equations is equal to
the number of unknowns, we obtain in a regular manner the
secular equation for E [see Eq. (2.11)]. If the secular equation
has a solution, E = E (f” ), we can then find the unknowns
¥(d,)and II (d,) uptoan arbitrary constant factor, a,. Insert-
ing ¥(d,,) and 1 (d,,} so obtained back into the original func-
tional equations, we find #{x), also up to a g, which is a
normalization coefficient.

1t follows from the above that the energy (or the fre-
quency) of a localized state is a pole of the scattering ampli-
tudes and of the total Green’s function, in agreement with
the general theory. For example, in the case of a three-layer
medium, the secular equation is S, , = 0 or, equivalently,
S, =0/[see Egs. (7.9), (7.11), (7.12), and (7.14)]. If U,— o0,
the equation becomes S/ = 0, in accordance with Egs.
(7.20) and (7.21).

The wave function of a localized state, ¥{x), can obvi-
ously be written in the form of Egs. (5.14)-(5.16), but one
should put y,(x)=(x) in Eq. (5.14). In this case, the quanti-
ties /" ' = £ "and £ " " = £l * Y* must simultaneously
be complex. In other words, £, and 8, must be real and
therefore E must satisfy the inequality

E <minfu, + Uyu, + U, 1,

in accordance with Egs. (2.11) and (3.16). In view of Eq.
{3.12), the inequality (9.1) means that the energy of a local-
ized state is less than the minimum of the unperturbed ener-
gies &, (f) + U, [see Eq.(2.15)] with f; = constin both outer
layers (i = 0O,n).

If both boundaries x = d,and x =d, _, are rigid, we
have to omit Eqs. (8.41) and (4.19) and to combine the first
(e = 0) and the last (u = n) of Eq. (4.18) with the equations
Wd,) = 0and ¥(d, _ ) =0, respectively. Solution of the set
of n — 1 equations so obtained gives all possible state of the
field in the stratified flat slabd, < x <d, _ with rigid bound-
aries. The eigenenergies (or eigenfrequencies) of the field can
alternatively be found by poles of the corresponding Green’s
function. '

(9.1)

C. The one-dimensional motion

Setting f, =0 and € = #°/2m,, in the resulting rela-
tions of this paper, we obtain the solution of the problem of
the one-dimensional motion of a particle with a piecewise-
constant mass in a piecewise constant potential. If, in addi-
tion, m, =m, pu =0,1,...,n, we arrive at the conventional
quantum-mechanical problem.’

X. CONCLUSION

We formulated a chainlike set of functional equations of
the Lippmann—Schwinger type for the scattering amplitude
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of a plane wave in a medium of anisotropic flat layers in
contact. The angle of incidence, the thicknesses of the layers
and the orientations of the crystallographic axes of individ-
ual layers with respect to the interfaces are arbitrary. The
functional equations obtained include the equation of mo-
tion for the scattering amplitude and the boundary condi-
tions at all separation planes. The boundary conditions are
represented in the Lippmann-Schwinger equations by cer-
tain constants which are to be eliminated in the course of
solving the equations. In the case of a system with n separa-
tion planes, there are 2n such constants. Half of them are the
values of the wave function at the separation planes. The rest
are the values, at the same points, of a quantity which is, like
the wave function, continuous at the separation planes.

We suggested a simple algorithm to solve the set of
Lippmann-Schwinger equations. This algorithm is based on
the idea of successive elimination of unknown constants and
consists of n steps for a medium with n interfaces. It ends at
the nth step, thus giving the solution. Also, we described an
alternative, straightforward method of solving the Lipp-
mann-Schwinger equations. In the framework of this meth-
od, one should evaluate the Lippmann-Schwinger equation
for each given layer at the points corresponding to the layer
boundaries. This gives a chainlike set of 2# linear algebraic
equations for the same number of unknown constants. One
of the equations is inhomogeneous while the remaining are
homogeneous. The inhomogeneous equation corresponds to
the region x <d,ju =0)or x>d, _,(u = n), in which the
incident plane wave is given. Having found the unknown,
constants, we insert them back into the original functional
equations and thus find the scattering amplitude within each
layer.

As far as we know, there are no publications where the
problem of propagation of a plane wave in an anisotropic
stratified medium is considered in the general form within
the framework of the conventional method. This is due to the
enormous amount of calculations needed in attacking the
problem by the conventional method. The advantages of the
proposed approach over the conventional one is obvious
when both methods are applied particularly in the case of an
isotropic system.

We recall that the conventional method (see, e.g., Ref.
7) deals directly with the amplitudes of secondary (reflected
and transmitted) plane waves. There are generally one re-
flected plane wave in the zeroth layer (x <dg, u = 0), two
secondary plane waves in each inner layer (d, , <x<d,,,
# = 1,2,..,n — 1) and one transmitted wave in the last layer
{x>d,_,,u = n), 2n waves altogether. Thus the number of
unknown wave amplitudes is the same as the number of aux-
iliary constants involved in the Lippmann-Schwinger equa-
tions. Nevertheless, by whichever method the set of Lipp-
mann-Schwinger equations is solved, the approach based on
these equations has essential advantages over and is much
simpler than the conventional approach owing to several
factors.

(i) The Lippmann-Schwinger equations contain, from
the very beginning, some ““finished blocks” in the form of
combinations of the “standard” Green’s functions.

(ii) The constants involved in the Lippmann-Schwinger
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equations are to be eliminated in the course of solving the
equations and therefore play a subsidiary role. In contrast to
this, the constants dealt with in the conventional method are
the sought after scalar amplitudes. These are to be found in
the course of solving the corresponding equations.

(iii) The set of Lippmann—Schwinger equations has,
with respect to the unknown constants, a chainlike form
with a very simple “matrix of coefficients”. This facilitates
the problem of eliminating the unknown constants even if
their elimination is achieved through finding them. Also, the
constants involved in the Lippmann-Schwinger equations
are particular values of the quantities which are continuous
at the interfaces. This is in constrast to the conventional
method, where constants do not satisfy any such condition.

(iv) The method of Lippmann—Schwinger equations en-
ables us to find, in the general form, the scattering ampli-
tude, i.e., the total field at each point, with allowance of all
existing separation planes. At the same time, we established
general relations to express the amplitudes of individual
scattered waves in terms of constants involved in the Lipp-
mann-Schwinger equations. Thus, on solving the Lipp-
mann-Schwinger equations, the amplitudes of all secondary
waves can also be found.

Our approach is illustrated by solving the free field
problem for a compound infinite space consisting of two ani-
sotropic half-spaces in contact and for an arbitrary anisotro-
pic three-layer medium (a flat slab and two half-spaces). As
particular cases of such systems, we also consider an aniso-
tropic homogeneous half-space with a rigid boundary and a
compound half-space consisting of a flat slab with a rigid
boundary and a homogeneous half-space in contact.

In addition to the direct methods of solving the Lipp-
mann-Schwinger equations, we made use of these equations
to establish general relations expressing the scattering am-
plitude in terms of the total Green’s function. The latter can
be found by solving a chainlike set of Dyson’s equations. '
Although the Dyson’s equations are solved by the same
methods as the Lippmann—Schwinger equations, the rela-
tions obtained are useful in several respects. Firstly, they
express the solution of the free field problem in terms of the
solution of the forced field problem for a point source. Sec-
ondly, the total Green’s function seems to be more funda-
mentally related to the dynamic properties of the system
because it can be used not only for finding the scattering
amplitudes but also in solving many other problems (seee.g.,
Ref. 8). Lastly, the relations established give another con-
structive method to find the scattering amplitude.

Besides the free fields which can propagate throughout
the system in the form of waves travelling at all possible
angles with respect to the separation planes, and which are
therefore nonlocalized, we also considered briefly localized
states. The field in a localized state exists within one or sever-
al neighboring layers and can propagate only in directions
parallel to the interfaces. The localized states gives rise to
poles in the scattering amplitude at the associated frequen-
cies as well as giving poles in the total Green’s function. This
fact enables us to find the amplitudes of localized states, up
to a normalization constant, and their energies (frequencies)
from the same set of Lippmann-Schwinger equations.
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INTRODUCTION

It is well known that the operators in quantum mechan-
ics are, generally, unbounded; as a consequence, one has to
deal with quite complicated problems of domain. Thereis a
situation, however, when a simplification is possible; this
occurs when all the operators, involved in the description of
the physical system have, together with their adjoints, a
common invariant dense domain %, (See, for instance, the
simple case of the harmonic oscillator, where such a domain
can be understood to be the set

9 = { plxje ~ *"*with p(x) polynomial}

or, better, the space ¥ of the Schwartz test functions. See
also the definition of Wightman field, etc.)

In this case, it is interesting to consider noncomplete
scalar product spaces and operators defined in them.

In previous papers we considered this problem already
and we studied, particularly, an interesting class of opera-
tors, defined in a pre-Hilbert space, which is in some cases
and from some point of view, the natural algebra of observa-
bles and of the corresponding operators (see references in
Ref. 1).

Completeness of a space is, on the other hand, a very
strong property and when it fails it is not possible to recover
many results, even some of the simplest ones, true in Hilbert
space and for the operators defined in it.

The aim of this paper is to study further some properties
of a scalar product space & and of the operators defined in

it.
In Sec. 1 we examine some properties of pre-Hilbert

space relative to orthocomplementation; in Sec. 2 we extend,
so far as it is possible, some classical results, true for opera-
tors in %, to a particular class of operators in ..

1. WEAKLY CONTINUOUS FORMS IN SCALAR
PRODUCT SPACE

In the sequel, we will indicate by & a scalar product
space (pre-Hilbert space) and by 7 a complete scalar prod-
uct space (Hilbert space). Beside, we denote by o{Z, &) the
usual weak topology in & and by 7(<,4) the Mackey to-
pology in &.

Theorems concerning projection operators and ortho-
complemented subspace in Hilbert space are well known.
These theorems, however, are not always true if the com-
pleteness of the space fails; in fact, in contrast with what
happens in %7, not all norm-closed subspaces of & are orth-
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ocomplemented in &.

We report here, for the reader’s convenience, only the
following proposition, true in pre-Hilbert space.

Proposition 1.1. Let & be a pre-Hilbert space and M a
subspace of . The following statements are equivalent:

(i) M is 0| D ,Z)-closed,

()M is (< ,Z)-closed,

)M =M.

The proof of (i)<>{ii) can be carried out from Ref. 2,
prop. 35.2, and that of (ii)<{iii) from Ref. 2, Chap. 35, Cor. 2.
Notice that in pre-Hilbert space a norm-closed or
o(Z,Z)-closed subspace M cannot be orthocomplemented
and M ** = M is only a necessary condition in order that M
be orthocomplemented, but if M is maximal we can prove
the following theorem. (For the definition of maximality see

Ref. 3, Chap. I, Sec. 5.)

Theorem 1.2.Let M be a proper maximal subspace of
2. For M one, and only one, of the following statements
holds true:

(i) M is orthocomplemented,

(iyM*=0.

Proof- If M * 30, M @ M " is isomorphic to a subspace of
& which contains M properly; for the maximality of M,
M & M ' is isomorphic to the whole space &, i.e., M is
orthocomplemented.

Conversely, it is obvious that, if M is a proper ortho-
complemented subspace of &, then M ' #0.

Corollary 1.3. If M is a 0%, % )-closed proper and
maximal subspace of &, then it is orthocomplemented.

Proof: If M is not orthocomplemented, by Theorem 1.2,
M* =0and then M*!' = & ; from Proposition 1.1, it fol-
lows that M = & and this is not possible.

Corollary 1.4. Let Fbe alinear form on & . Fis continu-
ous in the o{Z, & )-topology if, and only if, Ker Fis an ortho-
complemented subspace of & .

Proof: If F = Q the thesis is trivial. If F #£0 and Ker Fis
orthocomplemented then, by Proposition 1.1, itis o{Z,Z)-
closed and hence Fis o{ &,/ )-continuous.

Conversely, if Fis o{Z , %/ )-continuous, Ker Fis a prop-
er closed maximal subspace of & (see Ref. 3, Chap. I, Sec. 5)
and then, by Corollary 1.3, Ker Fis orthocomplemented.

Theorem 1.5. Let & be a scalar product space. If every
maximal norm-closed subspace is orthocomplemented, then
& is complete.

Proof: 1t is sufficient to prove that every bounded form
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is o ¥ & )-continuous; in fact, in this case, the weak dual of
% coincides with the strong dual, which is the norm comple-
tion 7 of . Hence & is complete.

But every bounded form F has the kernel maximal and
norm-closed, hence, by the hypothesis, orthocomplemented,
and by Proposition 1.1, o{%, % )-closed; then F is 0%, %)-
continuous.

Notice that the above theorem was proved with the

stronger requirement that M be only norm-closed (see Ref.
4).

2. SOME PROPERTIES OF OPERATORS IN SCALAR
PRODUCT SPACE

We now consider a class of operators in a pre-Hilbert
space & which is, in particular, a *-algebra having some
analogies with the algebra B (%) of bounded operators in
Hilbert space; further, it coincides with B (%) when & is
chosen to be complete. We call this algebra C .

Let & be a scalar product space; we indicate by the
symbol C., the *-algebra of all linear operators in &, which
have adjoint in &, or equivalently, the *-algebra of all
o(Z % )-continuous operators. We denote by B, the subal-
gebra of bounded operators of C; .

The algebra C,; can be understood to be the set of all
closable operators 4 in & having & as a dense common
invariant domain and such that 4 *(%)C & . The involution
in Cg is then defined by 4—4 * withd * =4 * .

For the definitions and theorems concerning C;, see
references cited in Ref. 1.

Some authors also indicate the algebra C,, by the sym-
bol L (&) (see, for instance, Ref. 5).

By ./ <C,, we will mean that ./ is an involutive subal-
gebra with unity of C,, .

If # CC., , wewill indicate with &%’ the weak commu-
tant of 4, i.e., the set

B’ = | BeB (%S *@,BY) = (@.BSYNSe B Vo,ped |.

The commutants of higher order are defined in the usu-
al way in B (¥"); for instance

A" = {CeB(#).BC=CB VBe#'}.

If # C C., , we will denote by the notation [ # ] the sub-
algebra of C,, generated by #. When % = {4 } we will
write [4 ] instead of [{4 }].

In the sequel we call & -self-adjoint an operator T of
C. suchthat T=T1M.

Theorem 2.1. Let TeC,, be a & -self-adjoint operator.
Suppose that the following conditions are satisfied:

(a) T has a unique self-adjoint extension T to 7

(b) there exists an algebra &7 <C,, such that [T]" C.&"
and & is .o/ -self-adjoint (see Ref. 1, def. 2). .

Let {E, } be the spectral family associated with T"and
u:R—R a measurable function, finite and determined almost
everywhere with respect to { £, | such that

acieen: [ wi)d(Egp) <), "
letting
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(u(w,w):f ud)d(Espl), pbed; 2

then (2) defines an operator u(T )eC., .
Proof: 1t is known that (see, for instance, Ref. 6, n.127)

Wl = [~ wd)d(E.pd), puer
defines an operator u(f ) in 7" We will prove that
u(T), €Cq [(1) implies that & C D (u(T))]. We now show
that

VA, (4 o ulT))=(p, uT)40), Voyed.

In fact we have
@(FA *g) =f WA ) d(E, A @)

_ J ud) d(E,Apg) = (T )Av,p).

We used here the fact that £, €[ T ]" C.o/’ (see Ref. 1, Theo-
rem 13) By Lemma 12 of Ref. 1, ©{T') is invariant in &,

Corollary 2.2. Let TeC, be a & -self-adjoint positive
operator of C, . If the conditions (a) and (b) of Theorem 2.1
are satisfied, then there exists a unique operator HeCy,, & -
self-adjoint and positive, such that H* = T.

Proof: We know that, if T'satisfies the conditions {a) and
{b) of Theorem 2.1, then it is & -spectral, i.e., the spectral
family {E, } associated with it, takes its values in the same
algebra C4 (see Ref. 1, Theorem 13).

Let {E, } be the spectral family associated with 7. Since
T is positive, E;, = 0 for A <0 results.
We pose

DH)= [«pe%/”:Jm AdE,@,¢)< oo].

We will show that & C D (H ). We observe that
(T+1) . €C., and therefore, for Y%/, we have

1//6{(;)695’7117& + 1) d(E,ﬂ),(p)} < 0.

Hence for such a ¢
fﬁd(mw,w ”F A d(E, b)
+fxd(EAw,w><oo;

)
that is

||w|\2+zfﬂd<w,w>+||wt|2<oo

and so

f: AdE, b) < o.

For peZ weset *

H¢7=J A2 dE, p.
(¢]

By Theorem 2.1, HeC,, . From a direct calculation H =T
results. The positivity and uniqueness of the operator H fol-
lows easily from the positivity and uniqueness of the spectral
family.
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Because C,, is a #-algebra no difficulty arises for the
Cartesian decomposition. On the contrary, the polar decom-
position, to be handled carefully for closed operators in %~
(Von Neumann’s theorem, see Ref. 7, Chap. IV, Sec. 21.1),
becomes more difficult for the operators of C,,, and requires
very strong hypotheses.

The above theorem allows us to state the following
propositions.

Theorem 2.3. Let 7 be an operator of C,, such that
T * T satisfies the conditions of Corollary 2.2. Then

T="UH,

where H = (T *T)"/? and U is an isometry from R (H ) into
R(T).
Proof:For H = (T *T)''?, wedefine U:R (H )—R (T ) by

UHp)=Tp VYoe2P.

Furthermore, we have
[|UH)| > = ||Te ||*={Tp,Te)=(T " To.p)

=(H’p,@) = (Hp,Hp)= | |Hp | |*.

From the fact that | | T || = | |He || it follows that
Hg = 0if and only if T = 0 and so U is a well-defined
operator. Itis thus proved that Uisan isometry from R (H }in
R(T).

Example. If we consider the creation and annihilation
operators of the harmonic oscillator, in the space % of the
Schwartz test functions

b= 27”2(‘] + ip),

b+ =2""%g —ip),
the operator b *b = i(¢* + p?) satisfies, as was proved in Ex-
ample 2 in the Appendix of Ref. 1, the conditions required by
Theorem 2.3, and then b, or b *, admits the polar
decomposition.

It is not possible, generally, to say that the polar decom-
position, given in Theorem 2.3, is unique. However, the fol-
lowing propositions hold true.

Theorem 2.4, In the hypotheses of Theorem 2.3, if R (H )
and R (T) are orthocomplemented in &, then the polar de-
composition of the operator T of C,,. is unique.

Proof: In this case U can be understood to be a partial
isometry from R (H )in R (T'). In fact, we set Up = 0 for
@eR (H) and define U *¢ = U ~'¢ for peR (T') and
U *@ =0for geR (T)".

Then UeC., and we have T+ = HU * and
T+T=HU*UH = HPy ;;,H = H" and therefore H, and
consequently U, are uniquely determined.

Theorem 2.5. In the hypotheses of Theorem 2.3, if the
operator T is invertible in &, then the polar decomposition
T = UH is unique and U is a unitary operator of C.,..

Proof: If T'is invertible, so are T~ and 7 * 7. We have
R(T*T)=R(T*)= % andfurtherR(T *T)CR (T *T)"?
=R (H).It followsthat R (H) = & . The uniqueness can be
deduced immediately.

Fromthefactthat R (H) = &, Uis everywhere defined
anditisinvertible, because R (T) = & . Itiseasy toseethat U
is unitary.
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We conclude with some propositions concerning the
Cayley transform.

The existence of a unitary operator ¥, called the Cayley
transform, for any self-adjoint operator of B (#") is well
known. It is also known that a closed symmetric operator T
defined in a Hilbert space 57, admits a Cayley transform
which is generally isometric; ¥V is unitary if and only if T'is
self-adjoint in 5 (see, for instance, Ref. 6,n. 121 and n. 123).

With rather natural hypotheses, one can prove the exis-
tence of a Cayley transform for some & -self-adjoint opera-
torsof C .

Definition 2.6. Let T be an operator of C,,. We call a
resolvent set of T the subset of the complex field C,

po(T)={AeC:3(T—AI)"'eB, } .

We call the spectrum of T'theset o, (T)=C —p (T).

We have already discussed in a previous paper the con-
venience of giving such a definition of resolvent set for opera-
tors of C,, (see Ref. 1).

Definition 2.7. Let T be a self-adjoint operator of C,,
such that iep,, (T'). We call a Cayley transform of T the
operator

V=(T—i)\T+i)"".
From Definition 2.6 it follows immediately that VeC,, .

Theorem 2.8, The Cayley transform ¥ of a &/ -self-ad-
joint operator T such that iep., {T') is a unitary operator in
. Also

T=il+V)I—-V)"

Proof: The fact that Vis unitary is straightforward. The
relation 7 = i(I + V)(I — V)~ ' canbe verified with easy alge-
braic calculations in C,, , after having shown that the opera-
tor I — Vhasaninversein C, ; this in turn can be proven in
close analogy with the case of self-adjoint operators in 5.

The existence of the Cayley transform V for some & -
self-adjoint operator of C., has some interesting implica-
tions, when it is considered as an operator in_ . Notice that
the operator T considered as an operator in & cannot be self-
adjoint; in fact, in this case its closure in & would agree with
T, and therefore & would be complete and C., would coin-
cide with B L\%’) (see Ref. 5, Lemma 2.2}. Hence T is, as an
operator in &, symmetric and its Cayley transform in &, by
the general theory, should be isometric but, not necessarily,
unitary. The above theorems allow us to state the following.

Theorem 2.9. A symmetric operator S in a Hilbert space
# " such that for some &, dense in %, the operator
S, =T belong to C,, and such that icp., (T') has a uni-
tary Cayley transform in ¥ and therefore it is self-adjoint.

Proof: 1t is sufficient to prove that the Cayley transform
of Sin 7" is the continuous extension U to %" of the Cayley
transform V of T'in & and that U is unitary in %",

In fact, by the continuity of the scalar product and that
of the operators V"and V' *, the adjoint U * of the operator U
in %" is the continuous extension to .%" of the operator ¥ *
and, further, Uis unitary in .%". If Wis the Cayley transform
of the operator S in %7~

W=(S—i)S+i)"'
from the fact that T — il and (T + I )~ ' are invariant in &,
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W ., = V results, and by the principle of extension of iden-
tities we have W= Uin 57

From the above theorem one can deduce that a & -self-
adjoint operator TeC,, such that iep .. (T ) admits a self-ad-
joint extension. Besides

Corollary 2.10. A 2 -self-adjoint operator T such that
i€p ,; (T') admits a unique self-adjoint extension to & .

We prove only the uniqueness. R

Let S'be another self-adjoint extension of T'to Z; toita
unitary Cayley transform U is associated in & .

If we call ¥ the Cayley transform of T'in &, because
T=S,,,U,, =V results and therefore U = V this im-
plies that T = S.
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This theorem was recovered, in another way, in Ref, 1
(Prop. 11).
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Symmetry of time-dependent Schrédinger equations. Il. Exact solutions for
the equation {d,, + 219, — 2ga(f)x2 — 2g4(f)x — 2ge(f)} ¥(x, 1) =0
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The maximal kinematical algebra of the Schrodinger equation

{Oex + 200, — 2g,(t Jx* — 2g,(t )x — 2g,(t )} ¥ (x, ¢) = O is known to be the Schrodinger algebra,
;. The kinematical symmetries are realized as first-order differential operators in the space and
time variables. A subalgebra . of ., is chosen and from .% and its invariants a complete set of
commuting observables are constructed. The solution space of the Schrédinger equation is
identified with the appropriate irreducible representation space of #. The wave functions,
simultaneous eigenvectors of the compatible observables, are computed as explicit functions of
space and time. The properties of a system with a potential ¥ (x, £ ) = g,(¢ }x* + g,(f }x + gt ) are

discussed.

PACS numbers: 03.65.Fd, 02.20. + b

1. INTRODUCTION

For quantum-mechanical systems in one spatial dimen-
sion with a Hamiltonian of the form

)= — 13 + Vix 1), (L1)

the time-dependent Schrédinger equation can be solved ex-
actly only for a limited number of potentials V' (x, ). Two
such cases are the time-dependent harmonic oscillator'
where

Vix, t)=wtx?/2, (1.2)

and the harmonic oscillator subject to a purely time-depen-
dent force® for which

Vix,t)=w?x*/2 +f(t)x. (1.3)

In Egs. (1.2) and (1.3) respectively, w(t ) and f (¢ ) are arbitrary
real functions of time while in (1.3) w is a real constant. The
time-dependent harmonic oscillator has been used as a mod-
el to describe the behavior of the charged particle in a time-
varying magnetic field '® or in quantum electronics to study
parametric amplification and quantum noise.* The second
case, Eq. (1.3), serves as a model of a vibrating diatomic mol-
ecule in the presence of a temporally-fluctuating force. In the
sequel we shall investigate the generalization of these two
models to systems governed by the time-dependent
interaction

Vix, t) =gt bx* + gt b + golt), (1.4)
where the functions g, (¢ ), 1<i<3 are arbitrary, real, and de-

pend only on time. Qur main objective is to solve the Schro-
dinger equation,*

Q¥ (x, 1) =(—2% +2id,)¥(x,1) =0
= {8, + 2id, — 2g,(t x°*
—2g,(t)x — 2g,(t)} ¥ (x, 1) =0, (1.5)

with Hamiltonian (1.1) and potential (1.4) and examine some
of the properties of its solutions. A remarkable feature of our
analysis is the independence of the form of the solutions from
the specific nature of the functions g;(t), 1<i<3, in (1.5).
Another is that a system described by such a Schrédinger
equation remains in a sense quantized. These points and oth-
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ers will be discussed in further detail in later sections.

In our approach to solving (1.5) we shall construct a
complete set of commuting observables and determine their
simultaneous eigenvectors and eigenvalues.’ The observa-
bles will be elements of the algebra of the constants of the
motion and its invariants. The constants of the motion are
members of a Lie algebra called the kinematical or space-
time symmetry algebra for (1.5). In the first paper in this
series (denoted by I), time-dependent Schrédinger equa-
tions were classified according to their maximal kinematical
algebras”® in which the generators of the space-time symme-
tries were realized as differential operators in the variables x
and ¢. In particular, we showed that the Schrédinger equa-
tion (1.5) had the maximal kinematical algebra
S =sl(2, R)Ow,, where 7| called the Schrodinger alge-
bra, is the semidirect sum of the Lie algebra sl(2, R) of the real
special linear group in two dimensions® and the Lie algebra
w,, the Heisenberg-Weyl algebra in one dimension.” In
Sec. 2 we choose an appropriate subalgebra & of ., and
determine its Casimir operators.® Then from & we select one
generator and with the Casimir operators obtain a maximal
set of commuting observables. The remaining two gener-
ators in % act as ladder operators.

We outline in detail in Sec. 3 the different irreducible
representations of % and demonstrate the relationship be-
tween the normed solution space of (1.5) and the irreducible-
representation spaces of & . Further we show that the impo-
sition of a norm on the representation spaces restricts us to
the irreducible representation of &% corresponding to that
one in which the diagonalized observable from % has a dis-
crete spectrum bounded below. The basis of eigenvectors for
this irreducible representation of ¥ is then a basis for the
solution space of (1.5). The ladder operators in ¥ step from
one eigenvalue to another and in Sec. 4 we use them to con-
struct the eigenfunctions as explicit functions of the space
and time variables x and ¢.

The system is quantized with respect to the observables
we have chosen to be diagonal in this representation. Except
in the case of the time-independent oscillator where the dia-
gonalized generator is the time-translation operator, the Ha-
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miltonian is not a constant of the motion. Therefore the ei-
genvectors of the compatible observables will not be
eigenvectors of the Hamiltonian &#7(x, ¢ ) and the energy will
have a time dependence. In Sec. 5 we express the Hamilton-
ian and other properties in terms of the generators of ¥ and
calculate their expectation values. We conclude the paper in
that section with a discussion of the features of time-depen-
dent systems described by a potential of the form (1.4).

2. THE SYMMETRY ALGEBRA ¥

The generators of kinematical symmetries have the gen-
eral form

L=A(x,1)3, + B(x,1)3, + Clx, 1) (2.1)
and they are symmetries of the Schrédinger equation (1.5) if
they satisfy the operator relation

[Q.L]=A(x1)Q (2.2)
where A (x, ¢) is a function of the variables x, r and Q is the
differential operator defined by Eqs. (1.5). The symmetry L
transforms solutions of (1.5) into solutions.*™*

In I we have shown that the maximal kinematical alge-
bra for the differential equation (1.5) is the Schrodinger alge-
bra .#', =sl(2, R)Ow,. The generators'®

By = —x\(t)d, +ix.the — i€ (t),

By = X,(t)0x — ixalt e + i€ 4(t), (2.3)

E=i
form a basis for the Heisenberg albegra w,. The functions of
time y,(¢ )and y,(¢ )aretworeal, linearly independent, nontri-
vial solutions of the homogeneous second-order differential
equation

b+ 2g,(t)b =0. (2.4)
The solutions y, and y, have constant Wronskian® and have

been chosenso that W(y,, y») = ¥ ¥> — ¥1x> = 1. Thefunc-
tions ¥ (¢ ) and % ,(t) are defined by

‘ffa(t)=f &Xo o=12. (2.5)

Because the Wronskian of y, and y, is unity, the generators
(2.3) satisfy the commutation relations

(B\,B,]=E, [B,E]=[B,E]=0, (2.6)
and furthermore
[0.E1=[Q.B,]1=0, o=1,2 2.7)

The generators which form a basis for the sl(2, R) algebra are

L, =g;d, + (ig;x + o), — i/ 8g;x* — il ;x + 4,
+igop; +1i9;, 1<j<3. (2.8)

The functions @,(t), 1< j<3, are functions of time only and

are linearly independent, nontrivial solutions of the third
order, homogeneous differential equation

A+ 88,4 +4g,4 =0. (2.9)

In I we showed that the functions @; which have constant
Wronskian may be chosen as follows®:

=X} @2=X3 P3=2U>
in which case

(2.10)
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AR LT £ O (2.11a)
o 3= “()(1(52*‘1’2%1),
D= =16, D= — 161, D= —€\C,

(2.11b)

where the y, are the solutions of (2.4)and the ¢ ,, 0 = 1, 2,
are defined by (2.5). The L, have the commutation relations

[Lu L:] = L3, [L3, Lx] = - 2L,, [L.%’ Ll] = 2L2’ (2'12)
and furthermore satisfy
[0.L,] =¢,0. (2.13)

The commutation relations between the generators of the
sl(2, R) and w, algebras are®
[LI!BI]ZO» [LZ:BI]=BZ’
[LI’Bz] = _Bl» [Lzszl =0,

[L3, B,|= -8B,
(Ls, By} = B,.
(2.14)
Now, let .# , denote the solution space of the Schré-
dinger equation (1.5), thatisiff (x, t }e.# ,, then Qf (x,7) = 0.
We shall require that the functions in # , be square integra-
ble with time-independent, bounded norm™*!

+ o
0< S*x, ) flx, tidx < oo, forall f(x, t)eF,. (2.15)
The first inequality follows from the definition of a norm and
equality holds only for the trivial solution f(x, ¢ ) = 0. Fur-
thermore, let A be some linear operator defined on .5 0
Then (4 ), the expectation value® of 4, is

W=~

S*x, 0)Af (x, t) dx. (2.16)

Although the operator 4 may not have an explicit time de-
pendence, (4 ) may depend on time.

The general equation giving the time dependence of the
mean value of a linear operator 4 is *°

d,,._.]od
ﬁﬂw-«ﬁ+mﬂn

Ifd {4 )/dt = 0, then 4 is said to be a constant of the motion,
thatisif (4 ) is the expectation value of a linear operator 4 at
some point in time then this expectation value remains un-
changed in the course of time. By (2.7) and (2.13), for

flx, t)e#,, wehaved (L;)/dt =0, 1< j<3 and
d{(B,)/dt=d (E)/dt =0, o =1, 2. So on the solution
space .7 ,, all the generators of .’ are constants of the mo-
tion. Notice that the Hamiltonian (1.1), when it has an ex-
plicit time dependence, is not a constant of the motion.

Let us choose now a subalgebra of .| consisting of the
symmetries { L., B, B,, E | and denote this subalgebraby & .
The commutation relations of the generators of % are given
by (2.6) and (2.14). The Casimir operators of & are'?

C=B,B, — L,E and E,

where [C, L,] = [C, B,] = [C, B,] =[C, E] = 0. Since on
F o the elements of % are constants of the motion, the
Casimir operator C will be also. Using the appropriate ex-
pressions from (2.3) and (2.8) for the generators of & we can
derive the relation

C= — Y@@+ (2.19)
The motivation for our choice of the subalgebra & becomes

(2.17)

(2.18)
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clear. If fis any member of ¥ ,, then Cf = ( — i/2) fand
Ef = if and so the Casimir operators act as multiples of the
unit operator on elements of # ;. This implies a direct rela-
tionship between the solution space # , of (1.5) and the irre-
ducible representation spaces 2~ of the Lie algebra ¥ as we
shall show more rigorously in Sec. 3.

Before we construct the irreducible representation
spaces 7 it is necessary to choose the compatible observa-
bles we shall simultaneously diagonalize. We pick the Casi-
mir operators C and E and the generator L, from & . Now to
be observables these linear operators must be made Hermi-
tian with respect to the norm (2.15). Furthermore, it would
be convenient to have the remaining generators in ¥ Hermi-
tian conjugates. One way to do this is to define new solutions
to (2.4) by taking the linear combinations of the real func-
tions y, and y,,

E() =273 le) + ixale ),
E¥r)=27")xle) — ixalt ), (2.20)

that is, we take the complexification of the solution space of
{2.4). These new solutions have the Wronskian

W EN =% —E6r= —i. (221)
If we repeat the analysis in I, then we have
Pr=£% @ =Y, p3=2E" (2.22)
and
o = —§C, A= — EXEH, (2.23a)
A= —(§C*+ ),
2, = _%%2’ a@zz_%((g*){ Dy= —CCH,
(2.23b)
where
(2.24)

¢ = fg,§, = fgné”*-

Note that @,, &/ ;, and &, are all real functions and the new
operator L, defined by (2.22) and (2.23) is skew-Hermitian.
Therefore, if we take M, = iL;, M, will be Hermitian. The
generators of & will be of the form

M, =i{@d, + (x + )3, — (i/4)px’

— i x + Yo + igep + 1D}, (2.25a)
J. = —E*, +iE*x —i€*, (2.25b)
J_=£&3, —ikx + i€, (2.25¢)
E=1, (2.25d)

where we have dropped the subscript 3 from the time-depen-
dent functions @, .5, and &, in (2.25a) for future conve-
nience. These linear operators satisfy the commutation
relations

[J—!J+]=E’ [M39J+]=J+y [M3’J—]= —J_.

(2.26)
The Casimir operator C is
C=J,J_—~ME= —}@Q+1) (2.27)

Both C and E are Hermitian operators; the linear operators
J . and J_ are Hermitian conjugates, i.c.,

Jt o =J,.

(2.28)
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The set of commuting observables we shall simulta-
neously diagonalize are the invariants C and E and the gen-
erator M, from % . The Hermitian conjugates J, and J_ will
act as ladder operators, stepping the eigenvalues of M.

The time independence of the norm (2.15) will be guar-
anteed by requiring the Hamiltonian to be Hermitian, *°
hence the requirement that the g; (¢ ) be real-valued functions
of time in (1.4} and (1.5).

3. REPRESENTATIONS OF ¥

The irreducible representations of & have been com-
puted by Miller'? and we reproduce briefly his analysis here
to provide a framework for the remaining work. Also, we
shall see that because of the imposition of the norm (2.15) on
o, and our identification of # , with the irreducible repre-
sentation spaces of the Lie algebra &, not all of the irreduci-
ble representations are pertinent.

We proceed by outlining pointwise the computation of
irreducible representations of ¥ .

(i) From Sec. 2 we have that & consists of the generators
{M,,J . ,J_, E | where these are realized as differential oper-
ators in space and time variables in (2.25). Their commuta-
tion relations are given by Eqs. (2.26). The Casimir operators
are

C=J.J_—ME, E=1 (3.1)

The operators C, E, and M, are Hermitian operators in our
Hilbert space and so must have real eigenvalues; since they
commute we can define a set of states which are simulta-
neously eigenstates of these three observables.

If 7" is a representation space then it is sufficient'? to
consider only those irreducible representations in which M,
has nondegenerate eigenvalues and in which the representa-
tion space 7" has a countable basis consisting of eigenvectors
of M,.

(ii) If S is the spectrum of M, then S is countable and
there exists a basis for 77 of vectors f, such that

M, f, =sf,, forall seS. (3.2)
Choosing any seS,

(a) [M5, ], ] =J =M, J, f, =(s+ 1)JJ, f,. So either
Jofi =6, fi+ 1, where 6, .1 1s a nonzero constant for
s+ leS,orJ, f, =0.

b) (M, J_ 1= —J_=MJ_f =(s—1W_f. Soei-
ther J_ f, =, f,_ |, where 7, is a nonzero constant for
s—1linS,orJ_f, =0.

(c} [E, M,] = O=Ef, = u, f,, for some real constant y .

(d) [C, M,] = 0=Cf, = A, f, for some real constant 4.
Since the representation is irreducible the spectrum of S is
connected, i.e., if s lies in S, then

S={s+n:neZ suchthatn, <n<n,}, (3.3)

where Z is the set of integers and we do not rule out the
possibility that n, = — w0 and n, = + 0.

(iii) For any s in S such that s + 1 lies in S,

(a)[E’ M+] = 0:[E» M+]f; = 0:+ l(/‘s+ 1 —.us)f;-+ 1
=0=u, =u, ., =u, and so E = ul, where [ is the unit
operator on 7. In our case, because of (3.1), u = 1.
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(b) [C9 M+] == 0:>[C’ M+]f; = 6s+1(/1:+1 _is)fw 1
=0=4,,., =4, =4,and C=AJon 77, where A is a real
number.

If C is given by (3.1), then the action of C on f;, for seS
yields the relation

O, =4+ su = pla + s), (3.4)

which is valid for all s or s — 1 in .S and for convenience we
set A = ua. The number a will of course be real.

(iv) Since each f,€7 for se§ is simultaneously an eigen-
vector of C, E, and M, with eigenvalues 4, i, and s, respec-
tively, we could label f, with all three eigenvalues. However,
since A and i are the same for each seM,, the extra labels are
in a sense redundant and have been omitted.

We can always define a new basis { .} for #” by means
of the set of nonzero constants {y,:s€S } such that /] = ¥, f,
for each s in S. In this new basis, we have

J+f_:=9_".+1f5'+], wa::n:f;-ly
(3.5)
where
0:=1=Lo, =Ty,
}/s 7/5—1

assuming ., , =0ifs+ lisnotinSand 7, =0ifs — 1
does not lie in S. The constants € , 77, must satisfy 8 [,

= pla + s)foreachsin.S. So, for all seS'such thats — 1€S, it
is possible to select the constants 7, arbitrarily and define the
constants &, by (3.4). Thus the irreducible representation of
% is uniquely determined by the eigenvalues A and u of C
and E, respectively, and the spectrum S of M. The constants
6. and 7, are not unique and may be selected arbitrarily

subject only to (3.4).

(v) Every representation of % which satisfies (i) above
and for which E #0, is isomorphic to one of the following
representations:

(a) The representations R (c, s, 1) defined for all real a,
So» and u such that 4 #0, 0 <5, < 1, and @ + 5, is not an
integer. The spectrum S = {s, + n: neZ}.

(b) The representations 1, , defined for all real @ and
such that u #0. Thespectrum S = { — a + n:neZ;" | where
Z;" is the set of positive integers including zero. For this case
a + seZg .

For (a) and (b) there exists a basis for 7~ consisting of
vectors f, defined for each s€S such that

fi=paf, Ef,=uf, M,f =s ]

Jofi=nfv, J_fi=+al,_ .
(3.6)
(c) The representation |, , defined for all real & and u
such that 4 #0and s + a is a negative integer. The spectrum
S={—a—1—n:neZ; }. For each representation there is
a basis for 77 of vectors f, defined for all s in .S such that

Cf,=paf, Efi=unf, Mf=s ]

Jofi=la+s+ 1, J_f =puf 1
(3.7)

The representations 1, are bounded below; the representa-
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tions |, are bounded above, and R (e, s, 1) is unbounded.
Now we shall explore more thoroughly the connection
between the representation space 7~ of & and the solution
space # , of the time-dependent Schrédinger equation (1.5).
Let fbe any function in .# ,. Then Qf = 0 and we have

Cf= —3eQ@+1)f= —{f and Ef=/.
Sincep = 1,4 = ga = — } and fis an element of the vector

space, the representation space 7. Conversely, let f, be any
basis vector in 7”. Then

Cfi= —YeQ@+ 1f =paf, Efj=uf =/,
and f; isin .# .. for some Q ", where

Q' =0, + 2, — 2g,(t )x* — 2g,(t Jx — 2go(t)
and

8o(t) = golt) — 2a + 1)/2¢.
In particular, ifa = — |, thenf, isin .7 5, i.e., g4 (¢ ) = gl ).
This implies that we can use the structure of the Lie algebra
¥, a symmetry algebra of the Schrodinger equation (1.5),
and the irreducible representations of & to define the solu-
tion space . .

Now, the requirement that our space . ,, be normed
imposes restrictions upon which of the three irreducible re-

presentations R (— 4,55, 1), t _,;,and | _, are acceptable
in defining the solution space .# ;. Since
+ o

0< f*f dx<w, foranysin S, f,in 77,  (3.8)

— ®

thenforsands — 1in S,

+ o
FRIJ_f, dx =f

— —

+ oo
=77?‘77sf forfoy dx>0,
(3.9)

where the first equality follows from (2.28), the second from
(ii)(b) above, and the inequality because of (3.8). Alternatively

+ oo x
j Fr*IT_f dx =67, f £ ¥ £dx30,

+ o

(- S)* 4 f) dx

by (ii)(a), (i1)(b), and (3.9). Because of equations (3.4) and (3.8),
pla + s} = (a + 5)>0. (3.10)

Since (a + 5)>0, we can eliminate the representations | _
and R ( — }, s;, 1) from further consideration at this point
since for both of them {a + s) < O for certain choices of s. This
leaves only the irreducible representation t _, ;, which is
bounded below. '

Sincea = — }, Eq.(3.11)implies that the eigenvalues of
M, satisfy the inequality s}, and the spectrum S of M is
{n + }: neZs" }. Then by (3.6), the irreducible representation
space 7" and the solutions space # ;, of (1.5) are spanned by
the set of eigenvectors satisfying the identities

Cfn+l/2 = _i n4 1/2) Efn+1/z =Jn+1725

Myf, 1, =m+Y 01

Jifovin=luvin J_fovin=0fu_1p2-

(3.11)

This choice of basis is not the most convenient and so making
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use of (iv) we can choose a new set of normalized eigenvectors
relabelled with the quantum number # rather than the eigen-
value n + J. We denote the new normalized eigenvectors by
h,.Leth, =f, ., and assumethat s, = h ; isnormalized.
Then k], =J",_ h,. We choose a set of real constants

{ ¥.:n€Zs" } such that A, = y,h, and,

+ oo
J h*h,dx = 1. (3.12)
Using (2.28) and the commutation relation [/_,J, ] = E we
find that 7, = (n!)”'/% In the new basis, the relations (3.11)
become

Ch, = —ih,, Eh, =h,,
Msh, = (n + 3, (3.13)
Johy=m+1)"h, , J_h,=n"h,_,.

Since M is Hermitian, the eigenvectors 4, at the same
time are orthogonal, that is,

+ oo
J‘ hE(x, thh,(x, t)dx =0, m#n. (3.14)
Another important feature is that any time-dependent sys-
tem which can be described by Eq. (1.5) is quantized; the
quantum numbers arise naturally when we diagonalize the
constant of the motion M, a generator of a space-time sym-
metry of (1.5). We shall discuss these points further in the
concluding Sec. 5 and only mention them out of interest
here.

We remark that the representation space 1 _ ,,, of so-
lutions % , defined by (3.13) is equivalent to that obtained by
Lewis and Reisenfeld '° for the restricted case
Vix, t) = o®t)x*/2.

4. EXPLICIT SOLUTIONS OF THE SCHRODINGER
EQUATION Qf=0

For many properties which can be expresses as polyno-
mials in momentum and position operators we can rewrite
them as polynomials in the ladder operators /. and M and
use the relations (3.13) and (2.16) to calculate expectation
values. However, in other cases, and especially when we wish
to explore the behavior of the system at different times, it
would be advantageous to know the wave functions as ex-
plicit functions of the space and time variables. In this sec-
tion we shall make use of the realization (2.25) for the gener-
ators of ¥ and the properties (3.13) to obtain ,, as a function
of x and ¢. We can do this regardless of the form of the time-
dependent functions g, (¢ ), 1<i<3 in(1.5) by making good use
cf the identities (2.22), {2.23), (2.24), and the Wronskian
2.21).

We begin by solving the eigenvalue problem

Mh, =(n+ A,

Substituting (2.25a) for M, yields a first order partial differ-
ential equation for A, (x, ¢ ):

Ph,, + (b@x + S, + (= (i/HPx> — i/ x + L
+igop +iZ +iln + 4h, =0, (4.1)

which may be solved by integrating the subsidiary equations
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dt d,

¢ (—lpx+ o)
dh,
(— (i/Npx* — i x + lp + igop + iD +iln + b,
(4.2)

Details of this calculation are supplied in Appendix B.
Hence
h(x,t) =@ ~"expi(x’p /4p + x /p — A — G,

—(n+ Y la, (ﬁz‘ - @), (4.3)

where the function a,, is, for the moment, an arbitrary func-
tion of its argument, the new variable x/qa‘/ 2 _ 4. Recall
that @ and .o are defined by (2.22}, where ¢ = @, and by
{2.23a), where v = & and

o

» =f < (4.4)
¢)3/2

qbzf 1 (4.5)
o

Go= | 2o (4.6)
‘("

A= _2+J , 4.7)
® P

where & is given by (2.23b) with & = & ,. Note that all the
quantities in {4.4) through (4.7) are real-valued functions of
time.

Let { = x/¢'"? — % and define the operators

o) 2ok £os)

which satisfy the commutation relations
[Z,Z+]=E. (4.9)
Then we have the relationships

Joh,(x, 1) =@ 1"

L
Xexpi[—xi—{-ﬂ-—A—Go—(n+—l—)¢]

4 @ 2

*1/2

><§§ Z *a,
—p

, -
xexpil 2E XL 4 G _(n+ D)o

0

o @ 2

XZ *a,, (4.10)

where we have used the identity (see Appendix B)
D ={i/2)n{E*/E). (4.11)
ForJ_h,(x, t) we obtain
Joh,(x,t)=¢ /"
£ 5t
2

. §l/2
X exp i —A—G(,—(n+%)¢>} é_*Za,,
—1/4

=9
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S
xexp il X8+ XY 4G —(n—y®|za,.
v ¢ .

(4.12)

We have made use of (4.11) in arriving at Eq. {4.12).
Now, from (3.13) we have J _A, = 0 which implies

Za,(€) = 0. The latter condition gives the following ordinary
differential equation for a,:

da
—§+§a0=0

which has the solution
ar):Neﬂ”/z, (4.13)

where NV is a real constant. We can fix N by normalizing
holx, t):

+ =
f h X(x, t)hylx, t)dx

1/2

— = ¢
Thus N = 7~ '/* and the eigenfunction for n = 0 is

holx, t)

T + o
=N2f dx e’glzNQJ dée ¢ =N*'?=1.

L
:(ﬁ¢)~lxaexp,[fi+fﬁ_A _GO_J_QD]
4 ) 2
X /e = AN (4.14)

We obtain 4, (x, t ) by repeated application of J, to
hox, t). Since b, (x, t) = (n) " 2T " hyix, t),

B, 1) = (nl) 112
L.

Xexpi[i‘—"i+ff£ "y —G(,—(n +i) ¢]
4p P 2

X(Z *)a )

=¢7—I/4
iy

xexpf{ﬂ’—+£%/— A —G(,—(n +l>¢>]
4p P 2

Xan(g)’

where we have again made use of {4.11). Thus we get the
relationship

a,(&) =n)""HZ M YalS)
— 77.——1/4('1!)——1/22*"/2( _ )n (dig _ é_)"e_gln
(4.15)

=7 4n) 22 H, (C e R (4.16)

Equation (4.15) follows from the definition (4.8) of Z *. To-
gether Eqgs. (4.15) and (4.16) imply that

H,6) = (e (L —gYes,

e ¢, (4.17)

where we have used the operator identity

(i —g)n=e§:/2£—e§”.
dc "
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Equation {4.17) is the Rodrigues formula'* for the Hermite
functions, a class of orthogonal polynomials. Thus the wave
function 4, (x, ¢) has the form

hn(x, t) — (ﬁw)—l/4(n!)7l/227n/2
>
><expi{—x—£7~~|»ﬁ —A—G(,—(n +i)¢]
4¢ @ 2

x
172
@

XH,, ( _ ,%)97 (x/@t? — ,mz/zA

(4.18)

These functions form a complete set of orthonormal solu-
tions to the Schrodinger equation (1.5).
We remark here that if we evaluate the relation

J.J_h,=nh,

we get the second-order ordinary differential equation for
2

an(;)

d“a,
d¢?

which is the parabolic cylinder equation™'* which has nor-
malized solutions (4.16) with H (£ ) defined by (4.17). That
(4.18) is indeed a solution to the Schrodinger equation (1.5)
may be confirmed by substitution.

We mention too that solving the first-order equation
(4.1) is equivalent to finding a separable coordinate system’
for the time-dependent Schrodinger equation {1.5). The new
variables (x/@'/? — %, t) permit R separation® of (1.5) yield-
ing the solutions (4.18).

+2n+1—¢%a, =0,

5. DISCUSSION

In nonrelativistic quantum mechanics, time is a param-
eter and the equations of motion and their solutions have a
parametric time dependence.’ In particular, the Schrodinger
equation

(3., + 208, — 2V (x, t)} W, (x, 1) =0 (5.1)

gives the evolution of the wave function or state vector
¥_(x, t) which corresponds to the state a at any time. The
set of solutions ¥, (x, ¢) of (5.1) form a Hilbert space; each
state vector ¥, (x, ¢ ) corresponding to a state « has a definite
direction in the Hilbert space of solutions at each point in
time.’ The relative orientations of the state vectors may
change then during the evolution of the system.

For nonconservative systems, V (x, t ) is time dependent
and the directions of the state vectors in Hilbert space shift
with time. The possibility exists then for transitions between
states. The probability that the system, in state « at time ¢,
will be in state B at time ¢, is given by the square of the
modulus of the probability amplitude, |1 ,(t,, £,)|%, where
the probability amplitude is given by’

+
Lalty, 1) =j WEx, 1), (x, 1) dx. (5.2)

On the other hand, for conservative systems, the Hamilton-
ian is a constant of the motion and the system will be in a
particular energy eigenstate, ¥, (x, ¢ ), where’
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V(x,t)

Vix,t) V(x,t2)

< ha(x,t2)

N, — |
N

FIG. 1. Schematic diagram of the potential function
Vix,t) = g,(t)x> + g,(t x + go(t) at two different times ¢, and ¢#,. The actual
surface is three dimensional. We show only a two-dimensional projection.

Vo (1) = e " (x).
If the Hamiltonian is Hermitian, the ¢, (x) may always be
chosen to be orthogonal® and

I 4(t, ) =0, a#p.

So for conserved systems, the direction of the state vectors in
Hilbert space is fixed and no transitions between energy ei-
genstates occurs.

In the specific case where the potential has the form
(1.4), then the evolution of a state is governed by the coeffi-
cients g;(¢) in the potential. In Fig. 1 we show schematically,
the appearance of the potential at two different times ¢, and
t,. Both the position of the minimum and the curvature may
vary, and the state vectors, the solutions of (1.5) will reflect
this alteration in the potential. Now these solutions, 4, (x, t)
are given by (4.18) and are simultaneous eigenvectors of the
complete set of commuting observables C, E, and M, which
are symmetries of the Schrédinger equation (1.5). The state
vectors A, (x, t) have, in general, a complicated time-depen-
dence. They are generally not energy eigenstates since the
Hamiltonian is not a constant of the motion. Since the prob-
ability amplitude

+
Lolty 1) = f o 05, 1) (3, Bo)dx

does not vanish [see Appendix B(3)], transitions between
states can occur. Why this is so, is suggested by the potential
energy curves in Fig. 1.

For the time-independent harmonic oscillator [see Ap-
pendix A(1}], the symmetry M, is proportional to — id, the
energy operator. The Hamiltonian is a constant of the mo-
tion and the energy is conserved. Since M, is the diagona-
lized generator from the Lie symmetry algebra & and so the
energy is quantized with

%, ={n+ o

and the system is in a definite energy eigenstate. Further-
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more, the system remains in that state since the transition
probability vanishes due to the orthogonality of the Hermite
polynomials. We emphasize that it is the generator M; which
is quantized in both the time-dependent and time-indepen-
dent cases and only in the latter does M, correspond to the
energy operator. It is in this sense that both cases, the time-
dependent and the time-independent oscillators, are
quantized.

Both sets of solutions, {4, (x, t):n =0, 1, ...} for the
time-dependent oscillator and { ¥, (x, t ):n = 0, 1, ...} for the
harmonic oscillator (Appendix Al), form complete sets by
hypothesis. We can expand the 4,, in terms of the ¥, accord-
ing to

o )= 3 ot (x, 1), (5.3)

m=0
where the ¥, (x, t ) are given by (A9). The coefficients c,,,,, are
time dependent,

Coumlt) = fj ) Y*(x, t)h,(x, t)dx (5.4)

and are evaluated in Appendix B(4), Eq. (B18). In form, they
bear a close resemblance to the probability amplitudes
I,,.(t, ). In fact, |c,,, (¢)|* is the probability that, at time 7,
the system under the influence of (1.4}, will be found in the
oscillator energy eigenstate ¥,, with energy &,

= (m + Yo.

Now we shall turn our attention to the computation of
other properties for systems with potentials (1.4). In particu-
lar those properties which can be expressed as polynomials
of position and momentum operators are of interest.

We can express the momentum and position operators
in terms of the raising and lowering operators J__ and J _,

x=EJ, +EXN_+IECH —E*C), (5.5a)
P =10, =EJ, +EXI_FiEC*—£%C),  (5.5b)

where we have used the definitions (2.25) and the Wronskian
(2.21). With the help of (3.13) and the orthonormality of the
eigenvectors 4, (x, ¢ ) we have
(x) =iEC* - £E*7), (5.6a)
(pe) =iEC* — £F), (5.65)
their expectation values. Consistency with Ehrenfest’s Theo-

rem® can now be established. Taking the time derivative of
{x) and using the definitions (2.24} for ¥ and % * we obtain

d(x . :
A{x) _ (EL* —E*C)=(p,).
dt
Secondly, the force is the derivative of the momentum

d{p. ,
L) gt — g0 g = — (%)
This means that the expectation values ( x) and ( p, ) are
good representations of the corresponding classical varia-
bles. Finally, because of the commutation relation
/_,J.] = E and the Wronskian {2.21), we have the Heisen-
berg uncertainty relation

Ax-Ap, >1.

The Hamiltonian
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K= — 10, + &t X" + &4t )x + gft)
corresponds to the total energy of the system® and can be

expressed in terms of the ladder operators through (5.5). In
this realization we get

=41+ 80V + 4@ + 880 L + Y + 880 W T + 1)+ il + 88006 — 4@ + 88.0)C —igi£ 1
+illl@ + 88,0 )F* — U@r + 88.92)C — ig S * WV + P + 880D | + L@2 + 88:92) D, — L@ + 889 )Y

+ig(§C* —5*C) + g,

Clearly the Hamiltonian is not diagonal in the representation 1

(5.7)

,1 of &, which is consistent with the fact that the Hamilton-

ian is not a constant of the motion. However we can calculate the average energy,

-+ =
€, =(H)= f h*x, ) h,(x, tdx = Y@ + 889 )n + §) + L@, + 8801 ,
+ H@2 + 88:02) D 2 — U@ + 88.0)D + ig|(EC* — E*C) + g, (5.8)

where we have used (5.7) and the properties (3.13) of the
orthonormal eigenvectors of 1 _ . It is interesting that the
average energy & depends upon both the quantum number n
and the time ¢ in such a way that the “level” separations
A =%, ,-¢,= }‘(gz; + 8g,¢ ) are equally spaced at
each instant'* but the spacings themselves vary with time.
Also, we note that A& is always a positive quantity since
}‘(q; + 8g,¢) = §§ * which is positive definite.

Finally, the special cases with potentials (1.3) and (1.2)
are worked out in Appendices A(2) and A(3), respectively.
They have been included for completeness.

APPENDIX A

(1) Time-independent harmonic oscillator. In this case,
the functions g,(t ) = w?/2 and g,(t) = g,(t) = 0, wherewisa
real positive constant. We choose the real solutions of (2.4) to
be

(t)= L cos wt (t)—;sina)t
X1 Vo » X2 Vo )

Wixnxad=1 (A1)
According to the definitions (2.20)
1 . 1 .
)= euut and * t) = efuut (AZ
with the Wronskian
W %= —1 (A3)
Hence
1 "1
g=¢;=— and @ =| —=ot. (A4)
2 4
Since g, =0,
¢ =u;=0, 1<j<3 (AS)
and the Lie algebra & is realized by the differential
operators
H 1 e
M3=58,, J+=(—2a-)-)—l72—e ‘(—d, + wx),
L e“'(d. + wx), E=1. (A6)

T )"
Note that the diagonalized operator M, is a multiple of the
energy operator — id,. Because of this, the Hamiltonian
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H =10, + (/2 (A7)

is a constant of the motion and the energy is quantized and is
a constant having the value [see Eq. (5.8)]

%\ = () = (n+ Yo (A8)

The solutions for the harmonic oscillator Schrodinger equa-
tion can be obtained from (4.18)

W, (x, 1) = ()~ '/2(_2) SV

Xexp { —i% ,t |\ H, (0" x)e =",
n=0,1,-. (A9

The functions £, (x, t ) are eigenfunctions of both M, and the
Hamiltonian (A7). As a consequence of {A7) and the form of
(1.5), the Schrodinger equation is separable in the Cartesian
coordinate system (x, ¢ ).

(2) The Harmonic oscillator subject to a time-dependent
force.” Now g,{t ) = w*/2 asin A(1)above and g,(¢ ) is an arbi-
trary real function. We take g,(t ) = 0. Thus the potential has
the form (1.3). We can use the values for the functions & and
& * we found in (A2) and so ¢ and @ are given by (A4). From
(2.24) we obtain

t

4 1 ‘ iws 1 — iws
%=(-2;;)T/—zfgle , %”*=(——*2)./zfg,e :
(A10)

According to the Eqgs. (2.23a) we have
1 . . 1 oo .
.Q/ —_ euul f et(us’ .Q/ — e - fwt J e m)x,
' 2(1) gl 2 2&) gl

P 3
o = -1 (eime‘ glefizux*_e\iwtf gleiwx). (All)
2w

The & functions are given by (2.23b).
The generators of the symmetry algebra, & have the
form

M, =i{(l/0)d, + #9, —idx+iD}, \
_1 [ — fwt . ‘ — fws
+ =977 1€ (ax_wx)+lJ.gle ']’
(22) , r (A12)
J_ ZW [etmt(ax +wx) + l-j gleim.v],
E=1. J
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The simultaneous eigenvectors of C, E, and M, are given by
(4.18)

halx, 1) = (n)) "2 w/0) V427
Xexpifxod —A —(n+ Lot }

XH, (0" *x — Ble~ ">~ P2 (A13)
where
B =a? f[ o,
. . (A14)
A =a)zf M2+a)f 9.
Form (5.8), the average energy is given by
C.t)=wh+Y)— 0D + (g /)%, (A15)

where & = &, is defined by (2.23b).

The probability amplitude can be computed by a proce-
dure analogous to that in B(3)."
1,..(1,2)=AMB

[n+jA2r
m{n, ) 2

] ( _ )r2m~j+r¢m~j(n +]— zr)!in+j
XES )y — in — P — 2 — 25!
S0 o (m—=n—rin+j—2r—2srs!
XHn+jw2/—25(iﬁ/‘/2)’ (A16)
where

A = (ntml)1/22 2,

M=expi{A (1) —A22)+ (n + Ywt, — (m + Yot,

+§B2) — BNL (1)~ L2},

B =exp{ — 36 */4},

B=(B(1)— B2) +io"HZ(1) - Z(2)),

o=B(1)— B)

The functions A, %, and &/ = &/, are given by (A 14} and
(A11).

(3) The time-dependent harmonic oscillator.' For this
case g(t) = g,(t) = 0 and g,( ) is an arbitrary differentiable
function and the potential is given by (1.2). Since g, has not
been specified the functions £ and £ * are defined in terms of

the y, and y,, real solutions to (2.20). However, some simpli-
fication results since

Therefore, 7, = «/; = 0, 1< j<3, and the generators of the
Lie algebra & have the form
M; = i{@d, + jpxd, — (i/4)px" +1p |,
T, = — %3, +iE*x,
J_ =£3, — if *x,
E=1.
The basis vectors for 1 _, ;, simultaneous eigenvectors of the
observables C, E, and M are given by a modified form of
(4.18),
hn(x, f) — (n!)—l/Z(ﬂ,w )—1/42 —n/2
Xexp i{x*p /4@ — (n + )& }
XH,(x/@ ' exp( — x*/p),
were @ is defined by (4.5) with (4.11).
The average energy may be obtained form (5.8) and is
given by
(t) =g + 88 )in + 4. (A20)
Since },(é + 8g,p) = §§ * theenergy & (¢ )isalways positive.
The probability amplitudes

(A18)

(A19)

+ o
I,.(1,2) = J B, 1)k, (x, )dx

may be obtained as follows using the wave function (A19).

Ims2h )kmg ®
I - A=
w2 =ams § L f/’mk(p)fw dy
Xexp{ — 2¢V*}H,0H,, _ ), (A21)
where
y=x/p(1)'"?

A= 7—!/2(n!m!)—(n+m)/2,
M = expif(n + })P (1) — (m + )P (2)},
B=p'""=[p(l)/p@2)]'*,

=548 o)

Note that Rey” = }(1 + @(1)/¢(2))> O since @ is positive
definite. The function Z . ( p), a polynomial in p is given by
(B15) in Appendix B. The integral in (A21) is a standard
integral'® and so we obtain

m+n— 2k

P k(p)z-(zk+1)/27—m7n+2k71(1 -272)*2_—1“('" +n—2k+ 1)

2

¢ =€*=0. (A17)
|
m/2 (—)"m!
I,,.(1,2)=4'MB _
o (m —2k)!
XzFl(—m, —n 4+ 2k; 1_n_erZk; v
2 2 —1

where Rey” > 0and m + n even. The function ,F, (a, b; c; z) is
a hypergeometric function.'*'® The coefficient 4 ' is defined
by A’ = (mnim!)~'/2
APPENDIX B

{1) We wish to integrate the subsidiary conditions (4.2)
in order to obtain the.wave function (4.3), solution to the
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)

—

partial differential equation (4.1). The conditions (4.2) are,
dt _ dx
¢ lgx+d
dh,
(— (i/8px? — idx + L + igop + iD + iln + 5()])311” '
1)
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By appropriately rearranging the first equality we obtain the
inhomogeneous differential equation,

& _lg, o

dt 2 @ @
which when integrated yields a solution

Z_ _#=c, (B2)

where C, is an arbitrary constant and
-

327

Blt)= (B3)

Taking the first and third terms we can recast them into the
differential equation

[;"ﬁxz —_ Iﬁx
4 ¢ @
—dh
-+-i(n +—1~)—1—]d1= " (B4)
2/¢@ h

for h,. We can eliminate the x dependence in (B4) by substi-
tuting Eq. (B2). Integrating the resulting expression and sub-
stituting (B2) for the constant C, we obtain

h, exp{ — ix’@ /4@ + ixA, + iA +iGy + i(n + )P}
=G, (B3)

where C, is an arbitrary constant. G, and @ are defined by
(4.5) and (4.6), respectively, and

A, =(¢}%/2-%f PR —J (o /@ ”2))/¢ 12

le . .9
+—T gy +i—
4 ¢ @

n

A =(-%¢.@2—%f :;’5%%%[ o/
—J Ja'm’/qo‘“) +(%/2}f OB +f @@).

Both A, and A may be simplified. For A, we obtain after
integrating by parts and some algebra

A, =(1/¢)U (% o —¢m'{)/¢3/2]. (B6)
By repeatedly integrating by parts we can reduce A to
A= —f (.Q//(p”z)f ( oo — ¢m_/)/<p3/2 +J D/p.

(B7)

Again integrating by parts the common term in {B6) and (B7)
we have

J(ho-epo-

Substituting (B8) into (B6) and (B7) yields

— o /p 2 (B8)

A= —/p, A=f .Q/2/¢2+J@/¢>. (B9)
Hence (B5) becomes upon substitution for A
h, exp{ — ix’@ /4@ — ixl /@ + iA + iGy + i(n + )P }
= C,. (B10)
Now (B2) and (B10) are two functionally independent

solutions of the system {B1) and so we have a general
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integral,'?

h,@'"* exp{ — X*¢ /4@ — ix.d /@ + A + iGo + iln + )& |
— a0V~ @)

or

h(x, 1) =@ "*explixip /4@ + ixl /@ —
— Gy —iln + )P}
Xa,x/¢ ' — AB). (B11)
(2) There are a number of useful relationships which
simplify many calculations:

EXC —EEH

1/2

o 1-n(E)

In (B12), & is given by (2.20) and € by (2.24). Equation (B12)
is obtained by integrating by parts and using the Wronskian,

Wi §*= —~
The second relation follows from the definition of @ and
the Wronskian, W (£, £*) = —

f‘=_f gg*_ 2 §§*§§*§§*zéln%'

3) Using the specific form of the wave functions (4.18)
we can compute the probability amplitudes

=i, (B12)

(B13)

+ o
Lo(tn 1) = Ion(1,2) = f B, 1) (6, 1)

+ o
=AMBJ dx exp{ — a'x’* — B 'x}

XH,(x/@ (1) —
XH,(x/@'"*(2) —

#(1)
B (2)),
where
A= ,n.—l/Z(n!m!)—l/22—(n+m)/2’
M =expi{A (1) — A(2) + Gy(1) — Gy(2)
+(n + P (1) — (m + )@ (2)},
= (@ (V@ (2))"* exp{ — (B*(1) + B*2)/2},

oL ife@ _ o]
* [(1) cp(2>] [mz) ¢(1)]’
L) Q) (B, BR)
g “’(wm ¢(z)) (¢(1>"2+¢(2)‘/2>'
Note that B is complex since all the quantities, ¢, <7, # are

real. Furthermore, Rea’ > O since ¢ = 2££ * is real and posi-
tive. We now perform a variable transformation

y=x/p'1)— A1),

which gives

+ o
I,(1,2) = AMB’ f dy expl — ay® — By)
X H,0\H,(py + o,
where
@ =a'gll),

B=B'¢"1) + 2a%(1),
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= [p(1)/@(2))"/?, The integral in the expression on the right'® is
= Bl — BQ), + v 2
e 2 f dy exp( — ay* — By) = (g_) exp (B_>,

B’ =p'?exp[ — (§ — @) B(1) — B(1)8 — 4 B*(2)]. 4a
Employing identities for Hermite polynomials'? we obtain Rea>0
I,.(1,2)=AMB’ w“fg“
% 2 I./Szl w2k minl2™ I P (plom f- . dy exp( — ay® — By)H, ()
jToxSo /S o (m —n —nl(j — 2k —rir! _(_71)1/2[1/21(—)’“‘1!2"2" d\-* (B2
Xf dy expl — ap* + VH, ;2 2.0} “\a) & wi (EE) e"p(Ia‘)'

(B14)

where (n, j — 2k ) indicates the upper limit to the sum is the If we use the Rodrigues formula for Hermite polynomials;

smaller of the two numbers. The function &, ( p) is a poly- then
nomial in the variable p: e
o [ ayexst - e — st
Zalp)= —
jk 2 l'(k — l)! N2 1121 N 1 \i— 202
To solve the integral in (B14) we note that = (;) P2 m (;)
+ oo
p— 2 —_— | 2
f_ B dy exp( — ay* — By)H,(y) XH, ( iB )eﬂ /4
3 + o 2\/(1
=H, (%ﬁ_) f dy exp( — ay* — PBy). Therefore

1 (1) = 2k) lin +j— 2k ~ 272 ["+f(—)’2’"_j+’(n+j—2k—2r)!0""*j§”jk(p)

I,.(1,2)=4'MB" z Lf;

, s=0 (m —jln — rln 4 — 2k — 2r — 25)}(j — 2k — riris!
1 \(r+j—2k—2r—2s)/2 iB
X(_(Z—) H" +j—2k—2r—2s (21/—&), (BIS)
where
1/2
A'=[nimp-"rm)V2 BT = ”a exp[B?/4a — (} — ) B*(1) — B(1B — 1B (2)]. (B16)

(4) If we expand the functions (4.18) in terms of the time-dependent harmonic oscillator as in (5.3), then the coefficients
+ o
Cult)= [ Wtix i (x, 1), (B17)

where the solutions to the time-independent oscillator are given by (A9)in Appendix A(1). The integral (B17) may be evaluated
in the same fashion as the probability amplitudes computed in (B3) above. We quote only the result here.

r)—AMB z 12] (nj = 2k) l(n +j — 2k — 27)72]( — )"+j+r2m—j+r’~n+j(n +J_2k_2r)'.@m_1gjk(p)

Y 2, S (m—jln— PN — 2k — )l +j — 2k — 2r — 2s)!Ps!
1 n+j—2k—2r—s/2 lﬁ 24
D S (88
o +imk—2 -2\ Va (B18)
|
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The number operator a*a, where a is an annihilation operator, plays a fundamental role in the
statistics of bosons and fermions. However, it is possible for other statistics to have the same
number operator. We have previously shown that for one degree of freedom there is a type of
statistics having this number operator corresponding to each p which is a positive integer or .
Fermions are obtained when p = 1 and bosons are obtained when p = «. No state can have more
than p particles. In order to treat many degrees of freedom it is necessary to first consider the case
of one degree of freedom differently. We show here that for more degrees of freedom a similar
situation occurs but for each case other than bosons and fermions there is a positive integer ¢, such
that no state can have more than g particles, even when the number of degrees of freedom is
infinite. Thus these statistics are probably not physically realizable except in an approximate way.

PACS numbers: 03.65.Fd, 02.30.Tb

1. ONE DEGREE OF FREEDOM

This work is an extension of work done for one degree of
freedom (Ref. 1). In order to extend to many degrees of free-
dom, the earlier work must be looked at differently.

In keeping with the notation introduced in the next sec-
tion, C will represent a creation operator and its adjoint C *
will be the corresponding annihilation operator. The state-
ment thatn = CC * is anumber operator can be expressed by
the commutation relation

[r,Cl=C.

Since C and #n may be unbounded operators this relation may
only be satisfied on a certain dense domain. This domain
should contain the vacuum vector » which should have zero
particles and thus satisfy C *» = 0. The vacuum should be
essentially unique; that is, there should be only one zero-
particle state. The domain should also include the result of
creating and then annihilating any number of particles from
the vacuum. These are the hypotheses of Theorem 1. We
start with a definition.

Definition: Let o7 be a collection of operators on a Hil-
bert space K. Poly (&) will be the set of all polynomials
formed from operators in &, & ~(%/) will denote the set of
all vectors in K which are in the domain of all elements of
poly (). If veZ ~() then K, (&) = { Bv: Bepoly(«)}. If
K, (<) is a dense subset of K then v will be called a cyclic
vector of 7.

In the following if p is a positive integer we set N,

={0,1,2,3,...p} andlet N denote the nonnegative integers.

Theorem 1: Suppose Cis a closed, densely-defined oper-
ator on a complex Hilbert space K, = poly({ C,C *}),

n = CC *, there is a unique (up to scalar multiple) unit vector
vek such that C *v = 0, this v is a cyclic vector for &7, and,
for wek (&),

[n,Clw = Cw. : (1.1)
Then for some p, the set
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fv, =k !)“‘/ZC"v:keNp}
is an orthonormal basis for K and
C*y, =k!'? Vi 1, keN,, k #0.

Remark: It is an easy computation to show that all non-
negative integral values of p are possible and give operators,
C, which satisfy the hypotheses of the theorem. The case
p = Ocorresponds to C = Oidentically and so to avoid trivia-
lities in the following we assume that C is not identically
zero. If p = 1, Cis just the fermion creation operator (in this
case K is two dimensional) and p = « gives bosons.

Proof of Theorem 1: Let K' = K (). If w,ueK ', Eq.
(1.1) gives
{[n,C Ju,w) = (Cu,w),
(u, — [n,C *lw) = (4,C *w),
0 = {1,[n,C *Jw + C *w).
Since this holds for all ueK ’ and K ' is dense, if wek,
[n,C*w= — C*w. (1.2)

From Eq. (1.1) and (1.2) and nv = 0 it follows that if a
monomial in C and C * acts on v, the result is an eigenvector
of n (if it is nonzero) with eigenvalue equal to the difference
between the number of creators and annihilators. In particu-
lar if the number of annihilators exceeds the number of cre-
ators the result is zero since # is a nonnegative operator.
Also, if the number of annihilators equals the number of
creators the result is proportional to v since v is the essential-
ly unique vector such that nv = 0.

Lemma 1: If C*v#0 then

C*Crv=kC* v (1.3)
and

ICH|? = k! (1.4)

Proof of Lemma 1: C**C*v = av, where a = ||C *v|)%.

Successively applying C to this gives
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CC*C*y = aCy,

nC**~'C* = aCu,

C*~'Cky = aCy,

CC*~'Crv =aC?,

nC* ~2C*y = aC?,

2C*—2Cky = aC.
Continuing, we get

(k — C*Cr =aC* v, (1.5)
and

k!Cky = aC*. {1.6)

Since C*v#0, Eq. (1.6) gives @ = k !and Eq. (1.5) reduces to
Eq. (1.3).

Equation (1.3) implies that all annihilation operators
can be eliminated from any element of ./ when it acts on v
and so the set

[Cruk =0,1,2,...}
spans K. This is an orthogonal set since
nC*v = kC*v

and n is self-adjoint. This completes the proof of Theorem 1.

Remark: The condition that » is a number operator can
be stated in a mathematically more rigorous way than Eq.
(1.1) which must explicitly give a domain to make sense when
C is unbounded. Equation (1.1} is formally equivalent to

eimCe — itn — eitc
for real values of ¢. Since ¢™ is unitary when 7 is self-adjoint
this equation is meaningful even when C and n are unbound-
ed. This enables us to state that z is a number operator when
we don’t have a particular domain in mind. This is the situa-
tion when the vacuum vector is not explicitly given. In fact,
when the number of degrees of freedom is finite a vacuum
vector must necessarily exist and thus does not have to ap-
pear in the hypotheses of the theorem. First we must make a
definition which will allow us to replace the condition in
Theorem 1 that K, (.«7) is dense in K by a condition that does
not involve the vacuum. This irreducibility condition states
that 1o nontrivial subspace of X is invariant under both C
and C * but is applicable even when C is unbounded so that
the domain of C need not contain the entire subspace.

Definition: Let C be a closed densely-defined operator
on a Hilbert space K. Let M be a closed subspace of K and let
Pbe the projection onto M. We say that M (or P ) reduces Cif
CPDPC. Such a subspace is called nontrivial if it is neither
the zero subspace nor all of XK.

If follows from the general theory that if M reduces Cit
also reduces C*.

Theorem 2: Suppose Cis a closed, densely-defined oper-
ator on a complex Hilbert space K such that no nontrivial
subspace of K reduces C and the operator n = CC * satisfies

eimCe — itn — eilc (17)
for all real values of ¢. Then C satisfies the hypotheses of

Theorem 1.
Proof of Theorem 2: Let n = § AE (dA ) be the spectral
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resolution of #.
Lemma 2: If A is the closed interval [0,8] and
E(4)w = wthen

E[0,8— 1)) C*w = C*w; (1.8)
C *weDom(n *) for each k and
(n + 1*C *w = C *n*w. (1.9)

In this lemma we interpret a closed interval [0,a] witha <0
to be empty.

Proofof Lemma2:Since E (4 Jw = w, weDom(C *). The
adjoint of Eq. (1.7) gives

eCre ™ "= o O *, (1.10)
which implies that
itn.__ itin — 1) __
¢ lc*w:c*f«__——iw. (1.11)
i it

Now (¢“" " — 1)weE (4 )K and C* is bounded by 8 on
E (4 )K so as t—0, the right side of Eq. (1.11) approaches
C*(n — l)w and so C *eDom(n) and

nC*w=C*n — Ww
or

(n+ 1)C*w = C *nw.
This establishes (1.9) for k = 1. Arguing by induction, if
(n + 1)*C *w = C *n*w then since n*weE (4 )X,
(n + 1)*C *weDom(n) and

(n + HC *n*w = C*n**+ w,

(n+ DT IC*w = C*n*+ .

This establishes Eq. {1.9). Equation (1.8) will follow from the
following general fact about self-adjoint operators.

Lemma 3: Let T'be a self-adjoint operator with spectral
resolution 7' = fAE (dA ). Suppose E ([0, 0 })) x = x and for
each positive integer k, xeDom(T¥). Let
b=1lm,  _ ||T*|'*and
a=>b— lim,_ _ ||(b — T)x|"* Then [a,b]is the smallest
closed interval such that E ([a,b ]}x = x. The proof of Lemma
3is straightforward and is similar to the proof that on a finite
measure space the L, norms of a function approach the L
norm. Here we need only the calculation of b.

[(n + 1)°C *w||* = ||C *n*w|?

= (CC *n*w,n*w)
= ||m*+ 1/2w”2'
Thus

I+ 1€ *u] = e 2.

Since E (4 )n'*w = n'"?w, if

b= lim “nknl/zwul/k,
k— o0

then b<. Thus
lim ||(n + 1)*C*wl||'*<B
k-

s0 E ([0, 8 — 1])C *w = C *w. This completes the proof of

Lemma 2.
Combining Eq. (1.7) and (1.10) gives
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e"C*Ce " =C*C
and so C *C commutes with n. Let # = C *C and let
i = { AF (dA ) be the spectral resolution of 7.
Lemma 4: If nw = aw then weDom(#1) and
nCw = (a + 1)Cw. Also, there exist w, and w, such that
W=w, + W,
nw‘ = aw‘, nw2 = awz,
nw, = (a + lw,, iw, = 0.
Proofof Lemma 4: Note thatif nu = au and ueDom{C ),
then
itn__ in+ 1) __ itla+1) _
e loy—c =1, L e,
it it it
As +—0 the right side approaches (@ + 1) Cu, so
nCu = (a + 1)Cu.

Now suppose b>0and F((b — ¢,b Jw#0forO<e<b.
Let € be given, 0 < € < b and let « be a unit vector parallel to
F{(b — €,b])w. Since n and 7 commute, nu = au and since
ueDom(#n), ueDom(C). Let x = (b — AJu. Then ||x||<e and

|Cxl? = (7ix,x) <b||x||*<bé?,

ICull? = () >(6 — ellul] = b — ¢,

nCu = Cnu = bCu — Cx,

(@ + 1)Cu = bCu — Cx,

Cx=(b—a-—1)Cu,

bE>b—a — 1Pb—e€),
which is a contradiction if € is smaller than both
|6 —a — 1] and 4b. Thus b = a + 1. This shows that
F (4 Jw##0 only when 4 contains 0 or ¢ + 1. The lemma fol-
lows with w, = F({0}w and w, = F({a + 1})w.

Let 4 be any bounded interval such that E (4 )0. Then
for some w#0, E {4 )Jw = w. Applying Lemma 2 repeatedly
gives that for some nonnegative integer k, C **w=0 but
C**+'w = 0. Let v be a unit vector parallel to C **w. Then
C*v=0andsony=0.

Lemma 5: If C *v = 0 then for each &, 0<k < o0,
veDom(C*) and either

ﬁckl):O,

or
aC*v = (k + 1)C*0.

Proof of Lemma 5: Let P = F({0}). The proof is by
induction.

k = 0: By Lemma 4, since nv = 0, veDom(#} and
v =10, + v, wherev, = Py,Cv, = 0and v, = v,. Butv, =0
since otherwise nv, = 0 (since n commutes with 7) and
Av, = 0 so the one-dimensional space spanned by v, would
reduce C; and therefore be all of K making C indentically
zero. Thus v = v, and v = v.

Next assume that the lemma is true for 0, 1, 2, 3, ...,
k — 1. If for some j < k, 7C’v = 0, then C/* 'v = 0 since

IIC7* W||> = (#C, C'v).
Thus we may assume that

ACw = (j+ 1)C, for 1<j<k.
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Since nC *v = kC*», C *veDom|#i) and w, = PC *v sat-
isfies Cw, =0, nw, = kw,. If w, = 0 then
AC *v = (k + 1)C*v and we are done. Assume w, #0. By
Lemma 2, w, eDom(C ”) for all j. Let w,, _; = C “w,. Then
nwy _; = (k — jw, _; for j<k,

and wy _ ;0 when j<k since
”wk-—j"Z = {(Cwy, CYw,)
={(nC7 w,, CV w,)
={k—j+DICY "w, |
= (k ~j+ Dllwe ;1 1%
Thus we have

Cw,=CC*w; , , =+ Nw;,,, 0<i<k,

Cw, =0,
C*w, =0,
Crw, =w, , Ik

These equations show that the space spanned by {w,, w,, w,,
..., Wy ] reduces C. Since w, #0 this must be all of K. Since
n(l1 — P)C*v = k(1 — P)C*, (1 — P)C*v is orthogonal to
each of wy,w,,...,w, _ | and since it is also orthogonal to C %,
it is zero. Thus PC*v = C*v and #C*v = (k + 1)C*».

If p is the smallest integer such that C? * 'y = 0, where
we set p = oo if C*v is never 0, then the span of the set

{C*ukeN »
reduces C and thus is all of K. Thus v is a cyclic vector for
« = poly ({C, C*}). All vectors w with nw = 0 are parallel

to v since nw = 0 implies that w is orthogonal to C *v for
k>1. Lastly, Lemma 4 implies that if we K, (.«/) then

[n, C]w = Cw.
This completes the proof of Theorem 2.

2. MANY DEGREES OF FREEDOM

In order to set a mathematical framework, suppose we
have d annihilation operators a,, a,, ..., a, and correspond-
ing creation operators a},a¥,...,a%. Let H be a complex d-
dimensional Hilbert space with orthonormal basis
{e)ses,...h¢; ). If zeH and z = Zae; we define C (z) = Za,a,*.
Then C |z} is a creation operator and formally

Ciz+y)=Clz)+ Cp),
Claz) = aC|z),

for z, yeH and a complex. When there is an essentially
unique vacuum vector, A is isomorphic to the 1-particle vec-
tor states and is referred to as the single particle Hilbert
space. The single particle space need not be finite-dimension-
al and in the physically important case H is a separable infi-
nite-dimensional Hilbert space. _

The key structure is that of a Fock space in which there
is a vacuum vector from which all other states can be built.
This is given in the following definition.

Definition: An irreducible clothed quantum structure
over H is a collection {H, C, K, v} where / and K are com-
plex Hilbert spaces, C is a map from H into the set of closed
densely defined operators on K and v is a unit vector in K
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such that if
7 = {C(z), C*z):zeH },

then veD oo (&), v is cyclic for .7, v is the only vector in K up
to scalar multiples such that C *{z)v = 0O for all zeH and for
wekK (), z,yeH and complex a we have

Ciz4+yw=Clziw+ Cpw,
Clazw = aC (zjw.

K ' will be used to denote K {.«7).

The equation C *(z)v = Oindicates that particles cannot
be annihilated from v, that is, v has no particles. Such a vec-
tor is called a vacuum. The condition that an operator n(z) is
a number operator for (the state) z is expressed formally by
the commutation relation

[n(z), Cp)] = (, 2)Cl2).

This states that n(z) commutes with C (y) when p is orthogonal
to z and it reduces to the commutation relation (1.1) when y
and z are equal unit vectors. We will require that this formal
relation is satisfied on K.

Our main result is that if C (z)C *(z) is a number operator
for z then the cases other than bosons and fermions give
statistics with essentially a finite number of particles. For a
finite number of degrees of freedom the fermion Fock space
also has a finite number of particles but when the dimension
of the single particle space is increased the number of possi-
ble particles also increases. This is not true in the other cases.
To make this precise requires a few more definitions.

If (H, C, K, v} and {, C, K, 9} are two irreducible
clothed quantum structures then | #, C, X, i} is said to be an
extension ofiH, C, K, v} if HCH, KCK, v="and for all
zeH, C (z)C C (z). To express the notion of the number of par-
ticles we will use the total number operator. A self-adjoint
operator N on K will be called a total number operator for
{H, C, K, v} if Nv=0 and for weK ' and zeH,

[V, Clz)lw = C Z)w.

We denote by K, the closed subspace of K generated by
thoseelementsof K 'whichhavetheform C (z,)C (z,)---C (z,, v
Such an element will be called elementary. K, is just the one-
dimensional space spanned by v. From the definition of IV,
each nonzero element of X, is an eigenvector of N with
eigenvalue m so that K, is a space of m-particle states. If %
is an orthonormal basis for H, K, (%) will denote the (not
necessarily closed) linear space generated by the elementary
elements of K, which involve only creation operators C (z)
with ze 4% .

Theorem 3: Suppose { H, C, K, v} is an irreducible
clothed quantum structure over H such that if z, yeH,

n(z) = C(2)C *(z) and weK ', then

[n(2), CY)lw = &, 2)C(zw. (2.1)
Then {H, C, K, v} has a total number operator ¥ and if
{e,:a€l } is an orthonormal basis for H then 2 n{e, w con-
verges to Nw for all weK ‘. Also, one of the following holds:

i} {H, C, K, v} is equivalent to the free boson field,

ii) {H, C, K, v} is quivaAler)\t to the free fermion field,

iii) |V ]| < o0 andif {H, C, K, 0} isan extension of { H, C,

K, v} satisfying Eq. (2.1) for all z, yeH and weK ' and
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A

Nis the total number operator for § H ,C, K, 7}, then

IV =NV

Proofof Theorem 3: Let % = {e,:acl | be an orthonor-
mal basis for H and define ¢ (#) = {C (e, ):acl | and
C¥(A) = {C*e,):ael }. As in the proof of Theorem 1, the
adjoint of Eq. (2.1),
[n(2), C*plw] = — (2,y) C*zw, for weK’, yeH (2.2
also is satisfied and together with the hypothesis that
C *(z)v = O for all zeH it follows that if E, €€ (4 % *(#),
i=1,2,.,kand De¥ (#)then E\E,...E, v (if it is not zero) is
an eigenvector of DD * with eigenvalue equal to the number
of the £,’s which are equal to D, minus the number which are
equal to D *. Thus the eigenvalue is an integer.

Lemma 6: Suppose D, €€ (A),i =1, 2,...k. If 1j<k,
D.D, ,..D,v#0 and q; is the cardinality of the set

{D;: j<i<k and D, =D},
then

D*D,D,;, ~-Dyv=a;,D,;, Dy, (2.3)
and if D\ D,--D,v+#0,

k
|1D,\Dy+-Dv||* =[] @
£ ]

Furthermore, if 0 is a permutation on k elements, there is a
scalar, 3, with |3 | = 1 such that

D.Dy-Dyv=pD,, D, D,v. (2.4)

Proof of Lemma 6: Since for any zeH,

C*z\D¥D¥ ,--D¥D\D,-D,v=0,
there is a scalar a such that

D¥D¥ ,--D¥D D,--D,v=av,

D D¥D¥_,--D¥DD,--D,v=aD,v,

D¥ |«.D¥DD,--D,v=aD.v.
Applying D, _,,D, _,,--D, similarly, we get positive inte-
gers B, B, ., such that

B 1Bi 2B.D¥D\Dy.Dv =aD,D,, D0
Thus a, =a/B, B. P> Applying D, to

D*D \D,--D,v=a,D,D;D,v,
we get

D D¥D D,-D.v=a,DDyD,v.
Since D, D,--D, v, if it is not zero, is an eigenvector of DD ¥
with eigenvalue equal to the number of the D,’s which equal
D,,a, has the value stated in the lemma if D\ D,--D, v#0. A
similar argument applies to a;. The statement about the
norm of D,D,--D, v follows from

|D\Dy-Dv||> = {D*DDyDyv,Dy--Dyv)

= a,||D,D5-Dyv]*.

Now let w =D D,-D,v and u =D, D _,--D_,v.
There is a scalar ¢, such that

DYXD¥%. 1)'"D mDYw=1v.

ol

As above, applying D,,;.,D . _)»D,, D, we obtain posi-
tive integers ¥, ¥« _ 1,¥; such that
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ViVi— 1V =¥Dy Doy Doy = yu.
Thus, w = fuwhere 8 = y/¥, ¥, Thisshows thatifu = 0,
then w = 0 and the converse follows from a similar argu-
ment. If both w and u are zero then w = Bu with # = 1 and
the proof is complete. If w70 then the definition of the a,’s
above shows that

“D1D2"‘DkU“2 = l—[I Aol
where 4, is the number of the D,’s which are equal to C (e,,}.
Note that all but a finite number of terms in the product are 1
soitis well-defined. This formula shows that ||D,D,--D, v|| is
independent of the order of the terms so |[w|| = [l«|| and thus
|3 | = 1. This completes the proof of Lemma 6.

The subspaces X, ,m = 0,1,2,3,... are mutually orthog-
onal. If weK ’, there is an orthonormal basis, %, of H such
that w can be expressed as a linear combination of a finite
number of terms in the form £ E,...E, v, where
E. €% (#)C *(%), but Egs. (2.3) and (2.4) imply that those
E,e¢*(#)can be eliminated. Thus K = & % _, K.
K=w97_,K,.

Lemma 7: If z is a unit vector in H then on
K, ,C(z)C *{z) is bounded by m and C *(z)C (z) is bounded by
m+ 1.

Proofof Lemma 7: Any elementary vector in K, can be
written as a finite linear combination of vectors in the form
w = D\D,...D, v with each D,e¢ (%), where % is an orth-
onormal basis containing z. Each of these is an eigenvector of
C (2)C *(z) with eigenvalue less than or equal to m. Thus
C (z)C *(z) is bounded by m on K ,,, and K, is spanned by
eigenvectors of C(z)C *(z). Since by Lemma 6, each such ei-
genvector can be written as a sum of eigenvectors of both
C(2)C *(z) and C *(z)C {z), these also span K ,,. Suppose

CZ)C*z\w = yw
and
C*2)C (z)w = Buw,
thus
C (2)C *(z)C (z)w = BC (z)w,
(v + 1C (2hw = BC (ehw.
Soeither C (zJw = Oin whichcaseS = Oor C (zJw+#0in which
case B =y + 1<m + 1. Thus C *{z)C(z) is bounded by

m+1lonk, .
Let % be an orthonormal basis for H and define

r = min{;:D,D,---D,v = 0 for some D,e? (4 ),1<i<j},
s = min{j:DD,---D,v = 0 for some distinct

D,eC(B)1<i<j},

where we take r = « or s = o if the set is empty. Clearly
s>r. We will show that if r = s = « we get bosons and if
r=2,5s = oo we get fermions. If 2 <r < o, then
C(z,)C (z,)--C{z,)v = O for all z, e¢H whereas if = 2 and
5 < oo then C(z,)C (z,)--C(z,)v = O for all z; eH.

Suppose r = s = o0, that is, suppose D, D,---D;v #0 and
every choice of D,e¢ (#),1<i</. Then this is true for every
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orthonormal basis as can be seen from the following argu-
ment. Suppose #' = {e,,:a€l ] isanother orthonormal basis
for H. Let D =Cle, ) and D, = Cle, ),1<i</. Let

’

H'=spanfe, ,e,, ..., €q, €ays €0, ...,e,’xj}.
If U is a unitary operator on H ' then by Lemma 6,
|C (Ue,,,)C (Ue,, )+C (Ue, V||
isan integer and since the unitary group of H ' is connected, it

is independent of U. First taking U to be the identity and
then a unitary operator such that Ue, = e , we see that

[[1D,Dy+-Dyo|f* = [|D{D;--D juf*.
Now suppose that z is any unit vector in H and let # be

an orthonormal basis containing z. If w is an elementary
vector of X,,,(#) then for some scalar 53,

C2)C *z)w = Bw.
From Lemma 6 since C (z)w70 by assumption,
C*z)Clzw = (B + L.
Thus, for wek,, (%),
[C*(2),C (2z)]w = w. (2.5)

Since by Lemma 7, [C *(z),C (2)] is bounded on K, and since
K, (B)is a dense subset of K,,, Eq. (2.5) holds for all wek,
and thus all weK *. Polarization of Eq. (2.5) shows that for
weK ',

[C*a,CPw = D w.
This gives the boson field.

Next suppose r = 2,5 = oo and that D ?v = 0. Then for
allzeH, C (z)’v = Osince ||C (z)v||* isan integer when zis a unit
vector and as above the connectedness of the unitary group
implies that it is independent of z. Similarly, since s = oo,
D \D,--D,v#0 for distinct D, €% (#) and this holds for any
orthonormal basis 4. Also, since ||D,D,--D,v]| is indepen-
dent of the order of the terms, this is zero unless the D,’s are
distinct.

Suppose zis a unit vector in H and % is an orthonormal
basis containing z. Let w be an elementary vector in
K, (% )w = DD,-D,, v, with w#0 so that the D,’s are dis-
tinct. If C (z) is distinct from all of the D,’s then C *(z)w = 0
and C*2)C (z\w = w. If C (2) is equal to one of the D,’s, then
C(z)C*z)w = w and C (zjw = 0. In either case

[C*2),Cl2) w=w.

This holds for all wekK,,, (%) and thus for all weK * and polar-
ization gives that for weK ’, z,yeH,

[C*a2.Ch)] w= 2w,
and this gives fermion field.

We will next show.that if r> 2,E,€% (%) and
E\EyE,v =0, then if D¢ (#), we have E,DE,E.v = 0.
Since the order of the creation operators does not affect the
norm this implies that each of the E,’s can be replaced by
arbitrary elements D,€% (#) and that D, D,--D,v = 0.

Polarization of Eq. (2.1) gives that for x, y, zeH and
wek ’,
[C(x)C *2),C p)]w = (2)C (x)w. (2.6)
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If E, # E, then this gives
[DEXE lw=0.
Thus,

DEZE,|(E,Ey+E,v) =
and if E\E,-E,v =0, then
E DE%E,E,-E,v=0.

By Lemma 6,
EYE,Ey-Ev=aE;-E v,

where @ #0 since E,E;---E v#0 by the definition of r. Thus
E.DE,.-E,v=0.

If E, = E,, then rearrange the order of the E’s, if possi-
ble, so that E, is unmoved but the first E; is not equal to E,.
The above argument can then be used. If no such rearrange-
ment is possible, then all of the E’s are equal and it is neces-
sary to show that if £ v = 0 then DE "~ 'v = 0. We will as-
sume that D #E, for otherwise there is nothing to prove.
From Eq. (2.6}, for weK’,

[DE * Ew = Duw,

E,DE *(E,E+E,v)

SO
DE*E(E"'v) — EDE*E"'v) =
— EDE*E"~'w=DE ',
—(r— )EDE" % =DE" "

Assume for the sake of contradiction that DE”~ 'v50 so
that EDE "~ 2 £0. From Lemma 6 there exists a scalar «
such that

E*DE" 'v=aDE" %,

EE*DE’ ‘v =aEDE’" %,

(r—)DE"'v=aEDE" %

—(r—1EDE" v =aEDE" %,
soa= —(r—1)*and

E*DE"~'v= —(r—1)?DE" " *.
Thus

(E*DE’"~"W,DE "~ %) =

—(r— 1PJDE" | =

DE" 'y,

(DE"~'w,EDE"~ "),
— |IDE" "w|*/(r — 1),

(r— 12| DE"~||* = ||DE"~ "v||*.
On the other hand,
|DE"~"||* = (D*DE"~",E" " 'v),

|IDE" "w|* = |E"~ "],
since D*DE’ " 'v = E"~ 'v because DE "~ 'v5#0. Similarly,

IDE"= 2| = |E"~ 2|1
Lastly,
“E"‘v“z <E*ErwlvEr~2 )
=(r—1|E"~|%
Thus,
IE™ | = |DE"~ "w|* = (r — 1P| DE"~*|?

=(r—1E" ff?
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and so (r — 1)* = (r — 1) which contradicts > 2. Thus we
have DE"~ 'v = 0.

We have shown that for r> 2, D\D,-D v = 0 for all
D,e%'(#). The same argument applies if {H C K 0} is an
extensionof { H, C, K, v}. If 2 isan orthonormal basis forH
with % C 4, then D\D,--D,v = 0 for D,e%(%’). Ifr=
and s < o0, then a similar argument shows that
D\D,--D,v = 0 for all D,€% (%) or D,€% (A).

The existence of a total number operator, N, satisfying
the hypotheses of the theorem is well known for bosons and
fermions. For the other cases there is an integer ¢ such that
D\D,.-D, , ,v=0for all D,e%(%). In fact, from the con-
nectedness of the unitary group, ¢ is independent of the basis
used and

C(zl)c(zz)"'c(zq +1lv=0

forall z,,z,,....z, , 1€H and so K; = {0} if j>g. The same is
true for any extension of { H, C, K, v}. Thus,

K=K,eK 90K,
since the spaces K; are mutually orthogonal and the opera-
tors C (z) are bounded. Define N as the operator which has
the valuej on K;,0<j<q. Then N is self-adjoint, Nv = 0, and
if weK;,C (p)wekK; , | so

(V,CYw = C Who.

Let % = {e,:a€l | be an orthonormal basis for A and
suppose wek ;. Let € >0 be given. We can write
w = w, + w,, where w,eK; (%) and ||w,|| <€/2j. Let Jbe a
finite subset of 7 such that w, is a finite linear combination of
terms of the form D, D,-.-D,v with D,€{C (e, ):aeJ },1<i<j. If
J ' is finite set containing J, then

z nle, jw =jw,

aet’

and

| X nleqJws|| < jllw,[,

aed’

SO

| 2 nleqw — Nwl|<|| X nleqw, — Nwl|| + || 3 nle, Jw||

asl’ aeJ’
<Jhw, — jwl| + jl|w.|l
<l <e.

Thus 2 nle, )w converges to Nw. This completes the proof of
Theorem 3.

As in Theorem 2, when H is finite-dimensional the exis-
tence of the vacuum vector need not be assumed. Equation
(2.1) can be replaced by a formally equivalent relation, (2.7),
which does not have an explicit domain condition. When no
convenient domain is given, it is necessary to replace the
linearity conditions on C (-) by ones which do not refer to any
particular domain and the irreducibility condition must also
be modified.

Definition: A quantum structure over H is a collection

{H, C,K }, where H and K are complex Hilbert spaces and C
is a function from H into the set of closed densely defined
operators of K such that for all z,yeH and nonzero complex
numbers a,
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Ciz+y)DCE2)+ CW),
and
Claz) = aC|z).

A quantum structure is called irreducible if no nontrivial
subspace of K simultaneously reduces all C (z) for zeH.

There are at least two distinct methods for generalizing
the boson and fermion fields. One method, generalizing the
commutation and anticommutation relations, leads to para-
bosons and parafermions. For these, as for bosons and fer-
mions, irreducible systems have unique vacuums. [See Ref.
2, Theorems 3-6]. The method of generalization discussed
here in terms of the number operator does not have this
property.

Even though a vacuum vector must exist when H is
finite-dimensional, it need not be unique even when {H, C,
K} is irreducible. An example of this for which
n(z) = C(2)C *(z) is the number operator is given in the next
section.

Let

V= {weK:C*z)w =0, forall zeH }.

Vis called the vacuum space of K. We must assume that V'
does not have dimension greater than one.

Theorem 4: Suppose {H, C, K } is an ireducible quan-
tum structure whose vacuum space, ¥, has dimension zero
or one, such that if z is a unit vector of A and P is the projec-
tion onto the one-dimensional space spanned by z, then
n(z) = C{z)C *(z) satisfies

eMmaC (y)e —inla) _ (effpy) (27)

for all sufficiently small real values of ¢. If v is a unit vector in
V,then { H, C, K, v} satisfies the hypotheses of Theorem 3. If
H is finite-dimensional then ¥ contains a unit vector.
Proof of Theorem 4: First assume that H is finite-dimen-
sional and let # = {e,;:1<i<d | be an orthonormal basis for
H, let C, = Cle;) and n; = n(e;). Then from Egq. (2.7),
fn;:1<i<d } is a set of mutually commuting self-adjoint op-
erators on K. Let n, = fAE,(dA ) be the spectral resolutions.
There is a nonzero vector wekK and a bounded interval
4 =[0,8] such that E; (4 Jw = w for 1<i<d. Thus
weDom(C *). By using the method of Lemma 2, it follows
that C *weDom(n}),

(n; + 8,)C*w = C¥nfw,
and
Ej([O,B — 5,-j C*w = C*w.

By applying C * the appropriate number of times we obtain a
unit vector vek such that C *v = 0 for 1<i<d. Thus

C *zjv = Oforallzef, and V contains a unit vector when H is
finite-dimensional.

Now suppose H is arbitrary and that v is a unit vector of
V.Let # = {e,:a€l } be an orthonormal basis for H and
define C, = Cle,),n, = nle,)and 1, = C*(e,)C e, ). Anal-
ogously to Lemma 4, we have that if n,w = yw, then
weDom(n,,) and

n,Cow =y + 8,5)Cpw. (2.8)

If ve¥, then n, v = 0 so veDom(C, ) and by induction every
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elementary vector in K () is an eigenvector of each n,, and
thus in the domain of each n, and 7, . Since this is true for
any basis, veD * ().

Let z be a fixed unit vector in H. From Eq. (2.7) it fol-
lows that U = ™ commutes with each C (p). Thus, each
spectral projection of U reduces C (y) so the irreducibility
implies that Uis a scalar. Since n(z)v = 0,U s the identity and
thus the spectrum of n(z) contains only nonnegative integers.
Let

K, (z) = {weK:n(zjw = mw)

sothat K = & _,K,,(2). From Eq. (2.8) it follows that C (z)
maps K, (z)into K, , ,{z) and C (z) is bounded on X, (z). Let
K ;.(z)betheclosureof K, (z)nK '. Then C (z) maps K |, (z)into
K, .l

Suppose weK ‘. For some orthonormal basis 4 contain-
ing z,weK '(#). Each elementary vector in K '(4) is in some
K. (z)and sowe® 2 _,K ., (z). Thus, the closure of K ' is
K= o7_,K, (z) and the following lemma shows that this
subspace reduces C (z}.

Lemma 8: Suppose Cis a closed densely defined opera-
tor on a complex Hilbert space K,K; are mutually orthogo-
nal closed subspaces of K such that K = @ >, K,

K; CDom(C)nDom(C *)and CK,; CK; , ,. Let Q, be the pro-
jection onto K. Then

a) weDom(C) if and only if ZCQ,w converges
and
b) weDom(C *) if and only if 2C *Q,w converges.

Furthermore, suppose that for each i, M, is a closed subspace
of K, such that CM;CM, , ,.Let M = o M, and P be the
projection onto M. Then PCC CP and PC*C C*P.

Proof of Lemma 8: If ueK, and wekK;, then
(C*uw) = (u,Cw). This is zero unless i =j + 1 so
C*K,CK,_ . Now suppose only that weDom(C ) and ueK.

(Qi+ 1 Cw!u) = (Cw’Qi+ 1u> = (wsC*Q4'+ 1 u)

= (w,Q:C*Q,  \u) = (Qw,C*Q, , ,u)

= (CQ.w,Q, , \u) = (CQ.w,u).
Thus @, , ,Cw = CQ,w so 2CQ,w converges. If = CQ,w
congress, since 2Q,w converges to w and C is closed,
weDom(C) and Cw = 2CQ,w. This gives a), and b} is done
similarly.

Now suppose CM, CM, , | so that as above,
C*M,CM, . Let P, be the projection onto M,. Let
L, = MK, If weL,, then CwekK, , . If ueM, , |,
(Cw,u) = (w,C*u) = 0,s0CweL, , , and thusCL,CL,
and similarly C*L, CL, .

Next suppose only that weDom(C ). Then 2CQ,w con-
verges. Since

CQ.w=CPw+ C(Q: — P)w,
and CP.weM, , | while C(Q, — P,)wel, , |,

”CQ‘.wHZ = “CP;sz + IC(Q: ~ Pi)wﬂz'

Thus ||CP,w||<}|CQ,w| and so ZCP,w converges and
PweDom(C). Since P, , ,Cw = CP;uw,

i+ 1

CPw = 3CQ,Pw = SCP,w =3P, ,Cw = PCw.
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Thus PCC CP and similarly or by general theory
PC*C C*P. This completes the proof of Lemma 8.

Thus the closure of K’ reduces each C(z) and so by the
irreducibility, K’ is a dense subset of K and v is cyclic for .oz .
From Eq. (2.8) and the linearity of C(-), Eq. (2.1) is satisfied
for wek, (z) and thus for weK '. The proof of Theorem 4 is
now complete.

3. EXAMPLES

As already noted in Theorem 3, ¥ = o0, s = o0 corre-
sponds to bosons and r = 2, s = o corresponds to fermions.
All examples except for bosons have C (z) as abounded opera-
tor. The simplest example has r = s = 2 but this has only
one-particle states so it is of little interest. We first give a
simple finite-dimensional example to show that for more
than one degree of freedom there are statistics other than
bosons and fermions which satisfy the hypotheses of Theo-
rem 3.

Example 1: Let H be a three-dimensional Hilbert space
with orthonormal basis {e|, e,, ;}. Let K be a seven-dimen-
sional Hilbert space with orthonormal basis {v, u,, u,, u,,
Wiy W3, Wasl. If 2 = e, + Pe, + e, let Cz) be the opera-
tor on K defined by

Clzlv = au, + Buy + yus,

Clau, = —Pwy, — yws,

Clzu, = aw,; — ywas,

Cle)us = aw; + Bwy,

Clew, = C(2w;; = Clzhwy = 0.

If nz) = C (2)C *(2) and x,yeH the following relations are
satisfied:

[7(z),C )] = (».2)C2), (3.1)
C(z)?=0, (3.2)
CCh = —CPIClz), (3.3)
C(z)C(y)C(x) = 0. (3.4)

Thus, C (z) behaves like a fermion creation operator until we
get to states with three different particles (which do not ex-
ist). We next extend Example 1 to the case in which H is
infinite-dimensional.

Example 2: Let H be a separable Hilbert space with
orthonormal basis % = {e;:1<j < « }. Let K be the separa-
ble Hilbert space with orthonormal basis

{ou,w:l<i<j< oo},
Define bounded operators C,, 1<k < « on K by

C.v=u,,
Wy, if k<j,
Cou; =y —wy, if  k>j,
0 if k=j,
Cw, =0.

Let K '(4 ) be the subset of K consisting of finite linear combi-
nations of the given basis vectors of K. If z = S, e, and
weK '(4), then Za, C, w converges. Let C (z) be the operator
with domain K (%) such that C z)w = 2a, C,w. C(2) is
bounded with bound ||z|| and so can be extended to all of K. If
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n{z) = C(2)C *(z), then Eq. (3.1)~(3.4) are satisfied on K '(4)
and therefore on all of K. Examples 1 and 2 correspond to
r=2,5=13in Theorem 3.

Example 3: Let H, 7 and z be as in Example 1 and let K
be a 10-dimensional Hilbert space with orthonormal basis
U, U, Uy Us, W gy W3, Wasy W (s Way, Wes]. Let C(z) be defined
by

C(zlv = au, + Pu, + yu,,

Clzlu, = Pw, + ywi; + alvV 2w,
C2)uy = aw ; + ywys + B (V 2w,
C2)us = aw,; + Pwas + YV 2)wss,
Cl2w,; = 0if 1<igj<3.

Equations (3.1) and (3.4) are still satisfied but (3.2) and (3.3)
are not. This example can easily be extended to the case in
which dim(H )} = d with 3<d< .

Example 4. We can obtain an example of r = 3, s = «
by considering the subspace HofH spanned by e, and e, and
the subspace K of K spanned by {v, u,, 45, W5, W, Wy }. | H,
C, K | of Example 3 is then an extension of the irreducible
clothed quantum structure thus obtained.

For parabosons and parafermions a theorem similar to
Theorem 4 is obtainable without having to assume the
uniqueness of the vacuum [Ref. 2, Theorems 5, 6]. The next
example will show that this extra assumption actually is nec-
essary. Let 7' be defined by

¥ = min{k:C,C,-C, v = 0 for some C,e%'(#) and
some vel |.

Note that the definition of ¥’ differs from that of  in Theorem
3 only in that we allow any vacuum v instead of a particular
one. The following example has r' = 2 but is a mixture of

r =2 and r = 3 without being decomposable into a direct
sum.

Example 5: Let H be a two-dimensional Hilbert space
with orthonormal basis {e|, ¢,]. Let K be a 12-dimensional
Hilbert space with orthonormal basis

{U’ vly upu{’ uzauﬁ, wl2’w;2» Wy w22’ xlz: le}.

The vacuum space ¥ will be spanned by v and v', with v
having 7 = 3 and v’ having r = 2. The unprimed vectors are
built up from v while the primed vectors are built from v'. Let
z = ae, + fBe, and define C(z) by

Clzp = au, + Bu,,

Cz)' = au] + Bu;,

Clzu, = a{v 2w, + Bwa,

Clzu; = — pwi,,

C2)u, = way; + B (V' 2)ws,,

C(2)u; = awy,,

Ciaw,, = —lalv2px;, — %/3(‘/2)7‘12,
C 2w}, = ta(V 6)xy — B (V612

C 2w, = Bxy;,
C2w,, = axy,
Clz)x,, =0,
C(z)x,, =0.
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Thus,C (2)C (zv" = 0,butC (z)C (y)v#0.Equation(3. 1)issatis-
fied as can be seen by a tedious calculation which is simpli-
fied by the fact that n{e,) and nle,) are diagonal.

This is in fact irreducible. Since any nontrivial invariant
subspace of K must contain a vacuum vector, it is sufficient
to show that if 7€V and %0 then no proper subspace con-
taining v is invariant under all C (z) and C *{z). To do this it
suffices to show that both v and v’ can be obtained from 0 by
suitable application of creation and annihilation operators.
Let C, = Cle,) and C, = C|(e,) and assume v = 4v + Bv'.
Then C’,“2Cf v = 24v so if A #0, v can be obtained while if
B #0, v can be obtained from Bv' =7 — §C¥*C1 0. It re-
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mains to be shown that v can be recovered from v’ and that v’
can be recovered from v. These follow from

CYIC3C*CiCw = o + (v 3
and

CICICICICw = — {3~ (372"

'S. Robbins, “A Generalization of the Canonical Commutation and Anti-
Commutation Relations,” Proc. Amer. Math. Soc. 71 85-88 {1978).

’S. Robbins. “A Uniform Approach to Field Quantization,” J. Funct.
Anal. 29 23-36 (1978).
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Ground state energy bounds for potentials |x|”
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A theory is developed from which both upper and lower analytic bounds on Schroédinger
eigenvalues can be obtained. We propose a recursion algorithm with which ground energies for
certain potentials can be rigorously bounded to arbitrary precision. These analytic and numerical
methods, together with existing techniques, are applied to the ground state problem for power

potentials |x|”, v> 0.

PACS numbers: 03.65.Ge, 02.30.Hq, 02.60.L;

I. INTRODUCTION

For many potentials the one-dimensional Schrodinger
equation can be solved only with approximation methods.
The well-known WKB method'? was introduced as a semi
classical theory, and as such gives relatively weak estimates
for ground state energies. The method of Rayleigh® and
Ritz* is effective for ground states but provides only upper
bounds. These bounds have nevertheless enjoyed wide suc-
cess in the domain of atomic and chemical physics.”® Re-
cently, Barnsley’ extended the work of Barta® and of Duffin
to develop a method for obtaining lower bounds on eigenval-
ues. Both the Rayleigh—Ritz and Barnsley methods require
carefully chosen test functions for good precision. We shall
describe a theoretical approach, valid for certain potential
functions, which yields both upper and lower bounds with-
out the use of test functions.

Recent interest in the specific problem of power poten-
tials ¥ (x) = |x|* has been stirred by Turschner'® who
claimed a remarkable closed formula for all bound-state ei-
genvalues. Subsequently, Crowley and Hill'' showed that
the formula is incorrect, but that the Turschner approach
may be a new approximation scheme of considerable power.
Since numerical counterexamples figure strongly in the
Crowley—Hill rebuttal, the present authors attempted to
work out means by which rigorous bounds on eigenvalues
can be computed to arbitrary precision. Such bounds, it was
felt, could then be used to efficiently test old and new ap-
proximation methods.

The Schrddinger equation is taken to be (in units for
which # = 2m)

— ¥ (x) + Vix)gix) = Egf(x). (1)
When bound states exist we denote by E!/) the nth bound
state egenvalue for the potential V, with n = 0,1,2,.... In
what follows we shall always assume that ¥ is a member of a
class of potentials denoted by M. This is the class of all sym-
metric, nonnegative, unbounded potential functions which
vanish at the origin and possess the following growth proper-
ty for x> 0:

d? d
—logl <0< —logV,
dx? BV <F< dx g

9
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where the relevant derivatives are assumed continuous on
(0, o0 ). It is evident from the growth condition that any VeM
is strictly increasing, and ¥’/ V strictly decreasing, on (0, « ).

Every power potential V (x) = |x|" for v > O is in the
class M. The class also contains functions not of polynomial
growth, for example the potential ¥ (x) = sinh¥|x| is in the
class M whenever v > 0.

In Sec. II we initiate the theoretical development by
establishing theorems which pertain to a nonlinear equiv-
alent of the Schrodinger equation (1). Particular attention is
given to the case E = E'}'), the ground state energy. In Sec.
I1I we describe an algorithm for computing rigorous bounds
on EY), and tabulate numerical results for various power
potentials. In Sec. IV analytic upper and lower bounds are
derived for E ™", v> 2, using the methods of Sec. II. For
v < 2, analytic bounds are easier to generate from the Ray-
leigh-Ritz and Barnsley methods. Such bounds are derived
in Sec. V. Finally, the problem of estimating higher states is
discussed in Sec. VI.

We first observe that ground energies E |*” for some v
can be given exactly using standard techniques.'> The simple
harmonic oscillator and absolute-linear well cases, v = 2,1
respectively, are given by

Ef =1,
EP =w, = 1.01879297...,

where w, is the first positive zero of the Airy derivative
Ai'{ — z)."> We also expect on somewhat intuitive grounds
that

lim EJ* =1,

v—0"*

lim E {*" = /4.

The former limit is that of a progressively thinner potential
well of essentially unit height, and the latter is the infinite
square well limit. We shall eventually be able to prove that
both limits are correct, as the relevant upper and lower ana-
lytic bounds will converge to the values indicated.

1. THE TRAJECTORY EQUATIONS

Central to the present treatment is a certain transforma-
tion of the Schrédinger equation (1). For a state ¢ of energy
E > 0 (not necessarily bound) and even parity we assign
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. 2)

Yle) = tan ™! [ —VelE)
JE ¥e/|E)

The trajectory y, will satisfy the transformed Schrédinger
equation

vl =1— [Ve/ JE )/E ] cosyela) 3)
together with the boundary condition
7e(0)=0. 4

Odd-parity states can be handled in the same way, except
that the boundary condition is then replaced by

ve(0) = — 7/2. When E is so large that an even-parity state
of energy E possesses zero-crossings, we allow tan ™! to pass
continuously through any required number of intercepts
(2n + 1)mr/2. Equivalent to (3) for even-parity states is the
integral equation

yel) =2 (I/E)LZV(

u

) cos’y(u) du. (5)
JE

For any given VeM, we next consider the collection of
all E-indexed trajectories defined by (3) and (4). This collec-
tion possesses a remarkable topological property, namely,
no two distinct trajectories can intersect for positive z. This
behavior stands in sharp contrast to that of the E-indexed
even-parity wave functions whose graphs interlace in a com-
plicated manner.

To prove the nonintersection property, we first investi-
gate the behavior of any pair ¥z (x),¢r(x) of even-parity (non-
trivial) wavefunctions, where the energies satisfy £ > F> 0.
It is a result of standard Sturm-Liouville theory'*'> that if
X,,X, , 1 areconsecutive zeros of ¥.(x), then ¢ (x) possesses
a zero in the open interval (x,,x, , ). It is a matter of simple
combinatorics to show from this that ¢/ and ¥ cannot have
a common jth positive zero. Define G (z) = yz(z) — ¥#(z) and
assume for some z, > 0 that G (z,) = 0. Then from (3} and the
monotonicity of ¥, we have either G'(z,)> 0 or
cos?y(z,) = 0. The latter alternative is ruled out since it im-
plies, by definition (2) and our extension of the tan™! func-
tion, that ¥,y have acommon,jth zero. Thus G has positive
slope at z, and at any other of its positive zeros. Such a func-
tion cannot be positive at any point in the interval (0,z,).

However, the integrand in Eq. (5)is ¥ (u/\/E )[1 — O (yz)]
for small ., so the monotonicity of V forces ¥ > 7, that s,
G > 0, on some open interval (0,6 ) of the z axis. This contra-
diction stems from the assumption that a positive zeroz, of G
exists. Thus G is positive definite on (0, 0 ) and we conclude:

Theorem 1: Let E > F> 0. Then, for all positive z,
Yelz)> velz).

The nonintersection property embodied in Theorem 1
isdepicted in Fig. 1 for the quartic potential ¥ (x) = x* Itcan
be shown that for any VeM, each trajectory is asymptotic to
some multiple n/2, where n is one of the integers — 1, 1, 3,
5,---. Even-parity bound state energies are precisely those £
for which the relevant asymptote is approached from below.
These remarks also hold for odd-parity states subject to suit-
able modification of condition (4).

It is now apparent that the monotonicity restriction on
the members of the class M enables us, by way of Theorem 1,
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FIG. 1. Computer-generated plot of trajectories y(z) for the quartic poten-
tial x*. Each trajectory corresponds to a different E. The manually inserted
dashed curves are even-parity bound state trajectories.

to bound eigenvalues by the method of bounding trajectories
themselves. We shall presently focus our attention on the
ground state trajectory ¥ . Through a series of theorems it
will be shown that this trajectory is monotone increasing,
convex downward, and asymptotic to 7/2.

Since the ground state wavefunction ¥,(x) will have no
zeros,'* it follows that |y (z)| < 7/2 for all real z. Using stan-
dard techniques'? it is straightforward to show that for posi-
tive x, ¥ (x) has itself no zeros. These observations and Eq.
{2) dictate the possible range of y .

Theorem 2: For z> 0, 0 <y, (2) < 7/2.

This theorem in turn places restrictions on the deriva-
tive ¥ (z). We can show that this derivative is positive for all
positive z. Note that, on the basis of (3), y; (0) = 1, so it is
enough to show that y; has no positive zeros. The second
derivative is

yilg)=(1— yg,)(zm tany ;. — M@) 6)
JE Vi [E,)

valid for positive z. Now assume that y (z,) = O for some
z,>0. Since logV has positive derivative, we have from (6)
that ¥ (z,) <O, hence for some z, > z,, y% (2,) is negative.
This in turn implies, on the basis of (3) and the monotonicity
properties of ¥ and of cos?, that y; must have some zero
z3> z,. This contradicts Theorem 2, so the assumption that
z, exists is untenable. This establishes the following:

Theorem 3: . (z) is monotone increasing for positive z.

We have shown with Theorems 2 and 3 that the ground
state trajectory is monotone increasing and bounded. From
the fact that ¥ diverges we infer by Eq. (3} that y has the
limit 77/2 as z—oc . A concise summary of the ground state
trajectory is the following:

Theorem 4: supy,, (z) = 7/2, infy, (z)=0.
z>0 z2>0

Theorems 1 and 4 can be combined to give Theorem 5.
Theorem 5: If for some positive z,y -{z) > 7/2, then
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E> E). If for some positive z,7:(z) <0, then E<E Y.

This result means that if for some E the trajectory
can be rigorously (either by numerics or by analysis) bound-
ed below by some function that eventually exceeds 77/2, then
E is an upper bound on E{"'. A lower bound is obtained in a
similar fashion. The behavior of the trajectories for energies
E near the ground state energy is schematized in Fig. 2.

In order to develop an effective computational algo-
rithm we must know a little more about the behavior of the
derivative ¥ . It can be shown from (6) that the ground state
trajectory is in fact concave downward. Observe first that
from (3), v, (z) < 1 for z > 0. Thus any positive zero, say z,, of
7, must be a zero of the second factor in Eq. (6). But '/ Vis
monotone decreasing, so the existence of such a z, implies
that for all z > z,,y}; (z2)>¥, (2,). This contradicts Theorem 2,
and we have established the following:

Theorem 6: 7, (z) is monotone decreasing for positive z.

Corollary: V(z/\/?()) cos’yy, (z) is monotone increasing
forz>0.

The corollary follows directly from the theorem and
Eq. (3).

Ill. RECURSION ALGORITHM

Numerical estimates on the integral (¢ > 0),
Z + —_—
Izt)= f V(u/\|E,) cos’yy, (u)du, 7

will prove useful for obtaining bounds on E"". From the
corollary to Theorem 6 we have

I(z,t )3tV (2/ [Fy) cos?y (2). (8)
From Theorem 3 and the monotonicity of V we infer
I@.0)<tV (iz + 1)/ [E,) cosy s, (2). (9)

Now from the integral trajectory equation (5) we write

E> 6

/\

I ]

E (E:v)

FIG. 2. Plot of two trajectories for energies near the ground energy, show-
ing the inequalities resulting from Theorem 5. The actual potential used for
this plotis ¥ {x) = x*. The two energies differ from the true ground energy by
only + 0.01%.
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Ve 2+ 1t)=vel)+1—1(zt)/E, (10)
From (8), (9), and (10) it is evident that the ground state tra-
jectory can be bounded with appropriate recursion relations.
Theorem 5 gives a test on the appropriate sequences of real
numbers to be computed, and we have the following:

Theorem 7: Choose E, ¢ > 0 and define sequences G, ,H,,
by

G,=H,=0,

Gy =Gy +t—tE " 'Vikt/\E ) cos’G,,
H ,=H +t—tE""V(k+1)t/JE)cos’H,.

If some H, exceeds 7/2, then E> E. If some G, is nega-
tive, then E < E .

One feature of Theorem 7 is its validity for any initial
increment 7. If the chosen E value happens to lie very close to
the true ground energy, then only for very small ¢ will one of
the inequalities H, > 7/2,G, <0 be true for some n.

In actual machine implentation, the function cos® must
be itself rigorously bounded, preferably with rational
bounds. The ¢,E ? can be chosen rational, and the recursion
relations can be iterated with integer arithmetic.

Values for various bounds on E {|*I" are tabulated in
Table I. Some potentials have more precise bounds simply
because more machine time was allocated to them. For the
purpose of testing the analytic methods of the next sections,
more bounds are plotted in Fig. 3.

The exact result for v = 1 is the Airy zero w, as dis-
cussed in Sec. I. Table I entries for the quartic (V = x*) po-
tential are consistent with an independent, nonrigorous esti-
mate submitted to the authors by M. A. Penk, who
computed

E§"~1.060 363 090 484 1820...

This number is plausibly (though not yet provably) correct to
14 decimals, since Penk’s numbers for known cases were that
accurate.

In Fig. 3 there is apparently an absolute minimum at
v~ 1.8. This is consistent with standard perturbation theory
as applied to the oscillator ground state
¥,(x) = N exp( — x*/2). The derivate

SE "
v

ooa=| WAl logx dx

= (127 (3/2)

being positive, is consistent with Fig. 3.

IV. ANALYTIC BOUNDS FOR V = [x|, v>2

The recursion algorithm embodied in Theorem 7 is ap-
plicable only to isolated values of v in the power potential
problem. However, continuous bounds on E {*” can be ob-
tained from a more detailed analysis of the ground state tra-
jectory. Let v > 2 and define a function 4 (z) by

tanzyE“ (z2)=2"/p + h(2),(11)

where p = [E*"]' * /2. Then h satisfies the differential
equation [here and elsewhere the (1/2)-power denotes posi-
tive root]
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TABLE I. Bounds on ground energies E {*", various v, obtained with the
algorithm of Theorem 7. All implied inequalities are strict ones, except for
the solvable cases v = 1,2.

v Lower bound Upper bound

0.05 1.0498 1.0508

0.1 1.0687 1.0689

0.2 1.0798 1.08

022 1080078 1.080 127

024 1080029 1.080 078

03 1.0771 1.0773

0.5 1.0595 1.0597

1 w, w,

1.5 1.0011 1.0013

1.7 0.9991 0.9993

1.8 0.9989 0.9991

1.9 0.9992 0.9994

2 1 1

2.1 1.0009 1.002

3 1.022 1.024

4 1.060 3618 1.060 3624

5 1.102 1.1026

6 1.144 1.146

7 1.186 1.187

8 1.225 1.227

9 1.263 1.264

10 1.298 13

16 1.472 1.474

32 1.743 1.744

64 1.9819 1.9825

128 2.291 2.292

256 2.333 2.334

1024 2.439 2.44
h'=(1+h)/p+h)"*—vz""/p, (12)

subject to the condition 4 (0) = 0. It is easy to show from
Theorem 3 that 4 (z) > — 1 for all positive z. These observa-
tions will now be used to show that 4 is positive on (0, 0 ).

First, since v>2, lim £ %/z> = lim [y, /z]* =1,s0 his
v—0* v—0*

(xiY) |
€

['T_FTT[ TTTTY rrr T rr'rv’Y'
v 2 3 -

FIG. 3. Plot of rigorous upper and lower bounds on ground energies for
¥ = |x|”. Error bars appear for various v. In some cases, such as v = 4, the

bars appear as dots (see Table I).
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positive on some interval (0,€). Let
F(2) = (2/p)""* — vz~ "/p. If h has any positive zeros, then
there must be one such, say z, with & °(z,) = F(z,)<0. But as
v > 2, Fhas itself just one positive zero to the right of which F
is negative. Thus for all z > z,,h (z)<O0, and furthermore (12)
thus dictates that 4 '(z)<F(z) on (z,, « ). But this contradicts
the fact that /1 (z) > — 1 for positive z. Therefore 4 is positive
on (0, » ) and we have the following:
Theorem 8: Let V' (x) = |x|*, v>2, and
p = [EJ"]' **”. Then for all positive z, tan’y; >z"/p.
This theorem amounts to a bound on the ground state
trajectory sufficiently tight to establish the upper bound:

2v/(v + 2)
Eﬁ)""v’<[%sin—7r—] U vsa (13)
v

The argument runs as follows. The result of Theorem 8 can
be paraphased

cos’yy < ———, z>0 (14)
1+2%/p
which together with Theorem 4 and the integral equation (5)
gives
T, f _ 4z (15)
2 Jo 14+2/p

The integral can be evaluated and the result is (13).
The bound (13) is exact in both limits v—2* and v— 0.
It is evident from (13) that for all v> 2,

Ey" < /4. (16)
It will be seen in Sec. V that (16) also holds for 0 <v <2 so
that the infinite square well ground energy 77/4 is an abso-
lute upper bound for the power potential problem, positive v.

It should be remarked that even though the infinite square
well is in some sense a geometrically extreme case, the abso-

T T T T T T T T T T ——
lzs4st;cqmnlznn

v
FIG. 4. Continuous bounds on E |*'". (a) is 2 Rayleigh-Ritz bound [Eq.
(22)}; (b} is a Barnsley bound [Eq. (24)]. The bounds (c) and (d) arise from the
trajectory theory [Eqs. (13) and (18), respectively]. All four bounding seg-

ments are exact a their endpoints, which read, from left to right, v—0+,
v =2, v—o0. The dotted curve represents the exact ground energy.
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lute bound 7*/4 is not obvious, since any positive power of
|x| is sometimes less and sometimes greater than any other
positive power.

A lower bound for v > 2 can also be derived on the basis
of Theorem 8. The theorem can be paraphrased

Eg> [27 cot’y, )]0 7 (17)

forallz> 0. Itis clear from Eq. (5) that y ; (z) is less than z for
z>0. A simple lower bound can thus be written (see Fig. 4):

E{™> sup [z¥cot’z]¥¥ 2, (18)
Oczen/2

It is straightforward to show that this bound is correct in the
limits v—2 " and v— oo . It is possible to obtain better bounds
by strengthening the inequality 7 (z)<z. For example, the
factor cot’z in (18) can be replaced with

cotz(z — LJ u¥ cos’u du), (19)
P Jo
where use has been made again of Eq. (5). Though the num-
ber p appears implicitly in (19), it can be replaced itself with
any good upper bound such as that arising from (16).

In the spirit of completeness we now turn to the prob-
lem of establishing continuous bounds for the region
O<v<l.

V. EXISTING METHODS FOR v < 2

Owing to the failure of Theorem 8 for v < 2, the meth-
ods of the last section cannot be applied directly for these
small v. Existing techniques give reasonable bounds over the
finite interval 0 < v < 2. We include these here in order to
complete our search for continuous upper and lower bounds
for all positive v.

A Rayleigh-Ritz bound on E !}’ can be obtained from
the inequality

E‘o”sf ¥, H, dx, (20)

where ¥, (x) is a normalized, real test function and H is the
Hamiltonian operator — d 2/dx* + V. For ¥ (x) = |x|", a
particularly effective choice of test function is

—_— 1+v/2
zﬁ,(x):Nexp(—\/Zv I—i—l—_;—;), 21

where N is a v -dependent normalization factor. The upper
bound from (20) is

V('V 4 2)v ]2/1v+ 2) F(’V/(V + 2)) (22)
/(v +2)

This bound is exact for v = 2 and in the limit v—0*. For

large v, however, the bound is weak, owing to the failure of

{21) to well-approximate the infinite square well (cosine)

ground state. The bound (22) is plotted in Fig. 4.

Barnsley’s method can be used to find lower bounds for
small v as follows. Let ¢, satisfy the criteria (a) ¢, is positive-
definite, symmetric, (b) ¢, is twice-differentiable. Then
Barnsley’s theorems state effectively that’

Hy,

t

|

22v+1

EY'>inf

x>0

(23)
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The test function (21) gives a bound when 0 < v <2 as
E(pc]")>[ i]v/(v+ ] 4 il . 24
0 5 ( 5 ) (24)

This bound is exact in both limits v—0* and v—2 7, as indi-
cated in Fig. 4.

In attempting to apply the Barnsley method to cases
v> 2, we found that an extension of said method greatly
improves its applicability. In many instances a test function
¥, closely approximates the true eigenstate over some finite
region, but the overall infimum (23) is weak, or even trivial
(negative). Success is more likely if the domain of the infi-
mum can be collapsed to a finite interval. Assume, for exam-
ple, that there happens to exist a point y > 0 at which %/ is
negative but

d 2

I logy,,
vanishes. Consider the function ¢, defined on the nonnega-
tive real axis by

,(x) = [¢;(x)y x<y,
' ¥ ) exp{ [Li0V/ 4.0 ]x —)}}, x>,

and summarized for negative x by ¢, (x) = é,( — x). Then it is
easy to show that ¢, itself satisfies the Barnsley criteria, and
moreover that

(25)

H¢,
EY'> inf H9, , (26)

Ccx<y ¢z

s0 that the infimum need only be computed over a finite
region. A good example of this extended method is provided
by the quartic potential ¥ = x*. Choose

¥,(x) = exp( — x2/2 — x*/12 4 x5/90). (27)
This sort of test function arises naturally if we attempt to
transform the Schrédinger equation (1) by #,(x) =
exp| — §,*g(4) du] and perform a Taylor expansion on g to
several terms. Note that the standard Barnsley infimum for
the function (27) is negative infinity. However, there is a for-
tuitous choice:

=1y
such that the test function (25) gives the bound

EVF'>1.
From Table I we have the value 1.060...for the energy, show-
ing that this extended method can yield tight bounds.

It is difficult to produce analytic bounds for v > 2 using

even the extended Barnsley method. It was for this reason
that the trajectory method was developed.

Vi. CONNECTION WITH WKB THEORY

The WKB approximation of the nth energy eigenvalue
E'Y) is taken to be that solution E of'®

X,

(n+ 1/27/2 = J (E — V{u))2du, (28)

where x_ satisfies }'(x_) = E. For power potentials V' = |x|”,
E can be obtained in closed form."" The resulting
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expression is relatively poor for the ground energy (n = 0),
and it can be shown by methodical comparisons with Fig. 3
that the WKB value is generally too large for v < 2 but too
small for v > 2. Furthermore, the WKB ground energy does
not have the proper limit as v— oc. Nevertheless, for large n
the WKB approximation will be asymptotically valid, and
serve as a test of any alternate approximation theory for high
quantum numbers.

We shall now establish a connection between the trajec-
tory theory and WKB theory. Let ¥ (z) be the trajectory for
the nth bound-state energy, n even (see Fig. 1). Denote by z;
the z coordinates of the intercepts

ve (2)=jm/2, j=0,1,.,n.
For comparison with the WKB integral (28) we also set
x; = z;/,JE,. We invoke a key integral identity

/2
- f vy __ (29)
o 1 —Dcos’y

ka 1
2 (1 - D )1/2
valid for D < 1, and integrate over any one of the » regions

between lines y = 7j/2, y =n{j+ 1)/2, j<n, toget the
inequality (E = E,,):

T

[E-Vix, )] < <[E-VIx)]7?

20x;,, 1 —x;)

(30)
where use has been made of {3) and the monotonicity proper-
tyof V. If wedenote 4; = x; . ; — x; and perform the appro-

priate summation over regions, we obtain

n—1 n—1
S [E—Vix,,)]"4x, < ”T”< S [E - Vix,)]"4x,.
j=0 j=o

(31)

This is the difference analog of {28) and presumably has ap-
plications to the problem of bounding higher energy eigen-
values for VeM.

The natural approximation implied by {31} is that solu-
tion E of

nm/2 = r"[E — V(u)]"du. (32)
0

Equation {32) and inequalities (31) do not explicitly involve
the classical turning point x.. Instead, knowledge of the in-
tercepts x; = z; /\/ E is required; in particular it would be of
interest to determine the last intercept x,,, corresponding to
the last right-hand critical point of the nth bound-state wave
function. We shall presently sketch an argument which justi-
fies the asymptotic equivalence of (32) and the WK B integral
(28).

Observe the last segment of the trajectory, defined by
ni/2 <yg <mn + 1)/2, which did not figure into the in-
equalities (31), is just a rigid translate of the ground state
trajectory for the potential

Wix)=Vix+x, —Vix,), x>0, (33)

It follows from the trajectory equation (3) that x. and x,, are
related implicitly by

Vix.)=Vix,)+EJ. (34)

This equation is exact but generally extremely difficult to
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solve for x,,. It is possible, however, to use {34) to give an
estimate of the integral

J= f "L — V()] V. (35)

It is evident that the WKB integral and the integral of {32)
differ by the magnitude of J/ — 7/4. From (34) and the mono-
tonicity properties of V it is possible to show that

J<3 A [V'ix, V' x )2 [Vix )/ Vx)] (36)
where
A= [EY/V* )] (37)

If wenow estimate W (x)~xV '(x, ) for large n, finite x > 0, we
have from the scaling properties of the absolute-linear poten-
tial that 4 ~w,>/%, where w, is the Airy zero discussed in Sec.
I. We also infer from (34) that ¥V (x,)~ V'(x.), so that

J~w}?=0.69. (38)

Evidently the approximation (32) can be written for large n
nw/2 +J = f LE — V()] du. (39)
0

It is interesting that J is so close to 77/4, the equivalent WKB
value in (28). The last step in achieving {39), namely that

A ~w}"?, is heuristic since we do not yet have a rigorous
procedure for bounding E }'. However, for VeM it is possi-
ble to prove J = o(n), which establishes the asymptotic
equivalence of (32) and (28).

It would be fruitful to extend the trajectory method so
that rigorous error terms on the WKB approximation could
be obtained. Likewise useful would be a refinement of the
algorithm of Theorem 7 for application to higher states. The
main obstacletosuch arefinement is that theintegral / (z,7 } of
Eq. (7) cannot be easily bounded by simple terms when n > 0.

Finally, the present methods should be extended to
higher-dimensional cases, and also to a wider class of poten-
tials. Such a class might include, for example, the quarkon-
ium potentials of recent interest.'”-'8
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The mathematical analogy of the three magnon bound-state equation with other momentum-
space integral equations is studied. It is shown that a variable transformation, similar to Wick’s
transformation in the Bethe-Salpeter equation, leads to alternative methods of complete analytic

solutions of this equation.

PACS numbers: 03.65.Ge, 03.65.Db, 75.90. + w

I. INTRODUCTION

The solution' of the three magnon bound-state equa-
tion in one dimension provides an interesting example of a
solvable nontrivial three-body problem in quantum mechan-
ics, where the homogeneous Faddeev equations have been
shown to be analytically tractable. It is worth while to ex-
plore its connection with other equations arising in physical
problems and to analyze the mathematical features that may
]

be of more general applicability. In this paper we shall point
out its similarity and differences with two other well-studied
equations in momentum space—the hydrogen atom” and the
Bethe-Salpeter?® (BS) equations. In particular, we shall show
that transformation analogous to Wick’s transformation for
the BS equations can be used to obtain alternative methods
of solution of the three magnon bound-state equation.

The equation for the three magnon bound state is

o )__2&82‘&_(1 _L)-‘Lf' [0 cos} p, — cos(K — } p, — p)] coslK —p, — 4 py)
e [ —a + cosiK —py) + cos(K — py) + cosiK —p, — )]

I

a —cos(K —p,) d T
with
a=a/o, (2)
a=3—E, (3)
f=a —cos(K —p,) — 20 cos?} p,, (4)
d = {[a—cos(K —p )]’ —4cos’} p,}'/% (5)

E is the eigenvalue, o is the longitudinal anisotropy param-
eter, and K is the momentum of the center of mass of the
three-body system. Equation (1) is an integral equation in
momentum space, linear in the wavefunction but highly
nonlinear in the eigenvalue E.

Consider now the hydrogen atom equation

me? dp’
@ (p) = [ 0w, )
i p* +a*) ) |p—p?
with the eigenvalue E given by a> = 2m|E |. Let us also take
the BS equation, as in Wick’s paper,’
A d*k
(P +mi)p* +my) ) (p—k)+K?
Let @ be a function of p? only. On carrying out angular
integration and substituting

pP=s. P(p)=uls) (8)
we get

P(p)=

P (k).(7)

- x®
(s + mg)(s + mj)
v * tu(t)dt
o {s+t+ K>+ [(s+r+K2>—4st]'?}

u(s)

(%)
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¥ p.)dp, (1)
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Note that all these Egs. (1), (6), and (7) have some factors
in front of the integral—these depend on the variable of the
left hand side, and arise from free particle motion
(1 — cosp,), p>/2m, and ( p* + m?) for the three cases, respec-
tively. There is, however, an important difference. In (6) and
(7), the nonseparable part of the kernel arises from the inter-
action potential. In (1) the two-particle t-matrix gives only
separable terms—the nonseparability comes from the three-
particle Green’s function. However, the two-particle -ma-
trix gives the complicated branch cut [the square root term d
of Eq. (5)] in Eq. (1).

Il. WICK’S TRANSFORMATION

For Eq. (9) Wick introduced the transformation
x=fs), y=flt)
* ds’
A e
o (s"+ mg)(s" + my)
We express s and ¢ in terms of x and y, and writing

s'"2 (s + m2)(s + m2)u(s) = v(x), we get the simpler equation
from (9):

(10)

ox) = A j K (xhol y) dy, (1)

with e = f( ). Tosee the efficacy of the transformation, con-
sider the s-wave solutions of the hydrogen atom; & (p) is then
a function of the magnitude p only. Measuring momenta in
units of @ and carrying out the angular integration, we get
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2me? * + Now*
po o= [Ty 222 o g N
maf(p° + 1) Jo ~p 1 Isindx +y)| & sinnx sinny
Now, similar to (10), we take the varlable 2 sinj(x — y) e n ’ (13)
X _ r o dp and the eigenvalues are 2n/m, so that the hydrogen atom
2 Jop?41 eigenvalues £ = — me*/2#’n” are reproduced. Let us note
or that here Wick’s method is one way of generating symmetric
p = tanix. (13) kernels out of polar kernels. In (15), the completeness of the
Putting u(x) = p( p* + 1)@ ( p), we obtain eigenfunctions is obvious. In the problem of the three mag-
non bound states we shall not find such complete resolution.
_ e J. dylln sinj(x + ) uy). (14) Rationalizing the denominator in front of the integral
raf sinl(x — y) in (1), we write
_
dp)=dd+f)/{2 cosy p[a —cos(K —pj)]{ac — 1 — 502) — ¢os p{o cosK + 50’2) — osinK sinp, ]}
1 (7 S
X— d ( ——l)cosK—p — L poJ( p,)- {16)
TJoa P2 a — coslK — p,) — cos(K — p,) — cos(K — p, — p,) ( A
|
S}(:,veral transformations are suggested. For example, we o= — da +t) (1 3 !) 1 J-oo i
take the term a — cos(K — p,), and put mla® — )2k (172 g .
x= -7+ —1)'? F_d (1— f b )¢(s)
y J dp; ) S+ Dae'"2 N (@ = Va2 —2)
-7 a — cosK cosp; — sinkK sinp, ' (24)
The factors are chosen so that the inversion gives the rela- where
tively simple expression f=@ = 0)r+1)—2a+1) (25)
tan p, = [sinK + (@® — 1)"/? tanlx)/(a + cosK ). (18) &= [(@* — 1)r* + 2(a® — 1)(@* — 3}
Similarly, — 85sinK (@® — 1)"%r 4+ a* — ba* — 8at — 312, (26
2 3/2 . 2 —1/2
tan} p, = [sink + (@® — 1)"/? tan} y]/(a + cosK ). (19) p=la—1)"[ 7 sink —2(a* — 1)
X {at + 1jr +sinK ], 27

A second transformation can be worked out with the
other factor in the denominator in front of the integral:

P
x= —7r+uf [lao —1— 107
— (ot + %) cos p} — o sinK sinp; | ' dp;

or
tan} p; = (o sinK + u tanix)/(ao — 1 4 o1}, (20)
with
t = cosK (21)
and

u =2’ —al2o+0)+1—0]"2 (22)

One could have considered both factors together. The
difference between (18) and (20) is only marginal; the aniso-
tropy parameter also introduces nothing new in principle. So
it will be enough to illustrate the details of the solution for
(18) and the isotropic case o = 1.

1. SOLUTION OF (1) WITH (18) AND (19)

Introduce in (18} and (19)
r = tanlx, s = taniy. (23)

Equation (1) becomes with (3), (21), and (23),
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={(a® — V{at + 1)* — 2(a* — 1)*'?sinKr
— (@t — 3a* + 3at + cos2K ), (28)

hir)=(a*> — 1)? + 2sinK (@®> — 1)""*r +a” + 2at + 1, (29)
z=[p+ila*— 1)"*a+t)g)/la> — VW (r), z=c.c. of
z. (30)
Now

g —fr=4a>— N)a— 1+ 1t} + mr+n) (31)
with

m= —2sinK (@ —1)""2a—1+1)"", (32)

3 204 _ _{r2
nod +ait—2)—aldt+ 1) — (¢ +t+1). (33)
(@~ lla—1+1)
The subsequent algebraic manipulations are analogous
to those of Majumdar and Bose.'! The Ansatz for the wave-

function ¥ is

o) = <o +er o+ et + o’ .
h (73 + mr 4+ n)
Substituting it into (24), we get a rational function on the left.
From the pole s = z on the right, we extract a term that is
rational and free of the branch cut of g. Insisting on the

equality of the rational parts of the two sides, we get the
eigenvalue and a set of linear equations for the coefficients ¢, .

(34)
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All other terms of the integration must vanish; hence, we get
another set of linear equations for ¢;. Not all these equations

|

a=(8+1)/3,

are linearly independent, but we get just the right number to
solve for the six quantities ¢,. The results are

(35)

es=A{t+ 5"t + 11)"/2 sink (42 + 5)[(t + 5)'/%(128¢* 4 2164¢3 + 11 100¢2 + 19 639z + 10 709)]
— (4 11)%(128¢* + 1780¢ > + 8067¢ 2 + 13 492 + 7151)],

co= — At — )4+ 5)[(r + 5)/%(2560¢ 6 + 51 8405 + 347 124¢* + 1016 548> + 1 534 959¢ 2
+ 11753341 + 359 359) — (¢ + 11)”2(2560t6 + 44 160t° + 266 076t *

+ 7400831 + 1082 343¢% + 809 991¢ + 243 4331,

Ca=At+ 572t + 11)7 22 sinK [(z + 5)"/%( — 2048:® + 24 06417 + 1332 928¢° + 14 069 404¢ 3
+ 66 886 8521 4 168 314 677¢% + 227 622 199¢% + 155 584 555¢ + 42 160 321)
—(t 4+ 11)"2(—2048¢® + 30 208¢7 + 1204 384° + 11 301 00413
+ 50 143 1417* + 120 486 53813 + 157 977 32822 + 105 734 128¢ + 28 233 571)],

;= —A{t+ 57 e+ 11)7"2( — 1)[(z + 5)"/*(14 336¢° + 600 384¢® + 9 723 216t 7 4 79 283 580:
+ 354 774 792t ° + 897 546 549:* + 1290 306 438¢> + 1033 154 36412 + 424 177 050z + 68 413 675)
— (£ 4+ 11)"%(14 336 ° + 557 3761 % + 8 331 648t 7 + 63 187 6321 ° + 267 109 809¢° + 649 176 495¢ *
+909 213 114¢3 + 716 461 6742 + 291 673 347t + 46 960 765)],

c,=At+ 572+ 11)732sinkK [(t + 5)"/(— 6 144110 — 122 688 ° + 2 784 672t ® + 94 038 804:”
+ 986 518 116¢° + 5092 599 41173 + 14 503 363 857t + 24 086 488 374> + 23 695 111 818¢ >
+ 12970403 3317 4 3 055 184 865) — (£ + 11)"/%( — 6 144¢ ' — 104 256 ° + 2 984 688¢* + 83 835 180’
+ 799 925 679 ° + 3 870 894 744¢° + 10 562 562 981¢* + 17 048 275 416t > + 16 425 705 609¢ 2

+ 8 842 960 068 + 2 054 419 155)],

Co= —A(t+5 2+ 11)72 — 1)[(t + 5)/(18 432¢ "' + 1 111 6802 '© 4 25 932 240r° + 313 740 324¢°
+2199 146 97617 + 9 408 284 919 © + 25 253 056 098¢ 5 + 43 162 846 677t * + 46 639 268 748¢°
+ 30281 197 905¢2 + 10 368 780 6427 + 1 319 344 191) — (£ + 11)"/%(18 432 '* + 1 056 384¢ 1° + 23 118 480¢°
+ 262 396 5841% + 1738 051 047t 7 + 7 101 809 919 + 18 409 978 59325 + 30 659 930 703 *
+ 32480 524 341¢3 + 20 774 293 5692 + 7 039 664 307t + 892 063 881)]. (36)

A is an arbitrary normalization constant.

IV. DISCUSSION

The details of the transformation (20) are similar. With
the anisotropy parameter o the method works just as well,
the eigenvalue condition being’

a = (o’ + 8)/o(4 — o). (37)

Wick’s transformation has thus provided alternative ways of
solving the three magnon bound-state equation. However,
the setting up of the solution involves an Ansatz, Eq. (34),
and therefore, we have not found any method of proving
rigorously that all the solutions of the equation can be found
by the transformation. The existence of the two-body branch
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cut and its cancellation from the three-body kernel distin-
guishes this equation from the hydrogen atom or BS
equation.
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On the structure of Coulomb-type scattering amplitudes
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On the basis of the Gell-Mann-Goldberger formula for Mdller operators we introduce a natural
splitting of the total scattering operator .S into the pure Coulomb scattering operator S° plus a
remainder

S=8°-2mT*,
implying a decomposition of the total scattering amplitude finto the Coulomb scattering
amplitude f° and a remaining part />

[flkwo)=flkoo)+ ko).
Concerning continuity properties, etc., of />, close similarities between /* and ordinary short-
range amplitudes are proved. In particular, we introduce transition operators ¢ **(z) and show how

to obtain /*° by an appropriate on-shell limit, thereby avoiding the notion of so-called Coulomb
transition operators and the difficulties associated with them. Possible extensions of this approach

to charged three-particle systems are also sketched.

PACS numbers: 03.65.Nk

1. INTRODUCTION

Since two-body off-shell data are an important input in
the many-body problem for charged particles, much interest
has been devoted to the off-shell behavior of two-body Cou-
lomb scattering quantities like Jost functions and transition
operators and to the corresponding on-shell limits. van
Haeringen,' following a renormalization approach due to
Zorbas,” introduced Coulombian asymptotic states |k, + ),

ke +)

=T (1 Fiy/2H Y (2Hy/€) =" k) =A, , (H,)|k),
(1.1)

where H, = — 4, and |k) abbreviates the plane-wave state

with momentum keR * (% = 2m = 1). With the help of the
usual definitions

(z—H,) "=~ H)™ "'+ (z—Ho) 'T)z — Ho) ™",
(z—H) '=(z—Ho)™"+(z—Hy) 'T(z)z - H))™", (1.2)
and

TZ)=T2)+ T2, (1.3)
where

Hc =H()+y/ IXIY H=Hc +gV(X), ge'%

[V asuitable short-range potential (cf. Sec. II)], he was able to
perform an on-shell limit of the form

li? (kj4?_ Tc(kz + i€, |k,)|(k1 = [K'|=k

= Elilgl (k, — iTc(kz + ie)|k; + >|4kr =K|=k
— (W27 ko), (k=ko) (1.4)

Here f“(k,w,w’) denotes the Coulomb scattering amplitude
(cf. Sec. III), and similar relations hold for T {z) and T*(z). If
plane waves |k) instead of |k, + ) are used in (1.4), the on-
shell limit does not exist in the ordinary sense and yields zero
in the distributional sense.! However, besides technical com-
plications [T {z} are unbounded operators and thus domain
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questions arise], there are conceptional difficulties associat-
ed with T<(z) and T (z) which sometimes culminated in state-
ments like “Coulomb scattering violates unitarity,” etc. (see
the discussion in Ref. 3 and the references cited therein). In
order to illuminate some of these problems it suffices to treat
the pure Coulomb case in a somewhat heuristic way (cf. Sec.
III for precise statements):

From Dollard’s time-dependent definition* of the Cou-
lomb scattering operator .S and the formula

e MM = LJ dze " **(z—H.)"',
2mir
(I"a suitable path in the complex plane) one immediately gets

S¢=s— kmU%{t)e  “™U%)

t->o0

=s — lim{exp [iyIn(4Hy )/H §*]

+ ﬁ dze = UKtz — Hy) ™'
r
X Tz)z — Ho) 'UB ()} (1.5)

where U (t) denotes the modified free evolution operator
according to Dollard,*

Uplt) = exp[ — iHyt — iyIn(4H,t )/2H }/?)

— M,
= ’b(')’ t>0.

If y = 0, i.e., no Coulomb interaction exists, then {1.5) leads
to S = 1 or if H instead of H, is used, to the well-known
formula S =1 — 27 T*, where T"* denotes the short-range
transition operator. But for 520 the first term in (1.5),
exp[iyIn(4Hyt )/H *], converges weakly to zero as 1— oo
and thus has no strong limit. Since .S ° obviously exists, the
second term in (1.5) also has no strong limit as ¢ tends to
infinity. In fact a part of the second term in (1.5) must cancel
the oscillating term exp [iyIn(dHt )/H '*] in order to yield
S ¢ in the limit £ co.

From these remarks we thus conclude that the 7'(z})-
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operator approach based on (1.2) and (1.3), although ex-
tremely useful in short-range (y = 0) calculations, is no long-
er an appropriate tool if Coulomb interactions are present.
This statement may be further confirmed by the following
observation of Gibson and Chandler’: In the short-range
case (y = 0) the scattering operator may be expressed in
terms of spectral integrals over the resolvent (z — H )~ ! and
thus is directly relate to T°(z), whereas the S operator for
Coulomb-type interactions involves spectral integration
over a complex power of the resolvent® and not the resolvent
itself—a fact which is easily proved by looking at the associ-
ated Méller operators (see Prop. 3.2) and is in accordance
with relativistic investigations.® Another point which also
shows the inadequacy of (1.2) for long-range interactions
consists in the failure of (1.4) when restricted to partial
waves. It was recently proved by van Haeringen’ that if the
partial wave projected Coulomb transition operator and
Coulombian asymptotic states are inserted into (1.4}, the
limit e—>0, gives Tjlk) = (i/mk el plus a nonconverg-
ing oscillating term [85(k ) = argl" (/ + 1 + iy/2k ) are the
usual Coulomb phase shifts].

Having reviewed some of the difficulties associated
with Coulomb-type T (z) operators based on (1.2), we now
turn to the approach to be discussed in this paper. This ap-
proach relies on the Gell-Mann-Goldberger formula® or
more precisely, on the chain rule for wave operators (see Sec.
II):

0, (HH,) =0, (HH)Q, (H Hp), (1.6)

which suggests H, (instead of H) as “‘unperturbed” Hamil-
tonian and thus results in the definition® (cf. Sec. III)

(z—H)™'
=@—H) '"+@—H)"\V|'"’ | V|"*z— H,)"'
(1.7)

instead of (1.2) and (1.3). The main advantage of this defini-
tion lies in the fact that it implies a natural splitting of the
total scattering operator Sinto the Coulomb scattering oper-
ator S plus a remainder denoted by — 27/ T,

S=5¢—2miT*™, (1.8)
and analogously for the total scattering amplitude
[flkw,o)=flkoo)+ ko) (1.9)

In Sec. IT we describe some relevant properties of the
resolvents of A and H, and discuss the spectral and scatter-

_ 1"(1+i7//2\/z)[( d d
4r|x — x'|

x, =|x|+ x| £ |x—x'|, O<argz<2m,
z# —y¥/4n*, n=123,. if ¥<O,

Imy'z>0,

ing theory associated with H. In Sec. III we study ¢*(z) and
S*tk,w,@") and show their close similarity to the correspond-
ing short-range (y = 0) quantities ¢ %(z) and /*(k,w,0’). In par-
ticular the on-shell 7*°(k ) operator [whose kernel is given by
S*(k,w,@')] is trace-class and continuous in trace-norm, and
S*lk,w,0') is uniformly continuous in all variables if k varies
in compact intervals under appropriate conditions on ¥
(Theorem 3.2). Similarly the on-shell limit e—0_ of

t*(k * + ie) (according to the Gell-Mann-Goldberger for-
mula between Coulomb wavefunctions) immediately yields
Jlk,0,0') or the corresponding partial wave amplitude
{(Theorem 3.3).

Quite recently the basic idea underlying the above for-
malism (namely to separate out the pure Coulomb interac-
tion) has been applied to the three-body problem of charged
particles by Merkuriev'? and to the N-body problem with
repulsive Coulomb forces by Chandler and Gibson.'' At the
end of Sec. I1I we indicate how modified Faddeev equations
for three-body transition operators #;(z) may be obtained.
These equations avoid the notion of Coulomb-transition op-
erators for two-particle subsystems and only contain two-
particle #;(z) operators of the type {1.7).

Il. SPECTRAL AND SCATTERING PROPERTIES OF H

In the Hilbert space .¥"%(%?*) we introduce the Coulomb
Hamiltonian H.:

H,=H,+yV., DH.)=DH), V.[x)=1/|x|, yeA,

(2.1)
where H, denotes the usual self-adjoint realization of — 4 in
FLY%%). In addition to H, we introduce the total Hamilton-
ian H as the form sum of H, and gV,

H=H.+gV, ge@, 2.2)

where the short-range potential ¥ belongs to the Rollnik
class'* R, i.e.,

f d3xd*X|\Vx)Vx)/|x —x*< .
A

Since various properties of (z — H) ™! are basic to the whole
subject treated in this paper, we summarize them in
Proposition 2.1: Let VeR.
(a) (H, — z)~ ' is a Carleman type operator with kernel

da %)Vl—iy/Z\/z;l/Z(a)Wfiy/2\/z;l/2(ﬂ) . ivx {2.3)

B= —ivzx,

[here.#,,,(¢)and %", (£ ) denote Whittaker functions'], and |V |'/%(z — H)~ 'V !/2is Hilbert-Schmidt for all zep(H_, ). [We

recall V' (x)'/? = V(x)|V(x)| = /2]
(b) Let zep{H Jp(H,) and in addition Ve.# (%) then

€—H)™' —(z—H)" =gz —H)"'V'"*[L—g|V |z — H,) "'V "]~

X|V|"Hz—H,)™"
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(2.4)
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is trace-class.

(c) If zep(H ), then |V '}z — H)~'V /2 is Hilbert-
Schmidt; if furthermore, Ve ¥ '(%#7), then |V |}z — H) ™!
and (z — H )~ 'V /2 are Hilbert-Schmidt too.

(d)If z =k * + i€, €,k > 0, then in the limit €0, ,

[V |'*(H, — k*+ i0)” "V with kernel G ¥ '(x,x',7,k ?)

= hm G.(x,x",v,k * + i€) are Hilbert-Schmidt. In particu-

lar there are constants ¢ (k ) such that

4rr|x — x'| |G Fx,x', 7,k 2)|<c7(k ), k>0, (2.5)
where
lyﬁinocr(k) = I}iltzocy(k) = 1. (2.6)

Proof: Formula (2.3) which is due to Hostler'* proves
(). For the proof of (b) we note that (2.4) certainly holds for z
|

Lo [11(\/27x K (27

V_(xV_(x)
x—x|?

NigV,y < LJ dxd>x'

d3 d3/

< 0, >0,
1617'2 ” vz

negative and large enough. By analytic continuation (2.4)
holds for zep(H Jrp(H.). If Ve.#(#?), then

|V|I/Z(Z_Hc)‘l = |V|]/2(Z-—Ho)_l[(z_Ho)(z"‘Hc)_l]

[and similarly (z — H.)~ 'V '/?] is Hilbert-Schmidt which
proves (b). (c) is a simple consequence of (b), and (d) follows
from (2.5), which in turn is implied by (2.3).

Next we give a short description of the nonpositive
spectrum of H. Since for ¥ < 0 there are obviously infinitely
many negative eigenvalues of H, we concentrate our atten-
tion on the case 0. By N (gV,y) we denote the number of
bound states of H with bound state energy less than or equal
to zero. As ususal we adopt the notation
V. (x)=[|V(x)| £ V(x)]/2 and exclude the trivial case
where V_(x) = 0 a.e. Then we have

Proposition 2.2: Let VeR. Then the number of nonposi-
tive eigenvalues of H is bounded by

x| ]? V_(x)V_(x)

—x']?

(2.7)

[here I4(z) and K4(z) denote the modified Bessel functions'® of order 8].
Proof: Following the proof of Proposition 2 in Ref. 15 step by step (using the Hilbert—Schmidt norm instead of the trace-

norm) and noting
. 1 x
lim G_(x,x’, = _____( _)
Jim G (x,x",y,4) P ——

we arrive at (2.7). The finiteness of the right-hand side of (2.7)
simply follows from monotonic descrease of yK(y)
{(d/7dy)yK,(y)] = — yK,(y) <O for all y> 0} and the
bound'® I,(y)K,(y)< 1/2.

In order to treat the positive part of the spectrum and
the scattering theory associated with H we introduce Lipp-
mann-Schwinger type equations of the form

@ Flk,x) = & Fk,x) — Jd3x'|V(x>|”2G‘¥(xx,y,k)

XV(x)'"2@ Fkx'), kxe#? k=|kl>0

(2.8)
[we suppress the y and g dependence of @ { F'(k,x)], where
@ kx) = |V(X)|V22m) "3 2%~ T (1 4 iy/2k)
X e** \F\( — iy/2k;L;itkr — kx)), (2.9

[,F| (a;b;z) denotes the regular confluent hypergeometric
function'] and

&' Hkx)= @) —k,x),

(2.10)

G'Hxx, k)= G (xx,7,k?).
Let us denote by & the set of k %€[0, « ) such that the homo-
geneous equation associated with (2.8) possesses a nontrivial
solution, including the point k£ ? = 0. Then we have

Proposition 2.3: Let Ve . '(%#%nR. Then & is a com-
pact subset of [0, «0 ) of Lebesgue measure zero.

Proof: Using (2.6) and the Riemann-Lebesgue lemma,
one proves
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27K (2% ),

klim NVIV2H, —k*+i0)"'V'? =0 (2.11)
which proves the boundedness of . To prove that & is
closed and of measure zero, one needs an improvement of the
analytic Fredholm theorem (involving statements about the
distribution of zeros of an holomorphic function on the
boundary).'>!""'” For >0 the usual proof'? carries through
without any change. For ¥ <0 one has to take care of the
bound states of H_, on the negative real axis.

Incidentally, relation (2.11) shows that under the condi-
tions of Proposition 2.3 the Boren series (Taylor series in g)
for @ (*)(k,x), obtained by iterating (2.8), converges for k
sufficiently high (see also Ref. 15). Thus, if Ve.?(#*nR
and k %%, Eq. (2.8) is uniquely solvable in .¥ % %#°).

With the help of Dollard’s modified free evolution
operator*

Uplt)=e ™", Hp(t)=Ho + et yin4Ho|t |}/ 2H %,
(2. 12)
we finally state
Proposition 2.4: Let Ve’ '(#*)nR. Then
(8) Oe (H ) = 0, (H ) = [0, 0), (2.13)
op(H)N[0,0)CE&, o  H)CE. (2.14)
(b) The Méller operators
N, (HHz)=s— lim ¢"Up,(t)
t— 4
exist and are complete,
R, (HHp)) =5 (H)
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In particular the scattering operator
S=0, (HHy)*{2_(H,H) is unitary.
(c) (2, (H,H_|f)x)

=s— lim | %%k x)fF K),
R—ood/Mpy s
60,
(2.15)
(2, (H.Hp)f)x)
=s— lim | d%k¥'F(kx\f(k), f£LIR?)
:::ooiv Mgps
(2.16)
where
@ Ekx) = |V (x)|'2¥' *k,x), (2.17)

Mg s = (ke#?|k|<R, dist(|k|%,&)>6 ],
and

flk)=s— ’!im (2m) 32 d>xe = **f(x),

|x|<R

firk)=s— lim d3x W5 (kx)f(x).

R wo Ix|<R

Proof: Eq. (2.13) and (b) immediately follow from, Prop.
2.1(b) and the chain rule (see also Ref. 12, p.111). Equations
(2.14) and (c) are proved in an analogous (but tedious) man-
ner as in the short-range case y = 0'*'8 (see also Refs. 19).

Remark 2.1: (a) In realistic situations one expects

= {0}. Actually the absence of positive energy bound
states, although physically plausible, usually involves addi-
tional regularity assumptions on V¥ (cf. Ref. 20 for an exten-
sive discussion). The absence of a singular continuous part in
the spectrum of H was recently discussed by Enss?' using
geometric methods (for other results in this direction see
Refs. 18 and 20). If in addition V is spherically symmetric
then o, (H) = gp(H )"0, ) = D by results of Weidmann.?

(b) If eV (x)eR for some ¢ > O then with the help of
asymptotic expansions for the Whittaker functions one
proves that |V|'/%(z — H_)~ 'V '/2 can be analytically con-
tinued in a neighborhood of the positive real axis and re-
mains Hilbert-Schmidt there. An application of the analytic
Fredholm theorem then shows that & is discrete [and thus
o .(H)=0].

Il. THE STRUCTURE OF COULOMB-TYPE
SCATTERING AMPLITUDES

We start with an appropriate definition of 7 **(z) (avoid-
ing unbounded operators),

tsc(z) =g(SgnV)[1 _3|V|]/2(Z—HC)_1V‘/2]—‘

=glsgnV)[1+g|V|'"*z—H)~"'V'"?],
zep(Hp((H).  (3.1)
Then ¢ *(z) fulfills the equation
(z—H)™
=(—H.)"'+—H) V]| V| e — )
(3.2)

LetA = [a,b], b > a>0beacompact interval on the real line
and suppose An& = . Then the scattering operator S, re-
stricted to the energy interval 4 is defined by

S, =s—limUplt)e *E,ULlt),
where E, represents the spectral projection of H associated
with 4. Eq. (3.2) and the formula

(3.3)

e 2iHlE
b — i€ i
=s— lim —( +J dz e *™z—H)™',
e—0, 2mi\Ja —ie b+ ie
(3.4)
then imply
S, =8¢ —2miT, (3.5)

where 7% is defined by

a + i
T% =s— lim —(f J. ()dz e 22ULt)
t—+ o0 - b+ ie
X(Z—H TV 2e@) V| z-H) T U b (). (3.6)

In order to get an explicit expression for 7%, we turn to the
time-independent approach and state

Theorem 3.1: Assume Ve /(%#°)nR, let A be as above,
and suppose @, WeC (%", supp én supp ¥ = @. Then

(WS, @)= Zl_ J k?dk Zfdwfdw'f(k,w,w') ¥ (k,w)P (k,w'),
TJa
(3.7)
where the scattering amplitude f{k,w,«’') may be written as

Slko,w') = fkoo)+€kowo), k&, (3.8)
|
c "no_ I'(1 +iy/2k) 1+ iyr2k e — 1 €—1—iy/2k _ .
fikow) = cllo TU—iy/2k) )2 (4% '[1 —cosO ] , O =), (3.9)
[kwo)= — 21rzgf d’x ¥ N kox) VX)W ko' x), k2%%. (3.10)
8

Proof: We first note that the representation of S, in
terms of (3.9) has been derived by various authors.>?*-%° The
proof that /*“(k,w,w’) is related to T'% by (3.7) parallels the
arguments given in Ref. 12, p. 143 and Ref. 18, p. 107 for the
short-range case (y = 0).

Remark 3.1:(a) That S © (and thus S } is totally connected
(i.e., S contains no “no scattering” part) and S © (k,k') is
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I
more singular than § (k — k'), was proved by Herbst.?’

(b) Since (3.9) defines a tempered distribution on (%%
itis not hard to see that @, we #(%#?)(without disjoint sup-
ports in momentum space) suffices in (3.7). Instead of

= [a,b] and An¥ = 0 one can use intervals of the type
[, 0),a > Oif the integral over f (k,w,w’) in (3.7)is interpreted
as
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lim | k2dk Zdefdw’f(k,w,w') ¥ (k,w)P (ko'),

&0, JN,

N,s = {k*>a|disk *,&)>6 },

W( - ’(k,a)',x)~(27r) —3/2[ei[k’-x + ¥ Inlkr — k'x)/2k |

+ [flhw,0) + ko))

According to Remark 3.1(a) we define the Tand 7°° operator
by

S= 27T, S°= —2miT*, (3.12)
in order to get
T=T°+T* {3.13)

In analogy to the short-range case (¥ = 0) we introduce in the
Hilbert space .#*(S ?)(S ? the unit sphere in %7°) the on-shell
T* operator T*(k ) by

(T*(k )P )w)

- do'f*k,0,0")P (@),

20 (2)
- PSSP (3.14)

In order to circumvent the forward singularity of f°(k,w,0")
we define

(P, T 1P, @) = — =55 L o' 0)f )@ )

1, wen2,
0, w&n,
where £2,, and {2, are disjoint subsets of S ® separated by a
positive distance, and P,, /= 1,2 denote the projections
onto {2,. The total on-shell T operator T (k) is defined
analogously.

PeLHS?), Yo,l0)= [ (3.15)

With these definitions we are ready to state

Theorem 3.2: Let Ve '(%#°)nR. Then

(a) If k 2¢&, T*(k ) as an operator in .Z%(S %), is trace-
class and continuous in trace-norm. In particular /*(k,0,0’)
is uniformly continuous (with respect to all variables) when-
ever k 2 varies in compact interval not intersecting % .

(b) Let C,, i = 1,2, be closed cones with vertices at the
origin. Suppose C,nC, = {0} and define
02, = C,nS'?, i =1,2. Then the scattering cross section for
scattering into C, from an initial state having momentum
support in C,,

ok, C,—Cy) = (1/47) | dw
0, Jo,
is finite and continuous in k whenever k %¢%.
Proof: (a) We introduce operators
Ak ): LHS D) > LHA?) and By (k ):. LR —. LS ) by

do'|f k.w,0')]?,  (3.16)

o0 1
Tk)= o Tik), Tik)=(i/mk)e e 1),
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ilkr — ¥In(2kr)/2k | ]

and @, Ye /' (#3)."?

(c) Formal expansion of ¥ .~ (k’,x)and G|~ (x,x',y,k %)
for x’ fixed, |k'| = k>0, |x| = r—oin (2.8 finally yields
after some calculations

w=x/r, k>0, o#o' (3.11)
|
UA)@)x) = | do V0L kw0 o)
¢€f2(3(2)),
(Byk V) w) = J d 3xV1/2(x)SI/‘C+ ’(k,a),x)W(x),
2
We LR, (3.17)
and note
Tk)=gBy(k)
x[1—g|V|'VH, —k*+ iO)-lVl/z]_lA\V\(k ),
k%,  (3.18)

From |V |'"?e£*%°), A, (k ) and B, (k ) are Hilbert—
Schmidt which proves that 7°°(k ) is trace-class in .Z"%(S *?).
Since |||V |"/}H, — k * 4 i0)~'V /| is continuous in k and
A,y (k) and B, (k) are continuous in & in Hilbert-Schmidt
norm, 7 *(k )is continuousin trace-norm for k ¢ % . The con-
tinuity of

[Ckow0)= —2mg(@ ko, )sgn VO Tlkw',), k’¢¥E,

follows from the fact that @ {*'(k,x) and @ (*(k,x) are
strongly continuous in & for k *¢%’.

(b) The finiteness of o{k,C,—C,) follows from
C,nC, = {0}; its continuity in & is clear from (a).

Remark 3.2: (a) The finiteness of scattering cross sec-
tions between nonintersecting cones for short-range poten-
tials (| V(x)|l - |x| ~¢% a> 1), has been discussed in detail

a

by Amrein and Pearson.?® For previous results including
long-range potentials see Agmon.?’

(b) In order to work entirely in Hilbert space we as-
sumed Ve.?'(%°)nR. Following the methods employed in
Davies,?® one can extend the above continuity results for
potentials V obeying
Sad>x" [V (X)|/|x —x'|"£<C (1 + |x|) ~ < for some € > 0,
xeZ?*, by working in suitable Banach spaces.

If in addition V (x) is spherically symmetric, §,(k ), the
total phase shift associated with the angular momentum sub-
space indexed by /, can be split up into

Sk} =6ilk)+ &F(k), 1=0,1,2,, k>0,
where
S5k)=argl (I + 1+ iy/2k)

denote the Coulomb phase shifts. In this case 7°°(k ) may be
decomposed into

(3.19)

(3.20)
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and

1Tk, = ik[z(zl+ 1) jsingepe)?]

p>1. (3.21)
In particular
, 1 & 208}k ) 1
“lk,w, — N2+ 1) =1 —
felkesi< — 5 @1+ 1) =
(3.22)

1
= —||T*k)|;.
T,

For a detailed description of the high-energy behavior of
55°(k ) see Ref. 29.
Since there is no obvious physical reason that & 5 [0}
(and thus [1 4 g|V |""2(H, — k? +i0)~'¥""/2] " exists for
k> 0), it is hoped that g| V| YXH, — k2?4 i0)”'V"? has no
eigenvalue — 1 if k ? varies in (0, o). But the operator™®
R(k?) =g|V|'"*[Re(H, —k*>+i0)~' V"

clearly has an eigenvalue — 1 for certain values of k *. In fact

spherically symmetric, then an eigenvalue — 1 of R (k 2) oc-

curs at those values of k 2 where 2% ) = — 1 (and thus
| T3°(k )| has a maximum) for some /. In the short-range case
(y = 0) these values of k ? are responsible for peaks in the
partial wave cross section, i.e., for resonances (large time
delay) and have been investigated by Rollnik®' (see also Ref.
32). More precisely, we have

Proposition 3.1: Let Ve (%>R and suppose

R
J- dr r|V(r)| < o for some R > 0. Then
(9]

{1+g|V|'"?[ReH, — k?+i0)" ' ¥V -!

does not exist {or equivalently the operator

R(k?* =g|V|'?[Re(H, — k? +i0)~']V"/? has eigenvalue
— 1} precisely at those values of k %¢(0, «0 ) where
2i83(k )
e = —1 for some /.

Proof: After separation of variables the eigenvalue
equation

these k 2 correspond to maximain || 7*(k )||,, which are asso- Rk (x)= — D (kx), k>0, PeLY R (3.23)
ciated with resonance phenomena. For example, if V' (x) is reduces to
il
b,lkr) = — j ar\vn|'Re gk WV k), k>0, ¢,2%0,0), (3.24)
a

where

P (k,x)= —-Z Z ¢ (k:7) Yy (@1) ¥ (@045 (3.25)

ri="om= —
GiFlxx, k%) = —Z 2 E(Fkynr) Yip@)Y o),  x|=r [x|=r. (3.26)
=0m= —1
—

[See Ref. 15 for an explicit representation of §§( + k,7,7,#') in terms of confluent hypergeometric functions.] On the other hand,

if one expands

o Mkx)= =3 2 e —(—)—«ﬁ ) ¥ (@4) Vi), (3.27)
rN=om= —
P kx) = Z 3 e '5“*¢‘-’°kr> Ym0} ¥ 0 ), (3.28)
ricom=_1
where # (k) denotes the Jost function as introduced in Ref. 15, one obtains from (2.8)
Faded
¢\ k)= F k) k) — 8 J dr' [V (g1 — kyrnr\VIr) 28 7 k). {3.29)
[¢]

Under our hypothesis on ¥(r), (3.29) is solved uniquely by iteration for all k > 0.'> Since ¢ | ~

¢ (k) = [ReF (K )]g |~ (k1) —gfmdr' VN *Regi(kyy,nr' )V ()6 | k).

Comparison of (3.30) and (3.24) shows that
g|V|'"?[Re(H, — k? +i0)~ ']V "/? has eigenvalue — 1 if
and only if Re.% ,(k,) = O for some /. But since'’

T = F (kyg) /T kg, k>0, [=0,12,~,

(3.31)
this is equivalent to

2i83 ke,
e — _ 1 for some ! .

Remark 3.3: (a) At least in the spherically symmetric
case discussed in Proposition 3.1 we infer from (3.29) and the
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), and ¢ |~ are real, we finally get

(3.30)

tact that .7 (k)50 for k>0 that & = {0]. The condition
rV(re.Z *([0,R ])for some R > Omay berelaxed to Ve %", the
so called ¥ class® [i.e., Ve.#([R, o)) for all R >0 and

W= —f dr' v (r) fulfills We.#'(0, )] allowing for

potentials that are singular and oscillating near the orgin.?*
(b) Under the conditions of Proposition 3.1 the operator

R(E)=g|V|'"*[Re(H, — E+i0)"'}y'/? (3.32)
has remarkable properties: If for some E, <O R (E,) has an
eigenvalue — 1, then £, is an eigenvalue of H. On the other
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hand, if R (E|)hasaneigenvalue — 1forsome £, >0, then £,
corresponds to a maximum of 75(k ) at k > = E, for some /.
In analogy to the short-range case (¥ = 0) these maxima give
rise to peaks in || 7°(k )||3 (which for y = 0 is proportional to
the total scattering cross section averaged over all initial di-
rections'’ gk ) = 7| T3k )||3)-

(c) Since 11m IR (E)|| = O [cf. Eq. (2.11)] there exists

no exgenvalue 1 of R (E}if |E | is sufficiently large. For
E <0 this simply means that H is bounded from below,
whereas for E > 0 this is connected with the fact that Born
expansions for @ (k,x) and /*(k,w,w’) [by iterating Eq. (2.8)]
converge for k * sufficiently high (cf. Ref. 15 for estimates on
the radius of convergence of various Born expansions in the
spherically symmetric case). Next we turn to the on-shell
limit of 7 *(z):

Theorem 3.3: (a) Let Ve.¥'(#°)nR; then

lim [@ " (kw, )tk * + ie)@ ! ko', )]

€0,
— (127 ko), k2¢%. (3.33)

(b) If in addition V (x) is spherically symmetric and
rV (re.2Y([0,R ]) for some R > O [cf. Remark 3.3a)], then

lim (¢} ¥k, )t 5k * + el )~ (k) = T(k)

= (i/mk )" (" — 1), k>0, (3.34)
where

1(z) = ea ea U*‘ t¥(z)U® 1

myz(%ﬂ) = fz((o, w)Pdr® LS?), (3.35)

and
Z(0,0 );Pdr}—.L?((0, 0 );dr)

(rJe——h(r)=rglr) '

Proof: (a) Formula (3.33) immediately follows from the
strong continuity of £ *(k 2 + i€) as e—0, and from Eq. (2.8):
(%(k * + i0)@ L™ )(k,0',x) = gl(sgnV’)

X [1+g|V|"H, —k?—i0)"' V']~ '@ ko' x)

=g(sgnV (x))@ ' kw'x), k*#E,

(3.36)
1

2_(HHy)=s— lim je

e—0,

dE (A )(Hy — A + ie)™"

= —s— limief (H—A—ie) "dEjA) if y=0,
0

€e—0,

Q_(HH,)=s— limie| dEQ)H, ~4+ i)~ "E*(H.)

=—s—11mzef (H—A —i€e)"'dE_(A),

Q_(H.Hp)=s — limie| dE (A )4H,)"* ¢~ 4"
€0, B

X T(1 + iy/2H YHHy — A + i€

oo

. . ;. 2 W2

= —s— lim IEJ‘ (42 )72 " gmrrat
€0, 0

XF(I +l}’/2/1 1/2)(Hc ——A _l-é.)—l-~iy/2/l|/;dE,O(/l )’
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and thus
lim (@ (k,,),t <[k 2 + i€} koo',)

€ »0,

—gJ dx @ kwx)sgnV (x)@' (ke ,x)

— (1273 kw,0'), k'¢E.

In order to prove (b), we note

1) = glsgn V) [1 + gV |2(hi —2)7 V1], (3.37)

where 4 § denotes the Friedrichs extension of 4 §,'52
d? I(I+1
W+l v

RS = — — , D(h)=Cz(0,00),
i dr2+ 2 . ( 1) 0( 00)

and

{[1+elV|"2(hs —k2—i0)' V27 (k)b < Hr)

= ¢} k) (3.38)

by (3.29). Finally, with the help of

Wf dré |~ “lk,risgn¥V (|~ (k,r) = (2T _ 1)

’

(3.39)
[cf. Eq. (3.44) in Ref. 15] (3.34) follows.

Remark 3.4: We emphasize once again the naturalness
of £ *“(z). The on-shell limit may be performed without any
complications (also in the partial wave subspaces). In Eq.
(3.10) we only introduced the on-shell scattering amplitude
[lk,w,0'). The definition of a corresponding half-shell am-
plitude and corresponding half-shell limits are clearly
obvious.

As mentioned in Sec. I we finally discuss the different
connection between short- or long-range wave operators and
corresponding resolvents:

Proposition 3.2: Let Ve.¥(%#*nR. Then

(3.40)

(3.41)

)7 1 — iy/2HY?

(3.42)
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where E (A ), E. (), E,(A ) abbreviate the spectral projections
of H, H, and H,, and E **(H_) denotes the projector onto the
absolutely continuous spectral subspace of H..

]

N, (H,Hp)= ef explet ) exp(iH,t) exp{ — i[Hyt — yIn( — 4H,¢ )/2H 1/*]} dt

clearly exists, and

s— lim2, _(H Hpy)=0_(H, Hp).
€e—0
Thus

Q. (H,Hp)= ef explet )dec (1) explidt Jexp{ — i[Hot — ¥ In( — 4Hyt)/2H 1?1} dt

and the boundedness properties of the integrand immediate-
ly allow the interchange of the 7 and A integration.’ The first
part of (3.42) then follows by computation of a simple I
function'?® integral in (3.45). With these results in mind we
conclude the two-body case by the following

Remark 3.5: Whenever two Hamiltonians H,, H, differ
by a short-range interaction ¥ [as in (3.40) and (3.41)], the
corresponding Méller operators £2 , (H,,H,) are directly re-
lated to the resolvents of these Hamiltonians in the usual
way. Since in this case the resovents may be related toa ¢ '%(z)
operator by an equation of the type (3.2) there is a direct
connection between 2 , (H,,H,)and ¢ '2(z). As we proved in
Theorems 3.1-3.3 and Propositions 3.1 and 3.2 the ¢ *(z) op-
erator indeed has almost all properties of an ordinary short-
range ¢ (z) operator. In addition to those properties we also
note that the partial-wave expansion of /*(k,w,w’) converges
in the ordinary sense and no distribution techniques** or
generalized summation procedures like Abel*® or Pade sum-
mation® [which have to be introduced for f°(k,w,w')] must
be applied. On the other hand Eq. (3.42) indicates a phenom-
enon discussed by Gibson and Chandler.® If two Hamilto-
nians H,, H, differ by a Coulomb potential then the associat-
ed modified wave operators are connected with a complex
power of the resolvents of H, and H, and not with the resol-
vents itself. This shows that the conventional approach
based on (1.2), which contains the resolvents only linearly, is
not sophisticated enough and thus leads to unpleasant prop-
erties {e.g., in partial wave subspaces) as described in Sec. .

(2 = gilsen V) [1 + & V[l — H) 'V 7],

tij(z) =gf(SgnVi)[5ij 1 +gj|Vi|l/2(z "H)_IV;/Z]’ i,j=12,3,

and note that

(Z_Ei)il z(z_gc)_] + (z_ﬁc)—l|I/i|]/2ti(z)|lli.1/2(z

—H) '=@E—H) '+@z—H,)"" i V|22 V) 2z — H) ™

Lj=1

The modified Faddeev equation finally reads
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Proof: It suffices to prove the first relation in (3.42): The
Bochner integral

(3.43)

(3.44)

(3.45)

We finally conclude with some remarks concerning the
generalization of this approach to more than two particles.
We note that with quite similar ideas in mind, Chandler and
Gibson'' recently investigated the N-body problem includ-
ing repulsive Coulomb potentials, and Merkuriev'® dis-
cussed the three-body problem of charged particles. Here we
consider the three-body problem and sketch how modified
Faddeev equations may be derived: We introduce in the
three-particle center of mass system the usual pair of coordi-
nates {x;,y; }

X, = ( 2mymy )'/2(,‘(1) —x@),
m, + my

y, = ( 2m (m, + m,) )]/2( mx? + m;x*? . x(l)),
m, +m;+m, m, +my

(3.46)

where x ' and m, are the positions and masses of the parti-
cles. The other pairs {x,,y; }, / = 2,3, are obtained by cyclic
permutation. Let V,(x,)e.¥(%*)nR and define

~ - - 3 .
Hy= -4, —-4,, H =H,+ Y |—7/~|~ vi€X,
i=1 | X
H=H +gV, ge#, H=H +V
(in the sense of forms),
- 3
V=YgV, (3.47)
i=1
Next we define
(3.48)
—H)"', i=123,
(3.49)

ty(2) = 8,1(2) + 1,(2) 3 |V — Ho) ™' |Vie| 21,(2). (3.50)
k #i
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We emphasize that (3.50) contains no objects like two-parti-
cle subsystem Coulomb transition operators. The only two-
particle input consists in z,(z) operators of the type (3.1). In
contrast to the two-body situation, the kernel of (z — H,) ™"
is not known in closed form. For this reason one has to devel-
op appropriate approxiations for (z — H.)~', e.g., the ei-
konal type approximations discussed in Refs. 10.
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It is shown, by taking P to be the projection operator on the subspace of function space in which
the potential is truncated, that the exact solution of the scattering problem for the truncated
potential using the Feshbach formalism is identical to the J-matrix solution.

PACS numbers: 03.65.Nk

|. INTRODUCTION

The J-matrix method' has been introduced to solve a
model scattering problem exactly in L >-function space. The
model is defined by truncating the infinite-dimensional ma-
trix representation of the given short range potential to a
finite representation. The resulting Hamiltonian, composed
of the exact zeroth-order Hamiltonian H,, plus the truncated
potential, is then solved exactly by finding the representation
of its eigenvector in the space. By demanding that the eigen-
vector behaves asymptotically as a linear combination of the
eigenvector solutions of H,, one is able to write a closed-form
expression for the tangent of the phase shift caused by the
truncated potential.

Heller and Yamani' compared at length the J-matrix
method to both the R-matrix method and L  Fredholm tech-
nique pointing out computational as well as formal similari-
ties. Later, Broad® in his analysis of the quadrature resulting
from diagonalizing a scattering Hamiltonian in a finite L 2
basis, proved the equivalence of the J-matrix and the Fred-
holm equivalent quadrature methods. In this paper, we pro-
pose to show the formal equivalence of the J-matrix and the
Feshbach® methods.

The hint to the equivalence comes from the truncation
procedure used in the J-matrix method which formally re-
sults from an application of a projection operator on a sub-
space spanned by the first NV members of the basis set used. It
is, therefore, expected that when the Feshbach P and Q pro-
jection operators are properly defined and the Feshbach
equation solved exactly, a result identical to the J-matrix is
obtained, thereby establishing the equivalence of the two
methods.

In Sec. I1, the J-matrix procedure is summarized and
the main result written down. In Sec. III, the Feshbach equa-
tions set up, and the needed results regarding the abbreviated
Green’s function quoted, leaving the details to the appendix.
Finally, in Sec. IV, the equivalence of the two methods is
established

Il. THE /~MATRIX METHOD

Since the results of the method have already been de-
tailed elsewhere' only an outline of the steps leading to the
main result is given.
A. The basis

A convenient choice for the basis set spanning the L ?
space is either the Slater set,
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é,.(r)=(r|p,y =& T le 2L ), n=0,1,2..., (1)
or the Oscillator set,
Bulr) = (rlg,) =C'* e €LY n=0,1,2., ()

where § = Arand A is a free scaling parameter and L ¢ is the
Laguerre polynomial. Both basis sets are complete, although
the Slater set is not orthogonal. The set { |, )} is defined as
the orthogonal complement to the basis; i.e.,

(016 = ($:16,,) =8, - (3)

The reason this choice of basis is convenient is the fact

that it renders the matrix representation of the J operator,*>®

—1d? + I+ 1)
2 dr 27

tridiagonal. This leads to a three-term recursion relation
among the coefficients {z, } *_, of the representation of its
eigenvector in the basis

Jn.nAIanl+Jn,nzn +Jn,n+lzn+l=0! (5)

whereJ, ,, = (¢, |/ |¢,,). This equation has two basic solu-
tions, z, = s, and z,, = ¢, such that the functions

J=H,—E=

Si=4ris) = 3 5., 6
and )
Cl=(rC) = 3 e, g

behave asymptotically sinelike and cosinelike, respectively,®
ie.,

S(r) ~ sinfkr — 7l /2), (8)
C(r) ~ costkr — 7l /2). 9)

Furthermore, Heller’ showed that the J-matrix can be in-
verted, thereby giving the matrix representation of the
Green’s function; e.g.,

Gllm =D | T 17 b ) = (= 2/k)s, (e, +is, ), (10)

wheren _ (n_ )isthelesser (greater) of the two numbers n, m.

B. The phase shift

When a short range potential Vis given, the J-matrix
method solves the scattering problem exactly for a model
potential ¥ whose matrix elements are identical to those of ¥
in the finite N X NV block and vanish outside it; i.e.,

7 “[V,,m, og<n, mgN — 1,
0 otherwise,

nm
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It has been argued'~ that the eigenvector solution has
the form

|‘1’>=N}3'Rn1¢,.>+|S)+z|C>, (11)

n=0
where ¢ is identified as the tangent of the phase-shift caused
by the model potential. The projection of the null vector
J+V)¥>=0
on each member of the basis results in enough conditions to
solve for the unknowns, {R,, ¢ }. The result of interest is that
for ¢,
Sy 1 +HENy NS
f= — N-—1 ( )JN LLNON . (12)
cvo HFHEWy ey
Here {E )isthe (N — 1, N — 1)matrix element of the Green’s
matrix which inverts the N X N representation of the full
matrix (J + V).
The goal for the rest of the paper is to show that the
result (12) can be obtained by using the Feshbach method.

IIl. THE FESHBACH METHOD
A. The projection operators

The truncation procedure used in the J-matrix method
has the effect of using an operator which projects on to the
subspace U, spanned by the first N members of the basis set.
More precisely the P operator is defined as

P="S"16.)@.| (13

n=0
It is clear that P is idempotent and its range is the sub-

space Uy. Thus, Pis a projection operator. It is also clear
that the adjoint operator

N—1 _
PT="3% 14, (8. (14)
n=0
is a projection operator in the dual space. With P, the projec-
tion operators Q = 1 — Pand hence Q" = 1 — P ' are de-

fined and have obvious meanings. The model potential can
now be simply written as

V=P'VP. (15)

B. The Feshbach equations

Associated with the definition of P and Q is a natural
division of L * space into “inner” and “outer” spaces, using
the Feshbach language. The wavevector |¥) which solves
the Schrodinger equation

(Hy+PYWP—E)¥)=0 (16)
canbedividedintotwoparts, P |¥ ) and Q | ¥ ), which satisfy
the coupled Feshbach equations

[P+ V)PIP W)Y+ [PYUQ]QI¥)=0 (17)
and

[QUPIP|¥) +[QVQ1Q|¥) =0. (18)

As is usually done in the Feshbach method,® Eqgs. (17) and

(18)aresolved for Q | ¥ ) with the requirement that its asymp-
totic value be identical to that of | ¥ ) itself; i.e., that Q |¥)
contains the correct phase shift for the true scattering prob-
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lem caused by V. For example, if an outgoing wave boundary
conditionisimposed, then Q | ¥ ),aswellas | ¥ ), willhavethe
following asymptotic form:

Wolr) = (rlQ\¥) ~ ¢ sinfkr —Im/2 +8,),  (19)

where §,. is the Feshbach phase shift which is to be compared
with the J-matrix phase shift of Eq. (12).

It is noted that, due to the tridiagonal nature of the J
matrix, the operator (P JQ ) has the simple form

(PIQ)=Idy  Wu_1.n)8x| = (QVP)" (20)
Therefore, Eq. (17) can be written as
PIW) =[P+ VIP] by Wy nionlQ1¥). 21)
Consequently, Eq. (18) can be written as

QO+ V)2 1¥) =0, (22)
where the Feshbach optical potential V., is given by

vV

opt

= - |¢_N>JN,AL~—](¢—N—Il[P*(J"'_ V)P]_Il‘ﬁ—}\’——l>
Xy 1 n{nl (23)

It is noted that the matrix element by NPT+ V)P]!
|én_ 1) is just the HE) used in the J-matrix method. Now,
Eq. (22) can be solved for Q |¥ ):

Q1Y) = - [QVe "IV, 21¥), (24)
where |y ) satisfies the conditions:
(MPx) =0,

i) {0 Q) =0,
(i) (rly) ~ (r1S).

It is clear that the vector |y ) is different from Q |S ) since it
can be easily shown that

[QVQ1QIS) = — |6x)n v 15n— 1 #O0.

In fact, the choice

|X>=Q‘S>‘+‘ [Q*JQ]—l‘$N>JN,N—ISN~1 (25)
satisfies the stated condition, and is hence the desired vector.
Therefore Eq. (24} can be written explicitly as

Q1Y) =0I8) +[0VQ ] "I8xMrn
X sy +r(E}JN»-1,N<¢NIQIlI/>}' (26)

The appendix analyzes in details the inverse of (Q *JQ_ )
which has been called the abbreviated® Green’s function G.
Thus, with an outgoing wave boundary condition built in,
the matrix elements needed for the solution of Eq. (26) are

A 1 ¢, +Is, ,

h In_un Cnv_y TSy
Now it becomes easy to use Eq. (26) tosolve for (¢ |Q |¥ ")
and to insert the result back into the right-hand side of Eq.
(26). The final result is

QY ) =QIS) — G gy Wy wolen 1 +isn 1)

n>N. (A14)

X b /(a—ib), (27)

where
a=cy_ +HENy 1 nCN (28a)
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and
—b=sy_ +HEWy_ nSn- (28b)

Equation (27) is the desired explicit solution of the Feshbach
equations with outgoing wave boundary condition.

IV. THE EQUIVALENCE

In order to compare the Feshbach and the J-matrix
phase-shifts, Eq. (27) is needed to examine the asymptotic
form of @ |¥*) in light of condition (19). More easily, the
coefficients of Q | ¥ *') will be found first and Q |¥ ) will be
reconstructed again. If @ | ¥ )} is written as

o0

QY=Y d."e.), (29)

n=N

then it is easily seen that

+)
d!, )_sn_ G(njV)JN.N—l(CNAl +sv_4)

Xb/@a—ib) n>N (30)
which, with the use of Eq. (A 14) becomes
d\*) = (as, + bc,)/(a — ib). (31)

Consequently Q | % ‘*') can be reconstructed again as
Q¥™) =la/a—ib)1Q|S) + [b/la—ib)]Q|C).
Thus, asymptotically Q |¥‘*’) behaves as
v = (rl@ ¥

~ la/la—ib)IS(r) + [b/la—ib)IC(r) (32)

r

or more explicitly,
'3 ’(r)r: [a/(@a — ib)]sintkr — wl /2) + [b /(@ — ib)]

X coslkr — 7l /2). (33)

In reaching this result, Eqs. (8) and (9) have been used. The
asymptotic behavior exhibited by Eq. (33) is consistent with
that required by Eq. (19) provide & is connected to the quan-
tities @ and b via the relation

tan 6, = b /a. (34)

With a and & given by Eqs. (28a) and (28b), it is easily seen
that the Feshbach phase shift (34) is identical to the J-matrix
phase shift (12). This completes the proof of equivalence.

V. DISCUSSION

It is clear from the analysis that “folding-in” the phys-
ics of the P-part of the space into the Q-part in terms of an
optical potential ¥, as well as subsequent steps in the anal-
ysis, are exact. Unlike the usual procedure, no approxima-
tion is made in the optical potential to be able to solve the
Schrodinger equation in the Q-part of the space [Eq. (22)].

Since the J-matrix and Feshbach methods solve the
model problem exactly, the equivalence is, therefore, not su-
prising. The benefit of the previous analysis has been to show
the precise sense in which the J-matrix divides the L >-func-
tion space into “inner” and “outer” parts. Also, in course of
the proof of equivalence, more light is shed on the represen-
tation of the various abbreviated Green’s functions in the
basis chosen.
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APPENDIX: THE ABBREVIATED GREEN’S FUNCTIONS
The Green’s matrix as given by Eq. (10) is the inverse of
the J-matrix; i.e.,
JG=GJ=1. (A1)
Here, what is of interest is the inverse to the abbreviated® J-

matrix Q 'JQ. With the help of the projection operators P
and @ (A1) can be written in more details as

(P P P *JQ) (PGP v PGQ *)
QP QWQ/ \QGP' QGQ
Pt1PT 0
- < 0 Q*lQ*)' (A2)
Equation (A2) is actually four equations in one, namely,
(PTJP)PGP") 4 (PTJQ)QGP") = P1, (A3)
(PTJP)PGQ") + (PTJQ)QGP™) =0, (A4)
(QVP)PGP") +(QJQNQGP") =0, (AS)
(QVP)IPGQT) +(QWQ)QGR" = Q" (A6)

Equations (A5) and (A6) can be solved to yield the relation
(QVQ)QGQ" — QGPY(PGP") 'PGQT)=Q". (A7)
Therefore, the inverse of (Q 'JQ), which is what has been
called G in the text, is given by
G =(QGQ" — QGP'(PGP")~'PGQ"). (A8)
In order to find G explicitly, (PGP ")~ ' has to be found. From
Eq. (A3), it is clear that
(PGPY)~'=F(P'JP), (A9)
where F satisfies the relation DF = PYand D=P" — P'JQ
QGP'. Due to the simplicity of the operator P JQ, operator
F can be easily obtained,
F=P'+(PYJQ)QGP"/A,
where
A4=1 —JNfl,NGN,N— 1
Consequently, Eq. (A8) for G reduces to
G=0GQ"+0G|y_ ) x_1, n{dy|GQ'/A. (A11)

More explicitly, if p and g are integers greater than or equal
to NV, then
G,,=G,,+G,y Iy | ~vGy /4. (A12)
It is stressed that the matrix elements of G are indeed
symmetric in p and g. In particular, if g = N, the outgoing-
wave abbreviated Green’s function is

(A10)

GL;' = G(N;l :G‘p;)‘*_G‘NTI{’—I']N—LNGlN-;)/A‘-F)
=G W/ —Jy_ 1 wGYWh_1), PEN. (A13)
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Since’
In_1 sy —sy_en) =k /2,
and with the help of Eq. (10), (A13) reduces to
—1 c, +is
Gy = & + 1) , p>N  (Al4)

In_an ey tisy_y)
which has been quoted in the text.

As a by-product of the above analysis, the inverse G to
the abbreviated J-matrix (P /P ) may be found. Starting from
the relations (A3)—(A6) and following a similar procedure as
outlined above, an analogous expression G may be obtained.

G=PGP"+ PG |$ )y n_1{dn_|GP/A.
Explicitly, if / and j are integers less or equal to N — 1, then

G, = G,J + G pIn v 1Gnoy,;/4.
In particular, Gy _, v_1 = —Sv_1/WUn_1 n~Sn)
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Therefore, when V=0, r (E) = Gn_ .. ~_1- Thus Eq. (12)
implies that tan § = 0. This result is of course expected, yet
never proved before.
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The derivation of the Heisenberg condition is re-examined to show why it is not an identity for
potentials possessing redundant poles. Consideration of several such potentials for which exact
solutions are known reveals that, in the process of taking an asymptotic limit, the usual derivation
of the Heisenberg condition improperly neglects a set of terms. These terms are just those
necessary to make the Heisenberg condition an identity; more importantly, it is demonstrated that
these terms, providing information on the redundant poles, i.e., the sum of the residues of S (k ) at
the redundant poles, come from the asymptotic expansion of the continuum wavefunction. By
this we are able to give the details of the nature of the asymptotic expansion of the continuum

wavefunction and the information contained therein.

PACS numbers: 03.65.Nk, 11.20.Fm

1. INTRODUCTION

The analytic S-matrix of potential scattering theory is
generally credited with incorporating information on all of
the bound-state solutions corresponding to a given potential.
Specifically, the bound-state energies correspond to poles of
the S-matrix S (k ), with the energy of the state being given by
the value of k for which the pole occurs.

In addition to these poles, it has long been known that
the S-matrix may possess other poles which are dynamical
(i.e., they disappear when the potential is cut off at large
distances) but correspond to no bound states of the potential.
Several authors have investigated these poles'~ and have
shown in particular that the states corresponding to these
poles do not contribute to the completeness relation. This is
contrasted with the fact that the bound states do contribute
to the completeness relation and must be included in any set
of states in order for it to be a complete set.

The fact that states associated with redundant poles do
not contribute to the completeness relation, whereas bound
states do, has some interesting consequences. Some of these
consequences have been investigated and detailed by Biswas
et al.® in relation to the analogous concept of shadow states
in quantum field theory. In particular, they demonstrated
how the roles of redundant poles and bound-state poles can
be interchanged, both with local potentials and separable
nonlocal potentials. It was shown that phase equivalent sys-
tems can provide cases where two distinct potentials having
an identical S-matrix can be such that one has a bound state
while the other does not. Thus, the unique pole applying to
both theories is a bound-state pole in one theory and a redun-
dant pole in the other. In the case of a separable potential, it
was shown how in a theory containing two redundant poles,
a larger theory may be constructed in which the two redun-
dant poles are associated with bound states, and thus cease to
be redundant. They also solved the inverse problem, show-
ing how in a theory with two poles, a reduced theory may be
constructed in which both poles have become redundant.

The fact that the roles of bound-state poles and redun-
dant poles may be interchanged carries implications on the
nature of the continuum wavefunctions. This is manifested
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in the resolution of a seeming paradox given by Biswas et al.’
They consider a general condition on the S-matrix obtained
by Heisenberg” from the completeness condition

Sux(riu,(r) + Lw dk u¥(rju,(r') = é(r — r). (1.1)

Since Eq. (1.1) is valid for all values of » and » Heisenberg
replaced the discrete wavefunction u,, () and the continuum
wave function u, (r) by their asymptotic expressions:

u,(r)~C,(2m) " %exp( — |k, |), (1.2)
(r—o0)
u, (r)~(2/7)"*sin(kr + 8(k )). (1.3)

The resulting condition
f dkS(k)eik(r+r’|=Z|Cn!2e—lk"|(f+r’) (1.4)

contains on the right-hand side only the contribution from

the bound states, the states corresponding to the redundant
poles making no contribution. However, for S-matrices con-
taining redundant poles the left-hand side is evaluated as

J dk S(k)e* " = EIC" %~ K lir + #)

-3(%)
(1.5)

where the second term on the right-hand side gives the resi-
due of § (k) at the redundant poles.

The fact that S-matrices containing redundant poles do
not satisfy the Heisenberg condition suggests that the as-
ymptotic expressions (1.2) and (1.3) used in deriving Eq. (1.4)
do not give the correct asymptotic form of the completeness
relation. In a paper by Nelson et al.,” the effect of discarding
the terms not present in the asymptotic expressions (1.2) and
(1.3) is discussed in its relation to the essential character of
the completeness relation as an identity. They show that by
retaining in the derivation the terms normally discarded, an
identity is maintained throughout. This exercise is per-
formed, however, without considering asymptotic expres-

— |k (r + #)
e |k I(r ,
k= ilk,|
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sions, and the identity in its final form, obtained after some
algebraic manipulations, necessarily appears as an obvious
equality. They are thus led to the conclusion that the correct
derivation of the Heisenberg condition yields a tautology.
The manipulations of Nelson ef al. do not, however, consi-
tute a derivation of the Heisenberg condition. The Heisen-
berg condition is an asymptotic statement and its correct
derivation requires asymptotic analysis, i.e., in a derivation
valid to a given order, it is necessary to ensure that all terms
of that order are retained and that all terms retained contrib-
ute in that order. When this is done the resulting identity is
far from a tautology because it makes a statement concern-
ing the physical or mathematical content of the order consid-
ered. Indeed, as we shall see, the amended Heisenberg condi-
tion, now rigorously an identity, contains contributions
arising from more than one order in the expansion of the
wavefunction and thus reveals structure in the asymptotic
series while clarifying the content of the S-matrix and its
meaning.

Thus, we will demonstrate that the correct asymptotic
form of the Heisenberg condition must include an additional
set of terms, these terms being just those represented in equa-
tion (1.5) as the sum of the residues of S (k Jexp(ik (r + r')) at
the redundant poles. They come from the term
§& dk u¥(rju, (') in the completeness relation when for the
continuum wavefunction u, (r) we substitute not Eq. (1.3) but
Eq. (1.3) with the addition of the next term in the asymptotic
expansion of u, (r). This next term in the asymptotic expan-
sion of u, (r) 1s subdominant to the leading contribution given
by Eq. (1.3). For this reason it is not usually included in
statements on the asymptotic form of the scattering wave-
function and was not retained in the above derivation of the
Heisenberg condition. However, when redundant poles are
present these terms are exponentially damped and of the
same order as the right-hand side of Eq. (1.4). Hence, this
term makes a contribution to £ dk uf{rju, ('} of the same
orderasS (k Jexp(ik (r + r')) evaluated at the bound states and
redundant poles. So while the states associated with the re-
dundant poles can make no contribution to the completeness
relation in the sum over states X, uX(rju, (*'), a knowledge of
the redundant poles is nevertheless present in the complete-
ness relation. This knowledge is contained in the integral
over the continuum & dk u¥{rju, (') in the leading order
correction term to the dominant asymptotic form of the con-
tinuum wavefunction u , (#).

This may be stated in terms of Eq. {1.5) which we now
take as the correct form of the Heisenberg condition for the
potentials with redundant poles: The integral over the S-
matrix comes from the dominant asymptotic form of the
continuum wavefunction [Eq. (1.3)], the sum over bound
states comes directly from the sum over bound states in the
completeness relation, and the sum of residues of
S (k Jexplik (r + #')) at the redundant poles comes from the
leading correction term to the dominant asymptotic form of

the continuum wavefunction.
From a different point of view, we observe that given an

S-matrix and an a priori way of distinguishing the bound-
state poles we have information contained in the leading cor-
rection term to the dominant form of the asymptotic contin-
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uum wavefunction. This occurs even though the S-matrix
itself is formed only from the dominant form of the asymp-
totic wavefunction.

In the remainder of this paper we will establish the
above statements by considering several potentials for which
exact solutions are known. These are potentials previously
studied by Ma,' Ter Haar,? Biswas et al.,* Bargmann,® Bhat-
tacharjie and Sudarshan’ and Nelson et al.,” and are illustra-
tive of a variety of phenomena possible from different redun-
dant pole *“spectra.” In each case we will consider the
completeness relation with the exact wavefunctions for zero
angular momentum, carefully performing the integral over
the continuum and taking the asymptotic limit. This paper is
organized as follows. In Sec. 2 we analyze the case of the
exponential potential first studied by Ma. Phase equivalent
systems are examined in Sec. 3 and 4, taking examples from
Bargmann. In Sec. 3 we consider the potentials of the linear
type and in Sec. 4 we address ourselves to the potentials of
the quadratic type. In Sec. 5 we give the conclusions.

2. THE EXPONENTIAL POTENTIAL

The first potential we consider is the rather simple po-
tential of Ma, referred to as the exponential potential

Vir)= — Vyexp( — ar).

We seek solutions of the transformed radial wave equation
for zero angular momentum, ¢ ,(r) + k 2@, (r) = V (r)d, ()
where ¢ (r) = r-¢/(r) and ¢(r) is the radial wavefunction. With
V (r)as given above a simple transformation of the wave equa-
tion yields a Bessel equation. The complete solution for ¢, (r)
up to a multiplicative factor is

— ([~ F(z’n+])J. 4
i = (2 T

X [Tl W lde )

—J (AW, (e ]}, 21
where we have written the solution in terms of the linearly
independent Jost functions f'(k, #) and f( — k, r) constructed
so that lim, __ exp(ikr) f(k, r) = | and lim, , _ exp( — ikr)
Xf(— k, r) = 1. Here

flk, ry =T lig + 1), (dexp( — ar/2)),

where J, is the Bessel function of order v, I is the gamma
function, 4 is a constant, and 7 equals 2k /a.

The series expansion of the Bessel functions gives the
asymptotic expansion of ¢ (), which we use in the complete-
ness relation to obtain the asymptotic expansion of
5§ dk ¢ ¥(r)d,. (). This integral is given exactly by the series

f dk 6 H(dw ()

—.:_—1— dk {e*" =M1 +a,k, ) +a,(— k1)
27 J - w

+ay(k, rlai(— K, )] — S (k)
X [1 4 a,k, r)+ a |k, 7'} + ak, rla(k, M1}, (2.2)
where

)

)*'{|r<m+ 1

. & (=VAR2yP
alk,n=r(—im+1 - : e 2.3)
ik, 7) (—im ),-;ﬂl“(—m )
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and S (k) is the S-matrix given by

Jold )T (i + 1) (i)wn
J_ oA\ (—in+1) '

S(k)= (2.4)

2

The imaginary values of 7 for which J _,, (4 ) = 0 comprise
the bound-state poles. The poles of I'" (i + 1) {(occurring also
for 7 imaginary) are the redundant poles. We note that there
are an infinite number of redundant poles evenly spaced
along the positive imaginary n axis beginning at 7 = i.

We now consider the dominant contribution to equa-
tion (2.2) in the asymptotic limit. Because of the presence of
factors of exp( — arj), exp( — ar'l), and exp( — a(rj + 7'/})in
all terms containing a,, these terms are subdominant to
exp(ik (r — 7'))-1 and explik (r + 7'))-S (k) as 7, ¥— . Drop-
ping these subdominant terms at this point in the derivation
constituties the use of the asymptotic expressions given in
Eqgs. (1.2) and (1.3). On the other hand, if all terms in the
asymptotic expansion of § dk ¢ *¢ are retained until after the
integration over &, we find that additional terms must be
included in the dominant contribution.

Considering Eq. (2.2), we obtain § (r — #') for the inte-
gral over the first term. The remaining terms are evaluated
by contour integration. When we take 7, ¥— o0 subsequent
todoing the integration, we willdo it in such a way that r > r’;
this enables the contour to be closed above for all terms with
vanishing contribution on the closing semicircle. The only
poles lie on the imaginary k axis and are contained in either
thefactor 1/J _, (4)or I (in + 1). Therearesix termsin Eq.
(2.2) containing either or both of these factors; they are
a\(—krhalkrla(—kr),Sk),S(k)ak,r),S k)a,k,r),
and S (k )a,(k, ra,(k, ).

We begin by computing §.S (k Jexp(ik (r + 7)) dk. At the
redundant poles the residue of S (k Jexp(ik (r + ') is given by

Res{e*"" 1S (k );n}
— e~ @A AL {y/nl] (4 /2)7 (2.5)

where 7 is the n ™ redundant pole of S (k) corresponding to
7 =inn=1,2,3--). We then compute the residues at the
redundant poles of the other terms a,( — k, »'),

a,lk, ra,( — k, r'), etc. to compare asymptotically with Eq.
(2.5). For a,( — k, ¥') we find that

Res{e*" ~"a,( — k, ¥'); n}
& (= 1j(d /2% =<

— ,— (nas2)r —r)
—¢ .
j; M(—n+j+1)
We consider the contribution to this result from each j. At
values of j < n the contribution is zero due to the factor

[F(—n+j+ 1]} atj = n we have

Res[e“‘"“”’ a, (—k,r');n]
(nth term)}

—marrr+r) (— 1)4/72)°
n! ’

=& (2.6)
and at values of j > # each contribution is smaller by a factor
of exp{ — r'(j — n)) than the contribution for j = n. But the
dominant contribution j = n given by Eq. (2.6) is exactly
equal and opposite to the residue of S (k Jexplik (r + 7')) at the
nth redundant pole. These terms must be included in the
dominant contribution and are the additional terms of Eq.
(1.5) which were not present in Eq. {1.4). In looking again at
Eq. (2.2) we observe that even though a,( — , 7'} is subdo-
minant to 1 in the asymptotic expansion of ¢, (r),

explik (r — '))a,( — k, r') at selected values of k andj is of the
sameorderasexp(ik {(r + 7'}}S (k atthosevaluesof k. Itjustso
happens that those critical values of k coincide with the poles
and that the residues are equal and opposite.

If we now compute the residues of the remaining terms
in Eq. (2.2), we find that they are all subdominant to the
residues of exp(ik (r + r')}S (k) at the bound-state poles and
redundant poles. We therefore find that the completeness
relation, Eq. (1.1), leads to Eq. (1.5) and not Eq. (1.4). The
leading terms in the asymptotic expansion of the continuum
wavefunction give the integral over the S-matrix while the
leading correction terms give the redundant pole informa-
tion of Eq. (1.5). The exact nature of the redundant pole
information thus retained in the continuum wavefunction is
summarized by writing the asymptotic expansion of £ (k, r) as

f(k,r)ze*’*’[l+ ii{ﬂj(k)e‘m . 2.7)
i=1
We then have that the residue of S'(k ) at the nth redundant

pole [k = k (n)] gives the residue of the nth coefficient at that
pole,

Res {S(k ); k(n)} = Re{ 2, (k); k (n]}, (2.8)
with y given as
y = — 2k (n)/n. (2.9)

Thus amended the Heisenberg condition is satisfied by the
wavefunctions of the exponential potential.

3. THE POTENTIAL OF LINEAR TYPE

The next potential we will examine is one of the phase
equivalent families of potentials studied by Bargmann:

Vir)= —2BA%[e */(Be % + 1)]. (3.1)

The radial wavefunction is

1
éelr "Z’ %+ A B— /B +1)

kA B DB+ I — 2k + A (e — 1)/(Be~ ¥ + 1)]e™ ]

2k —id [[ —2k+iA(B—1)/B+ V)] [2k +id{Be " — 1)/(Be "+ 1)] o ikr

(2k + id )2k — iA)

(3.2)
(2k — il )2k + i)
Forming the quantity §& dk ¢ ¥(r)é.(r'} and expanding the integrand for 7, 7"— o0, we obtain
f dk 6 1. lr) = f dk {e* =1 + aylk, 7} + ax( — k, ) + asfk, rlasf — k, )] — €078 (k)
0 - o
X[1+ ay(— k, 1)+ ay( — k, 7') + a5 — k, rlay{ — k, )} ], (3.3)
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where

arlk, r)~id (—2Be % 4+ 2B% " _

and

Sik)= [2k+iA (B— 1)/(B+ 1)]1(2k + i}»)'
[2k —iA (B —1)/(B + 1]{2k —id)
As before, we note that the terms exp(ik (r — r'))-1 and
explik {r + r'))S (k ) appear to represent the dominant contri-
butions to Eq. (3.3). Retaining only these terms constitutes
the use of the asymptotic forms given in Egs. (1.2) and (1.3).
Here we retain all terms, however, and then integrate. The
terms a,( — k, r'), alk, riay{ — k, r), S k), S{k)a,( — k, ),
S (k)a{ — k,r'),andS (k a,( — k,r)a,( — k,r')allpossesspoles
and contribute to the integral. The pole at
k = 4id (B — 1)/{B + 1)is the bound-state pole while the pole
at k = }iA is the redundant pole. We find the residue at
k = liA of each of the above terms: for S (k) we have

(3.5)

e M L )/2k + k) (r—>c0)

(3.4}
Res{S (k)je* "+ k =iA /2} = 2iABe ¥V 7, (3.6)
and for explik (r — ¥))a,( — k, r’) we obtain
Res{e™ "~ "a,( — k, r'); k = iA /2)}
= 2iAfe U L QeI (3.7)

The leading contribution to the residue of

explik (r — r'))a,( — k, ') at the redundant pole is equal and
opposite to that of exp(ik (» + r))S (k ) and so provides the ad-
ditional term of Eq. (1.5). Evaluation of all remaining resi-
dues shows that they are subdominant as 7, 7'—> .

4. THE POTENTIALS OF QUADRATIC TYPE
In this section we examine four additional phase equiv-
alent families of potentials due to Bargmann,

_ pal4po + (p — o) *cosh((p + ojr — 26) — (p + o)*cosh(p — o)r]

Viir) - - , (4.1

[osinh(pr — 8) — psinh(or — 6)]?
__pol4po + (p — o) *coshlp + o)r — (p + o) *cosh{(jp — o)r + 2¢)]

Vi) = - - \ (4.2)
[osinh(or + ¢ ) — psinh(or — ¢ )]*

Vyn = —2elole ta)e P17 (4.3)

1 + (p/a.)e71p+olr
Viir) = — pol4po + (p — o) *cosh(p + o)r + (p + o) *cosh((jp — a)r — 2¢)] . (4.4)

The solutions of all of these potentials are related and can be
parametrically represented as a single solution with param-

eters @ and 8 subject to the requirement that eithera = — 1
or f=1and that
{aywhena= —1, B>1 . @5)
{p)whenf =1, a> —1

Case (a) gives the potential ¥, with B = exp(28) (6 > 0), and
Case (b) gives potentials V,, V5, and V, with
a= —expl—2¢){¢>0),a =0, and a = exp(2¢)
(— o <@ < o), respectively.

The scattering solutions ¢, (k ) are complicated func-
tions of exponentials of 7:

[ =k Ok )
b= [x(—k, ek, o)
ook _pligosl]
e oy~ ko) A1 xik )

with
xk, r) = 4k — {4ikpole”” — afe = F" + ae” — e~ ")
— (0 — pY)ote” + aBe ™) — plae” + Be 7)1}
X [ale”” + aBe ") + plae” + Be )]~ (4.7)
The S-matrix is
S(k) = [2k — o~ p)1[2k + ilp + 0)1/[2k + ilo — p)]
X [2k — ilp + o)]. (4.8)
We note that .S (k) is independent of the parameters a
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[ocoshior — ¢ ) + pcosh(or + ¢)]1°

'and B. However, the spectrum of bound states, curiously, is
not independent of « and B in the following sense: for

a = — 1 the pole 2k — i[p + o) = 0 corresponds to the
bound state and 2k + i(o — p) = O corresponds to a redun-
dant pole. For the other possibility, 8 = 1,2k — ilp + 0) =0
now corresponds to a redundant pole, and 2k + il — p) =0
the bound state. For the two possible cases, the bound-state
spectrum and redundant pole spectrum interchange. This is
the same type of situation studied by Biswas et al.

We proceed exactly as we have done in Secs. 2 and 3
obtaining the asymptotic expansion of § dk ¢ ¥(r)¢. (7). The
expansion of ¢ *¢ is tedious and involves considerable alge-
braic manipulation and the lengthy result is not reproduced
here. There are two singular points in the expression, the
bound-state pole and the redundant pole. The integral over
@ *¢ is readily performed by taking the residue of each term
possessing one or the other or both poles. The leading order
in the asymptotic expansion of f¢ *@ dk consists of four
terms: & (r — #')and §'S (k )Jdk from theleading contribution to
&, (r) and two terms from the leading correction. The exact
form of the Heisenberg condition for this problem is found to
be

[ diesteiet =, 1Cue M 4 8y, [Coffe 8
- 1kiIR

(4.9)
where k, = i(p + 0), k, = }(p — o), and S (k ) is given by Eq.

+ mplp + )IB /ale~ NI + mplp — oa/ale
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(4.8).

The first two terms on the right-hand side of Eq. (4.9)
are the contribution ot the Heisenberg condition from the
sum over bound states. For this potential there is but one
bound state; two terms are written, but of the two terms, only
one or the other actually occurs. Whena = — 1,

[C,|%exp( — |k,|R ) is the contribution from the sum over
bound states, and when B = 1 {a5¢ — 1 necessarily)
|C,|%exp{ — |k,|R } is this contribution. In order to include
the two possibilities in one equation both possibilities are
written and the Kronecker delta is used to eliminate the term
not applicable to the given parameter values.

The second two terms on the right-hand side of Eq. (4.9)
comprise the contribution to the Heisenberg condition com-
ing from the leading correction terms to the dominant as-
ymptotic form of 4, (#). We have seen in previous cases that
this contribution gives the sum of the residues at the redun-
dant poles. As with the bound-state contribution both poles
are represented since either pole can be the redundant pole,
depending on the values of the parameters. We note that
these two terms enter Eq. (4.9) in an essentially different way
from that in which the bound-state terms enter. While only
one or the other of the bound-state terms is actually present
both of the second two terms of Eq. (4.9) are present. Since
there is only one redundant pole, only one of the terms gives
the residue of S (k Jexp(ik (r + 7)) at the redundant pole, the
other term constitutes an anomalous contribution to the ab-
solute squared value of the asymptotic amplitude of the
bound-state wavefunction. The anomaly of this contribution
comes by way of contrast with cases where the roles of
bound-state pole and redundant pole are not interchange-
able. In such cases, among which are the potentials of Secs. 2
and 3, the anomalous contribution does not occur and we
have

2miRes|S (k)exp(ikR ); k = ik,} = |C,|*exp( — |&;|R),
where « = ik, is one of the bound-state poles and C, is the
leading amplitude of the bound-state wave function in the
asymptotic limit as given in Eq. (1.2). For potentials with the
anomalous contribution this equation is modified so that

27iRes{S (k)exp(ikR ); k =ik} =(|C,|* + 4)

X exp( — k,;|R ), where A is the anomalous contribution.
For the potential just studied we have that
2miRes{S (k); k = ik} = — mplp + 0)/0,

4 =mplp +0)B /0,
for a = — 1. Therefore, in the formula for the bound-state
amplitude C,,
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ICP=mplp+ 0B — 1)/ (a= —1, (4.10)

the important 8 dependence is coming entirely from the
anomalous contribution and not from the S-matrix. A simi-
lar statement with regard to a dependence holds for § =1,
where now |C,|? is given by

|Gl =mplp — olla + 1)/o (a=1). (4.11)

5. CONCLUSIONS

In this paper we have given further consideration to the
matter of redundant poles showing that the existence of re-
dundant poles in an S-matrix has implications on the nature
of the continuum wavefunction. The modified Heisenberg
condition has been the ideal vehicle for obtaining the details
of these implications, for a careful derivation of the Heisen-
berg condition for a variety of potentials with exact solutions
shows that the usual statement of this condition incorrectly
ignores a set of terms giving information on the redundant
poles. This set of terms comes precisely from the leading
correction terms in the asymptotic expansion of the contin-
uum wavefunction, while the leading terms give the S-ma-
trix itself. Since the sum of the residues of the S-matrix at the
redundant poles is proportional to the new terms arising
from second order, a relationship between the terms of the
leading order and the next lower order is thus implied.
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Eigenvalues are determined for the plane pendulum problem by the WKBJ method in one- and
four-term approximations, and the results are compared. It is found that at high quantum
numbers, the four-term WKBJ approximation can yield eigenvalues of eight-significant-figure
accuracy, but for low quantum numbers the results continue to be poor.

PACS numbers: 03.65.Sq

I. INTRODUCTION

The problem of the plane pendulum, that is, of the mo-
tion of a masspoint constrained to move in a circle and acted
on by a uniform field, was first discussed from the standpoint
of quantum mechanics by Condon.' A more detailed discus-
sion was given by Pradhan and Khare.? The Schrédinger
equation for the plane pendulum can be recast? into a
Mathieu equation, the characteristic values for which are
known.>* Khare® has solved the pendulum problem in the
one-term WKBJ approximation and has shown that the ei-
genvalues are given by solutions of two equations which in-
volve elliptic integrals and are thus different from the exact
spectrum. Khare,® however, did not obtain any numerical
results for the eigenvalues to show the degree of disagree-
ment. Garbaczewski® has derived the conditions under
which the quantum pendulum becomes equivalent to the
elementary spin 1/2.

The improvement in the eigenvalues by the inclusion of
higher-order terms in the WKBJ approximation has been
examined for the Lennard-Jones potential’~® and the anhar-
monic oscillator.'®'" The behavior of the potential-energy
expression for the plane pendulum is very different from that
of the two above-mentioned potentials. Also, above a certain
energy, there are no turning points in the plane pendulum
problem. Thus it was of special interest to examine the effect
of higher-order terms in the WKBJ aproximation on the
eigenvalues of the plane pendulum. In the present paper we
have considered the four-term WKBJ approximation. In the
course of this investigation an interesting phenomenon for
the one-term WKBJ approximation was also discovered,
that is, for certain combinations of the quantum number and
a characteristic parameter of the pendulum, it is not possible
to determine the eigenvalue. We discuss this unusual situa-
tion more fully in Sec. III.

il. THEORY

For a plane pendulum, the potential energy ¥ due to the
earth’s gravitational field is

V{6)=mgl(l —cos @), (1)
where m is the mass of the particle, / the radius of the circle in
which it is constrained to move, and @ is the angle between

the downward vertical and the radius vector of the particle
measured from the center of the circle.
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The Schrddinger equation for the plane pendulum can
be written as

iz d*

2ml? do?
If we set

k =[e/(2mgl))'?
and

B=16mgl*/#?,
Eq. (2) reduces to

d*y

do?

+ [e—mgl(l —cos@)] ¢¥y=0. (2)

+§ [k*—sin26/2)] =0, 3)

which is the Mathieu equation.?

We shall find it convenient to express the energy in re-
duced units, €* = €/(2mgl). It is known? that if 0 < €* < 1,
the motion of the pendulum is oscillatory between the turn-
ing points — &, and 8,, where sin(6,/2) = k; whereas if
1 < €*, there are no turning points and the motion of the
pendulum is rotatory. For e* = 1, the motion is nonperiodic
and the pendulum swings up to the position & = 7 and re-
mains there forever.

Until now, the effect of higher-order terms in the
WXKBJ approximation on the eigenvalues has been examined
for only such potentials as do have two turning points; the
effect of such terms on the pendulum eigenvalues is thus of
special interest.

A. Case of oscillatory motion, 0 <¢* <1

In the WKBJ approximation, the quantization condi-

tion up to four nonzero terms™'*'3 is
n+l=L+L+5L+1,, (4)
where
2\1/2 6o
r= @m0 /R (e g,
i — 0,
231/2 6,
L= Heml) " d (% e )i,
247 deJ g,
231/273 3 6y
I, = Mif (TV"2—=5V'V™)
28807 de’ J o,

X(e— V)~ d8,
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_ [ﬁ/(2m12)1/2]5
725760

5 6o
x[i—J' (93V"3—224V'V”V"’+35V'2V””)
de’ J_oa,

d*

X (€ — V)—‘/2d6+216g—

— 6,
It is possible to evaluate the I’s in a closed form in terms of
elliptic integrals K (k ) and E (k ). The expressions for the I’s
can be written in a compact form in terms of 4 (k,n) and

Ly — V)_"2d0] .

B. Case of rotatory motion, 1 <¢*

In this case € — Vis always positive so that there are no
turning points. The quantization condition takes the
form"'®

n=Jl+J2+-,3+J4s (5)

where

Q1/2 2
B (k,n) defined by J. = MJ (€ V)l/z de,
Alkn)=(1—k)~"— (k3" n=124- ™ 0
1/2
and Jy= — #/2ml7" d Vie—V)-'240,
Blkn)=(1—k) "+ (k)" n=12- 27 de
The final expressions are as follows. 21/293 33 (2w
23”2 3_—_[_ﬁ_/_Q_M__d_€3f (7Vn2_5Vle)
I, = [Ek)—(1—k)K(k)], 28807 de Jo
Bf.n 2 X(e—V)'2dg,
—3/ = = ——
=" © (284 (k2) + 84 (k,1)] K (k) 72257607
d5 7 ”n ’ " " [ L
+ [56B (k,3) + 23B (k,2) + 30B (k,1)] X[EEL (93" — 224V V" V™ 4 35SV V™)
XUEk)—(1—k*K(k)]}, o
—s/2
14=—1f1280 {[1984B (k,4) — 404B (k,3) X (€ — V)‘”zd0+216—f Ve — V)"“dﬁ]-
+ 1908 (k,2) + 124B (k,1)] K (k) The J’s can be evaluated in a closed form in terms of elliptic
+ [39684 (k,5) — 3124 (k,4) + 5894 (k,3) + 4614 (k,2)]  integrals. The final expressions are given below. For the sake
X[Ek)—(1—k3)K(k)]}. of convenience, we write A = k ~' = (2mgl /€)'/2. Then
|
1/2
J, = 25 EA),
TA
/-LB~1/2{ , ( 1 )
= AKA)—1|1 EA)—-(1-A3)K (A },
2 2 () + E [Ed)—( JK(4)]
AB 32 [[ 71 28
Jy,= —564°4+544—1542—43 - ]K/l
YT 28807 + ti-41: (1 R
109 135
+|564% + 542+ 30— — ]Ei—l— AYK(A
/LB*S/Z
4=—[[3968/1 10229648 +4974° + 6244 — 33742 — 2812
1612807
9347 12579 8028 1984
- - KA
=47  (I-A%  (0-A7 (1—,12)4] "
+[—3968/1"+312&“-589/14_461,12_ 4706 16575 23461 15560 3968
1—A2 T (1= (=A% @ (=A% (=A%

x[E(/i)—(l—/iz)K(/l)]}.

lIl. RESULTS AND DISCUSSION

The energy eigenvalues were calculated by solving (4)
and (5). The ellipticintegrals X (k ) and E (k ) can be expanded
as series in powers of k 2. The number of terms which need be
retained depends on the accuracy desired and on the eigen-
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:zalue. The root is determined by the Newton-Raphson

method. The eigenvalues obtained from the one-term WKBJ
approximation shall be denoted by €*"’ and those obtained
from the four-term WK BJ approximation, by €**. The ex-
act eigenvalues can be calculated from the characteristic val-

ues of the Mathieu equation®* and shall be represented by
€x.
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TABLE I. Reduced energy eigenvalues for the potential (1). The symbols are explained in the text.

B8 n e [e* —e3]x107 e [ex4 — ex]x 107 e
2 0 0.6373109 1981937 0.5273797* 882625 0.4391172
1 10690723 — 1643111 1.2480202° 146368 12333834
2 2.5157024 — 347479 2.5216292 — 288211 2.5504503
3 5.0069512 — 18523 5.0078601 — 9434 5.0088035
4 8.5039074 — 2749 8.5041793 -30 8.5041823
5 13.0025003 — 1044 13.0026092 as 13.0026047
6 18.5017362 — 497 18.5017881 22 18.5017859
7 25.0012756 — 265 25.0013034 13 25.0013021
8 32.5009766 — 155 32.5009928 7 32.5009921
9 41.0007716 -97 41.0007817 4 41.0007813
10 50.5006250 — 63 50.5006316 3 505006313
11 61.0005165 —43 61.0005210 2 61.0005208
12 72.5004340 ~31 72.5004372 1 72.5004371
13 85.0003698 ~22 85.0003721 1 85.0003720
14 98.5003189 —16 98.5003206 1 98.5003205
20 0 0.2171686 71709 0.2102475 2498 0.2099977
1 0.6084539 155445 0.5986790 57696 0.5929094
2 0.9235989 511434 0.8904405* 179850 0.8724555
3 1.0295279 — 479137 1.0522161" — 252255 10774416
4 1.3403747 — 144544 13446179 — 102112 13548291
5 17753244 - 21742 17765226 ~ 9760 17774986
6 2.3174676 — 5774 2.3179954 — 496 2.3180450
7 2.9627970 — 2757 2.9630718 -9 2.9630727
8 3.7097844 — 1577 3.7099426 5 3.7099421
9 4.5577253 —974 4.5578231 4 4.5578227
10 5.5062549 — 636 5.5063187 2 5.5063185
1 6.5551680 —433 6.5552115 2 6.5552113
12 7.7043419 — 305 7.7043725 1 7.7043724
13 8.9536992 -21 8.9537214 ! 8.9537213
14 10.3031894 — 164 10.3032059 l 10.3032058
100 0 0.0987338 13016 0.0974322 0 00974322
1 0.2882828 14318 0.2868512 2 0.2868510
2 0.4664083 16299 0.4647845 61 0.4647784
3 0.6316976 20568 0.6297531 1123 0.6296408
4 0.7819512 38988 0.7793211 12687 0.7780524
5 0.9130049 125030 0.9077444 72425 0.9005019
6 0.9897508° -7 0.9897579
7 1.0608818 — 144651 1.0669397* — 84072 1.0753469
8 11915580 — 36827 1.1929874 — 22533 11952407
9 13498412 — 9288 13505016 — 2684 13507700
10 15318977 — 4043 15322795 —225 1.5323020
1 17361850 — 2451 17364287 — 14 17364301
12 19619116 — 1653 19620769 0 1.9620769
13 2.2086201 - 1170 2.2087372 1 2.2087371
14 2.4760262 — 854 24761117 1 24761116

*Three-term WKBJ value.
*Two-term WKBJ value.

Calculations were carried out for three different values

of 8, namely, 2, 20, and 100, for n = O to n = 14. The results
are shown in Table I. Columns 3 and 5 show the reduced
energies obtained from the one- and four-term WKBJ ap-
proximations respectively. The exact eigenvalues are shown
in column 7. The differences e*'" — €% and e** — €% are
shown in columns 4 and 6, respectively. We may note here
one point. The series expansion from which (4) is obtained is,
in general, semiconvergent.'”'® Consequently, situations
canarisein which |I; , , /1| is greater than 1. Insuch a caseit
would be appropriate to take terms only up to and including
I; on the right-hand side of (4). Similar remarks are applica-
ble to (5). In actual practice, calculations were carried out in
stages for one-, two-, three- and four-term WKBJ approxi-
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mations. A few cases were encountered for which |I,/1,| or
|I,/1;| was greater than 1. Such cases are identified by super-
scripts a and b in Table I. All other eigenvalues are from the
four-term WKBJ approximation.

It was found that when €* is very close to 1, it is not
possible to calculate e* from the one-term WKBJ method,
and for this reason there is no entry for n = 6, 8 = 100 for
one-term WKBJ in Table I. The cause of this unusual situa-
tion can be understood by referring to Fig. 1, where we have
plotted I, (fork > < 1)and J, (for k > > 1) versus k % for the case
B = 100. An eigenvalue for the case # = 6 can be obtained
from (4) only if at some stage I, becomes equal to 6.5, but we
see in Fig. 1 that /, remains always below 6.5. Similarly, an
eigenvalue for n = 6 can be obtained from (5) only if at some
stage J, = 6, but the minimum value of J, is 6.367. We note
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FIG. 1. 1, and J, as functions of &  in the vicinity of k> = 1.

that 7,(k >—1) = J,(1/k >—1). For each value of n, there is a
narrow range of S values where this phenomenon occurs.
Some other combinations of such (n, 8 ) values are as follows:
(1, 3.6), (2, 12.2), (3, 26), (4, 44.5), and (5, 68). If higher-order
terms are taken in (4) and in (5), this problem is eliminated,
and eigenvalues can be calculated close to €* = 1.

It will be noticed from Table I that the four-term WKBJ
results show an improvement over the one-term WKBJ re-
sults in all cases, the accuracy being improved by between
one and four additional significant figures. It is of some in-
terest to compare these results with those obtained for the
Lennard-Jones potential”® where it was found that the four-
term WKBJ results improve upon the one-term WKBJ re-
sults by seven or eight additional significant figures. Clearly
the improvement obtained in the eigenvalues by taking high-
er-order terms in the WKBJ approximation is very much
potential-dependent.

The results shown in Table I indicate that for a given 3,
€ITOrs appear to increase as €* increases toward 1 and then
they decrease fairly rapidly. At high quantum numbers,
four-term WKBJ results show an eight-significant-figure ac-

95 J. Math. Phys., Vol. 23, No. 1, January 1982

curacy. A comparison of the one- and four-term results
shows that the relative improvement is greater as B becomes
larger. This result is somewhat surprising in view of the fact
that the higher-order terms in (4) and (5) involve inverse pow-
ers of B. It will also be noticed in Table I that for a given
guantum number, the eigenvalue decreases as 3 increases.

In conclusion we find that the inclusion of higher-order
terms in applying the WKBJ method to the quantum pendu-
lum problem can lead to eigenvalues of good accuracy (eight
significant figures) at high quantum numbers, but the results
at low quantum numbers remain poor.
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Invariant methods of modern differential geometry are used to formulate exact closed form
expressions for the coordinate velocity and coordinate acceleration of a geodesic particle in the
tangent space of a general relativistic accelerating rotating observer. The observation of a general
vector field is shown to be definable in two ways from presymmetry and covariance arguments.
Our results for the parallel translation definition of observation are shown to subsume existing

work in both special and general relativity on accelerated observers.

PACS numbers: 04.20.Cv

I. INTRODUCTION

Synge' considered observations by a general relativistic
accelerated observer in his discussion of stellar aberration.
By using Fermi coordinates® he obtains a first order equation
for the stellar aberration. A natural proper reference frame
for a general relativistic accelerating rotating observer
(GRARO) was introduced by Misner, Thorne, and Wheeler
(MTW)? who suitably extended the Fermi normal coordi-
nates discussed by Manasse and Misner® to obtain a local set
of coordinates for describing the GRARO. They obtained
the first-order expansion for the metric and the connection
coefficients along the GRARO world line which give rise to
both the rotation and the acceleration of the observer.
Burghardt® utilized a covariant projection formalism to ob-
tain a decomposition of the Einstein equations of motion for
a rotating system of observers. Using a dyadic formalism
Estabrook and Wahlquist® obtained an equation for the ac-
celeration near a general world line. Within the framework
of special relativity Li and Ni’ employed the MTW coordi-
nate system to obtain an expansion of the metric for an accel-
erated observer. They also have done extensive work on de-
termining the metric expansions for an accelerating observer
in both special and general relativity. At about the same time
DeFacio, Dennis, and Retzloff,® using a coordinate-free ap-
proach, derived an exact closed form expression for the co-
ordinate acceleration of a geodesic particle relative to a non-
inertial observer which they showed reduced to the second-
order expansion of Ni and Zimmerman® for the case of spe-
cial relativity.

In the setting of general relativity Mashhoon'? in his
extensive treatment of tidal processes derived a second-order
expression for the metric and a first-order expansion of the
connection coefficients in Fermi Coordinates for a general
relativistic nonrotating accelerating observer. Ni and Zim-
merman,’ using the MTW coordinates, extended these re-
sults to a GRARO to obtain a second-order expansion of
both the coordinate velocity and coordinate acceleration of a
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geodesic particle in the frame of the GRARQO. These latter
results were extended to third order by Li and Ni,!! who in
the process derived a third-order metric expansion and a
second-order expansion of the connection coefficients. Cou-
pling effects between gravitation and special relativity were
first exhibited in the third-order terms obtained by Li and
Ni.

The general relativity calculations thus far have been
formulated in terms of various coordinate systems eminently
suited for computational purposes. The MTW coordinate
frame is the most natural GRARO frame for obtaining ex-
pansions of the coordinate velocity and coordinate accelera-
tion of a freely falling particle in the GRARO frame. Howev-
er, the coordinate velocity and coordinate acceleration have
not been defined to date in a coordinate-free invariant man-
ner and the coordinate velocity is currently determined from
the coordinate acceleration by integration in contrast to the
pedagogical approach of defining the acceleration as a de-
rivative of the velocity. Furthermore, in the coordinate for-
mulation it is not abundantly clear where the domains and
ranges of the associated vector field mappings reside on their
respective manifolds. This is of fundamental importance in
general relativity where vectors associated with particular
observations by the GRARO must live in the tangent space
of the GRARO.*

In this paper we will formulate as coordinate-free invar-
iant objects in the tangent space of the GRARO the coordi-
nate velocity and coordinate acceleration of a freely falling
particle employing the approach of DeFacio, Dennis, and
Retzloff* extended to general relativity. The coordinate ac-
celeration will be identified as the derivative of the coordi-
nate velocity. Hence the coordinate velocity will be obtained
independent of the coordinate acceleration. The manifold
defined by the GRARO and the geodesic particle will be
explicitly identified. Using these results and the definitions
of “presymmetry”, “spacetime,” and “observations of spa-
cetime” as given by DeFacio, Dennis, and Retzloff,® closed
form expressions for both the coordinate velocity and co-
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ordinate acceleration will be obtained. These expressions
will be shown to agree with the corrected results of Li and
Ni'! to the order of their expansion.

The organization of this paper is as follows. In Sec. 11
we define in a coordinate-free manner the observation of a
geodesic particle by a GRARO. Section III contains the
derivation of the closed form expressions for the coordinate
velocity and coordinate acceleration. In Sec. IV the connec-
tion coefficients on the manifold defined by the GRARO
and the geodesic particle are obtained and our results are
shown to subsume the third-order expansion of Li and Ni''
as well as the exact results of DeFacio, Dennis, and Retzloff®
for special relativity. Our conclusions are given in Sec. V.

1l. GRARO OBSERVATIONS OF A GEODESIC PARTICLE

In the notation of DeFacio, Dennis, and Retzloff® the
basic description of the GRARO observation of a geodesic
particle is depicted in Fig. 1. The manifold M determined by
this description is given by the map

a:R XR—M, «a(t,s) = exp,,,,st(t). (1)
From this map a, the world line and velocity of the GRARO

(¥(t ),u) and the geodesic particle (y,(¢ ), V') are easily found to
be

7/([) = (Z(t,O), Uu=a. (a /0t )\s:O,l:t = Vd/drY(t )!
vid) =altl),
V=a.d/3t)_ 1= = Vi) =TV g,,7\t),

(2)
where I" = dt /dA and V is the usual pseudo-Riemannian
connection of general relativity on the manifold.

In general presymmetry® it has been shown that for a

general spacetime (M, g) any event g is identified as geM. The
observation of this event XeTM is found by lifting M into

TM with the map
™
T exp”!, ie, X, =exp, 'q. (3)
M

Because the tangent space of the GRARO is flat, the “natu-
ral” connection for observations in the GRARO frame is the

y (¢} R\
IASERATS

GRARO

P
GEODESIC GEODESIC PARTICLE

FIG. 1. The manifold defined by the GRARO and the geodesic particle.
The symbols have the following definitions; (¢ }—world line of the
GRARO; 7{4 } = y{t )—world line of the geodesic particle; A—affine pa-
rameter of the geodesic world line; t—nonaffine parameter; y,(s,t }—unique
geodesic passing through g and p, s—affine parameter of

¥¥(t) = n(t )|t )|-—position of geodesic particle relative to the GRARO;
n{t }—direction cosines of r(f ) in GRARO frames; u—velocity of GRARO:
V—velocity of geodesic particle; P—parallel translation of veT, ;M to
T, M along unique geodesic y,(s, ); f/\(t,s)-—parallel translation of
VeT, ;M to T,M along ¥,(t,s).
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pseudoflat connection V' defined by
ViaB=Vy,4B— (12,B),
N=agu—usa+ 2 (ou), {4)
(2, (o,u)u) =0,
(2,(ow,u),B) = 0XB,

where a is the acceleration of the GRARO. The coordinate
velocity W and coordinate acceleration 4 obtain their sim-
plest forms when expressed in terms of this natural GRARO
connection as

Wzvz’i/dta*(a/as)ls=0,1=n (5)

A= V:i/dt W= V:i/dr V:l/dtfz* (a/as)ls =0t=1t"

Clearly by definition W, 4€T,,,) M and hence “live” in the
frame of the GRARO.

To conclude our discussion of GRARO observations
we give the following definitions of the observation of a gen-
eral spacetime event by a GRARO which arises from general
presymmetry consideration.®'>!3

Definition 1: For an arbitrary event geM and observa-
tion of that event X, €T, M by an observer at g, the observa-
tion of event ¢ by a GRARO at p is determined by the com-
muting diagram

T,T,M T, M

————
¢ I/ x’l/
velT , M J

oJdv exp,

exPrar
l exp,

M —_— M

€exp,v

exp,,.

with J, being the usual projection map. The map exp, J
preserves vector equations as well as equivalence classes of
state preparation and observation procedures. Thus it satis-
fies the covariance and presymmetry requirements for defin-
ing the observation of a spacetime event. However, the map
is only a radial isometry. The consequences of this definition
of observation are presented in Part II. A second definition
of the observation of an event that also satisfies the require-
ments of covariance and presymmetry is the following:

Definition 2: For an arbitrary event geM and observa-
tion of that event X €7, M by an observer at g, the observa-
tion of event ¢ by a GRARO at p is determined by the paral-
lel translation map 7, with

Top: T,M—T,M.
For our purpose ¢ is given by

g = 7a(Solt );t) = eXp,q, r(2). (6)
The map 7 is an isometry and hence preserves the magnitude
of the observed vector field. A direct application of Defini-
tion 2 is the calculation of the velocity ¥ of the geodesic
particle as seen in the GRARO frame. The result will be used
in this paper to obtain closed form expressions for Wand 4

An alternative method of formulating the observation
of a particle by a rotating accelerating observer based on the
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cotangent bundle of the manifold has been developed by De-
Facio and Retzloff'* in their treatment of noninertial frames
in special relativity. Their approach has the advantge of pro-
viding a natural setting in which the velocity vector field of
the geodesic particle is a Killing vector field and “cotangent
geodesics” are described by the vanishing of the Lie deriva-
tive of the associated velocity form. This method is readily
extended to a general relativistic setting and will be the sub-
ject of a future paper on this problem.
We now consider the results of defining an observation
of a spacetime event by a GRARO via Definition 2.
lil. THE COORDINATE VELOCITY AND COORDINATE
ACCELERATION .
From Definition 2 we know that ¥ is the solution at

s=0of
- . ~ d
Vol =0(=) 4 — e ugpe S
ds ds
,u',a,ﬁz 0)192v3, I}Z Vats = SO([). (7)

To proceed further, we use the MTW coordinate system to
give M a coordinate chart and note that

Yit) = {£0,0,0}, 7i(t) = expy,r(t) = [£r'{e) /() (t)]),

Yalt,s) = expﬂ,,sn(t) = {t’nl(t )s9n2(t )s,n'3(t st

l'(t) = rl(t )ei\m, = S()(t )ni(t }el'\m” l’ = 1’2,3’
nie)=nltle, |, i=123, (altha(t)) =1, (®)
W=Wit)=Wite, , i=123

V=V4,u expw,r(t) =1V, ,0,€Xpy, x(t)

=Tey  + Wi lei, ., =123,

=I { 19 .4 l(t )rWZ(t )’WJ(t” |‘y,(tj'
Because (7) is a linear matrix differential equation its solution
can be written in terms of the matrixant {2 (s,¢ ) as'

V=0tV or V=2(st)t)V, 9)
where . .
14 18 1
Lo 7 W)
—3 ~ V= ~ V=F »
=\ p:| Z3 N W)
p3 y? wit)
Qeti=1+ S [ | Bistids, so=s
n=1;=0J0
=Pexp[f Bis,,t )ds,], (10
(¢]
B(s,t)=(bys) bag = — slst)nit),

a’B = 0’112)3’ j = 1’2’37

and P is the Dyson chronological-order operator for the s;.
Substituting (10) into (9), we obtain an expression for the
coordinate velocity of the form

1 4

_ W) V!

W= =T "2 ot )t 5 , 11)
W) (sl )t 2 (
W) g0 V3/ g

which in component form is .

Wwite, , =T ~'Qiist). )V, (12)

V="V, , i=123 a=0123,

V="Ve, , i=123 a=0123,

no?
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where é, ., are the basis vectors obtained frome, .., by paral-
lel transport. The physical interpretation of (12) [or (11)] is
that W' represent the components of the coordinate velocity
fgr the basis vectors ¢; ., While the geodesic particle velocity
V is given in the natural basis vectors e, =0/9x]
x'= {t,r',”,r'}. Thus(12) represents the transformation law
from the tilde set of basis vectors at y{t ) to the natural set of
basis vectors at ¥(¢ ). By writing (12} as a vector equation we
can obtain the coordinate velocity in terms of the natural
basis vectors at ¥t ).

The coordinate acceleration is obtained from W as

0
— Al
sz:i/er=) VL
o i
v
o A0 (so(t)2) i dF) v
= handh UL R o N -
(42 26| 7.
" V3/ g
73
+I"_'!2(s(,(t),t)V,',/d, E: (13)
V3 g

Wemustexpress V), V interms of Wand £2 (s,(t ),t ) tocom-
plete the calculation of the coordinate acceleration. To ac-
complish this we consider the equation of the geodesic parti-
cle for the nonaffine parameter ¢ which is

\ [de/d:?’l(t)] =0=)V,uVa,avt)

o ar
=-r! ar Vasavilt). (14)
In component form this reduces to
v+ p — T B
i = =¥ pltst WWW P, V=IV,,,y(t). (15)

From (9) we have
ViV =Va 2 (solt )1 )V ]

- B0 1y g o, (1

where
0, 5(t50(t Nwow?
T (tsolt \WoW?
D=-r 2”( ol )_U_B . (17)
IZ gt \WW
T ot W72 [ 1
Combining (11), (13), (16}, and (17), we obtain the desired
expression for the coordinate acceleration

0
A! ar —
=F—'(—~—W+D) . 18
A? dt lgo (18)
3 &1”

The remarks concerning the natural and parallel translated
basis vectors at ¥{t ) made previously also apply to (18).
Next we will show that (11) and (18) include the results
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of DeFacio, Dennis, and Retzloff® and Liand Ni'' as special
cases.

IV. THE SPECIFIC CALCULATION OF A AND W USING
THE CONNECTION COEFFICIENTS ON M

Although (11) and (18) are exact closed form formulas
for the coordinate velocity and coordinate acceleration of a
geodesic particle, these quantities are normally expressed in
terms of the curvature tensor, 4-rotation and acceleration of
the GRARO.” "' To do this we must write the connection
coefficients I" and dI" /dt in terms of these latter quantities.
The connection coefficients on M are obtained in terms of -
the appropriate quantities from a Taylor series expansion of
the I"# ; about the world line of the GRARO where they are
known from the work of MTW. Thus on M we have

T glts) = T* 5(8,0) + T* 5, (8,00 (t )s
+ F”aﬁ‘,,-(t,O)n’(t (e )52 /20 + o (19)
ua, f=0123 Li etc.=123.

Equations (15) and (22) require the I"* ,; along ¥,(¢)
which from (12) and (23) are
T (b5t ) = T 5(60) + T (1,0)7 ()
+ D L0 ()2 4 . (20)
The derivatives of I'# ,; along y(t ) occurring in (19) and (20)
are obtained by solving the Jacobi field equations associated

with the following two separate one-parameter family of
geodesics:

afs,n’) = exp,,,,sn'e,, t fixed, (21)
B(t,s) = exp,, sn'{t)e,. (22)
The one-parameter family of geodesics given by (21) is de-

picted in Fig. 2 and is identical to the reference frame of the
GRARO described by MTW.? From (21) we have

a,(d/ds)=n'e,=n, V,n=0,
a,ld/0n') =se.=p'e,, i="1,2,3 (i not summed),
[n,pu] =a,[d/0s, 3/9n] =0, (23)

where 1 is the Jacobi field and » is the tangent vector field.
From the definition of the Riemannian curvature tensor we
obtain

Rinyppp =V, V, u =V, V, 4 =V, ,yp=0, (24)

JACOBI FIELD

Y (L) Y, (t)

GEODESICS

FIG. 2. The /-parameter family of geodesics determined by
als,n’) = exp,,,,sn'e,.
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which combined with (23) gives the Jacobi field equation
V.V, +Rinpuu=0. (25)
In component form (25) is

d/J' +2d‘/; re Bné'a

p ﬁg(st)n +R%, p

PR ey + T e My — [T 7,,) = 0. (26)

This is Eq. (10) of Ni and Zimmerman® and Eq. (14) of Li and
Ni."" Substituting (19) and (23) into (26), we obtain

2 5 S DT Je O ) + R om0
+ sn (t)n t)[ Z —[(n (D) r “,k](t,O)

+ 5 o) 5 5 =

- 3. S twepreJeo) 3 S noprr e

&\p)rr,, [(n'e)D,)or =, 1(2,0)

=0,

ra=0123, ilmjk, p=123,

D, = —a—, x'=sn'(t). 27)
ax'

Equating powers of s through s in (27) yields the results of Ni
and Zimmerman® as well as those of Li and Ni for the first
and second derivatives of I" %,(i,j = 1,2,3). Higher deriva-
tives of I"“; are found by continuing the process. Because
only the first and second derivatives of "%, are needed to
compare our general relativity formulation with the work of
Liand Ni'' and the computation of the higher derivatives of
the connection coefficients provide no new insight into the
basic physics of the problem, we will not compute these high-
er derivatives in this paper. We also refer to the work of Li
and Ni'' for the tabulated formulas for the first and second
derivatives of I" “;;. However, in the case of special relativity
we require the derlvatlves to be determined to all orders in
order to compare with the exact result of DeFacio, Dennis,
and Retzloff.”* The results for special relativity are obtained
from the above computational process by setting R "ﬁw =0.
This gives the values in Table I for " “ . The remaining con-
nection coefficients listed in Table I are found using (22)
which defines the one-parameter family of geodesics shown
in Fig. 3. Fotlowing a procedure identical to that of {23} and
(24), we obtain the Jacobi field equation

VoVuN+R(UN)N =0, (28)
U=p,(3/0s)=nit)e;,
N=p,(3/0t)=e,

which reduces to the identity

R¥yg =T po —T¥ o5 + Fgaﬁl““go — I Ty (29)

Combining (29) with differentiation of the known connec-
tion coefficients along y(¢ ) yields the remaining derivatives of
the I"%,,*'" which agree with the second order results of Li
and Ni'' in general relativity and produce the remaining
entries in Table I in the case of special relativity.
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TABLE 1. Connection coefficients on the M in special relativity I"%,,(t,5), o=0, I%ist)=0,a=0,123, ij=123.

N
a 0

asn(t) + awXsn(t)
1 + asnit)

0

a'(l + asn(t)) + [wX (wXsn(t))]'
1 + [@Xxsn(t)]'
_ lwXsnie)]{desnt) + avw X snit))
1 + a-snit)

a¥{1 + awsnt)) + [w X {w X sn{t))]
2 + [@ X sn(t)]
_ [wXsn(t)]}d-sn(t) + a0 Xsn(t))
1 + assn(t)

a(1 + assn(t)) + [ X (@Xsn(t))])?
3 + [ X sn(t)}?

_ Loxsn(t)] @sn(t) + a-w Xsnit))

a,
1 + a-sn{t)

afoxnlt) 3 (—an)" s

m=

— e, +afexalt)? 3 (—anf)” s

— oty +afexalt) 3 (—anfe)” s

m=

1 + aesn(t)

\B
a 2 3
0 a, s

1 + asnit) 1 + a-snit)
1 — wrely +afoxne) 3 (- anfe)n s — o'el, +afoxn) 3 (—an) s
2 afoXnit)) 2 (—ane) s — o€ty + as(w X n{t))? i (—am(e)™ s
3 — o€l +afexa) S (= ane) s afoxnt) 3 (= anie) s

m=1

m=1

We are now ready to express the coordinate velocity
and coordinate acceleration in terms of the curvature tensor,
the 4-rotation and the acceleration of the observer. The case
of special relativity will be treated first. Using Table I the B
matrix in (10) becomes

—an(t)/[1+asnit)] 0 O
| @xn ) /(1 +asn()) 0 0 0
Bist) =\ wxnie /1 +asne)] 0 0 of 30)
(@Xn(t)/[14+asnit)] 0 0 O
7it) 7, (t)
JACOBI
FIELD GEODESICS

FIG. 3. The l-parameter family of geodesics given by B (t,5) = expw,sn"(t Je,.
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From (30) and (10} the matrizant is calculted as

1/(1 + a-r) 0 o
—(@xn'/(1+ary 1 0
—(@xr?/(1+ar) 0 1
—(@Xxr?/(1+ar) 0 O

Combining (11) and (31), we obtain the following result for
the velocity of the geodesic particle as seen by the observer:

12 (solt ), ) = (31)

- O O Q

14 r
V! _ T'w'it)
72 =0 ol )t) W)
& T'w3(t)
I+ar 0 0 O r
@xr)' 1 0 OYIF) (32)
@xr 0 1 0 r#?et
xr® 0 0 1/ \I'Fr)
which can be written in vector notation as
V=r[ul +ar)+oXr+i], u=e, (33)

This last result is identical to Eq. (4.8) obtained by DeFacio,
Dennis, and Retzloff.® To calculate the coordinate accelera-
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tion, we note that from Table I and (15) for z = O we obtain

L _dl/dt _ _ po sye)#oms = — BT+t +aoxn) (34)
r r 1+ ar
The definition of D in (17) gives
I .50 ) 7777
. L L, loxr)!' . .
—a'(l +ar) — [oX(eXr)]'—a,r' —2{oXr) + et [ar + 2aF + a0 Xr]
ar
r-'D= : 2 35
— a1l +ar) — [0 X{0wXr)]? — @, — 2eXr)? + (lm_j-(r)_ [ar + 2a°F + a*w X 1] (33)
ar
3 3__ 3, loxr) . :
—a)l +ar) — [eX(0XT1)]? - 6, —2wXr) + T+ar [ar + 2aF + a0 XT]
ar
—
Substituting (35), (34), and {11) into (18) gives in compact B(s,t) = A(0,t) + A,(0,t )n{t)s
tati P
vector notation + AU(O,I (e (e )52/2| + o
A=iF= —a(l +ar)— 0oX(OXr)— 6T —2wnXF) a,,(0,t) = —n*(t)r%,(0,t),
(@) (0t) = — n*(e)T%, ,(2,0),
(F+aoXr) . - . '
T e T2t X, 36) @ )s(0t) = — n*(t)1%, (20}, etc. (37)
The 4 matrices for the first three terms of (37) are
This latter result agrees exactly with equation (4.14) of De- 0 0 0
Facio, Dennis, and Retzloff.? —an(t) 1
In a general relativistic framework the calculations be- a00=|~ [wXn)]' 0 0 0O
gin with the Taylor series expansion of the I"#,; as given by —[oXxnt)]* 0 0 0
(19) from which the B matrix in (10) can be written as —[oXn(z)]>* 0 0 0
|
= [an(t)]’—R Oinni(t (t) AR % nf(t Jn*(t) iR Carnie)n*(t) iR Caxn(t)n* (1)
[an(t)]{oxn(t)}' — R "yon'tn(t) 3R 'qunit)n*(t) 1R ', nit)n(t) IR 'senft)n*(t)
lan(t)] [0 Xn(t)]> — R yonfe)n*(t) AR %ynfe)n®(t)  JRZ,ni(t)n*(e) 4R Z;eni(e)n(2)
lan(t)] [wXn(t)]* — R uonfe)n () 4R n't)n*(t) AR ,,nie)n*(t) AR unfen*(r)
,ﬁij(O,t )n'n/
= {Ryioja n'nin’ + 2(an)Ryon'n —[& P (SR Ol,w —R% )
- Z(a'")3 + Ho X ")p(Ronp + ROpiI )ninl } —~ %{a-r)P,| R o,j1 J nin/
{Rom.j”inl"j + %(a'”)ijl”jnl - l %P1 (5R llil;j —R lilj;l '

+ Z(wx”)lRomj”[”j + %(wxn)k(Rkjll + Ry i )r'n!
— 2w X n)'{@n)?}

{Roniyn'n'n + %(a‘”)Rozjl”j”l
+ 2(w X ”)ZROIOI‘”I”j + Yo X n)* (Rup + Ry 2j1)"j’11
— 2{w X n)*(an)}

{Ro n'n'n + 3an)Roy,w'n'

+ 2{@ X ”)3R010j”1”j + 3w X n)* Ry + Ry 3j1)"i”1
. — 2(w X n)*(a-n)?}
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— 3w xn)'Py RO | n'n

- [ &P (SR Zlil;j —R 2:‘/,';1 )”i
— §(w><n)2P,1R°,jln’n’]

- [ P (5R 31.'1;/ —R 3:‘1];1 jn!
— Yo Xn)P, R, ] n'n
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- ﬁpzz(SR Oh’Z;j —R Oizj;z)"' - [‘1171)13(5R Oli3;j - R 01‘1];3)”'
— Yan)P,R°, | n'n — 3a'n)P1 R 0,1-3] n'n
- [ ﬁPIZ(SR lli2;j —R lilj;z)ni - [ %Pls(sR ‘/.'3;,' —R ‘uj;s)”{
—HoXn)'PR O, | n'n — HoXn)'PR ;| n'n
- ﬁPlz(SR 2112;j —R 2tlj;z )”'b - %zPIJ(SR 2113;j -~ R 2ilj;3 )ni
Yo X n)*P,R O n'n — Yo XnfP; R O] n'
- [ 5P 5R 31,'2;1' —R 3,'1,';2)”i - [ &P (SR 3{i3;j —R 3ilj;3)ni (38)
— HoXn)’P, Ry | n'W —HwoXnPP; RO n' )

By St-lbstituting (38) and (37) into (10), calculating the matrizant £2 {Sol# ),2 ) to third order in r and using this result in (11), we
obtain the following third-order expression for the coordinate velocity. ’

r
r#
7

"3

1 —ar+ (a@r) —(ar) — IR rP(1 — 3acr) + (1/3)R oy 1 PP

—(@Xn'[1 —ar+ (ar)?] — llewt‘il"(l —dar) + %(a)Xr)'ROiojrfﬂ + (1/3!)R0f‘j'kr‘-l'irk
— (@XMl — ar + (ar)?] — %Rzmr’ﬂ(l —%a-r) + %(a)Xr)zRO,Ojrir" + (/3R rrrk
— (@X P11 = ar + (@] = YRy PP(1 — 3a7) + Y X 7P Ry PP + (1/3)Rorys PP

0
Ry

14 %R ‘nj"i’J - (1/3!)(w><’)lR Ofljrir' - %P.'l(SR likl;l —R lku;l)’jrkrl

rr1 —_a.r)~7l§P‘l(5R0ikl;I —Rokn;))"i"krl

i

&R 2:‘1,”'1", — (/3@ X r)’R Orljri"i — 4P (5R % w—R %t jrrr!
iR }nj’i"/ - (1/3!)(("><")3R Onj’j’J - %Pn (SR 3ik\;1 —R 3ki1;‘ )’J”krl

iR Oieriri(l —ar) — 715P12(5R Oik 20— R ()krl,»z)’irk"l
iR liZj'J’j— (1/3!)(a)><r)'R O;eri’j— 'lePiZ(SR likZ;l —R lkil;z )’Jrk"l

1+1R 2,~2jr“r" — {1/3%@ X r’R Oizjr"r" — &P, {5R 2 2 — R 2,(,-,;2 yrkrt
iR 3:‘2j’j’j - (1/3!)(C"><")3R 0i2jriri — 5P, (5R 3ik2;1 —R kal;z)’j"k"’

IRy PP(1 — ar) — 5P (5R %y — ROy )PP %

i3j C
) 14

R ]ia,'"i"i_ (1/3@Xxr)'R Osajri"i — %P3 (5R Laese — R s lead 74

IR, rY — (1/3W@X7’R %y r'Y — £P5(5R s — R s )Prr & ’

1+ 4R 5 PF — (1/30)@X PR O PP — P (5R %y — R 2paa)PPY. 3/t (39)

—

where velocity, is related to the left-hand side of (39) by
v 1 r

- V' — W) r#
~ W= -r-! )

lytes V2 (40) Wz(t) 1—1’2 (41)

I73 Iy W3(t) ‘x(l) P |x(')

is the velocity of the geodesic particle and W, the coordinate It is immediately apparent that (39) reduces to the third or-
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der expansion of (32) for the case of special relativity. To
compare this result with the work of Li and Ni'' we must
obtain an equation relating I to the physical variables of the
problem. This is accomplished using the e¢,-equation of (18),
or equivalently (14), which reduces to
/D= —T°(tst )W, W,
= = 2aH[l — ar+ (@rf] — 2a0Xxr{l —ar]
—ber[1 —ar] +3R°, PEF[1 —ar]
~ 2RoqyPP| 1 — Favr]
- [ 5R01010 +1a RO;}« — HaA OK)]I'J’J
+ Ho X ) (Rog + Roy;i 7
+ HRoiwk.j + Rokoi; + Rokosi o
— (2/4)(5R°y;, — R O it )PP {42)
The solution to (42) is

r=ri=0 exp[ - f l P 5(t50(t )W oW Pdt ]
=I(t= 0)[1 - f O (bt \WeWrdt

+ -217 UO T 4(t,50(t )W W Pdt ]2 + ] (43)

Integrating only the terms involving a first derivative with

respect to t, we obtain
]

[ IR, r‘f‘ (1 —ar)— SR, —

72 |p(

F=rie=01~(3ar1—-ar+ Yar?
+ RogyPP[3 — 2a]
— Yo X Prou’ — HRowox. ;
+ Rowoi; + Rokoi e
- (2/4!)(5R Oikj;l —R Okil;/)"j'j"krl + } + (1/2!){ ]2 - }
(44)

To second order in r, (44) becomes
F'=T{t=0{1-~3ar[1+lar] + 3Rorr + O(r)]. (45)

Liand Ni'®implicitly treat the case I" (t = 0) = 1 and consid-
er only the first-order representation of I" for which (45) re-
duces to

C'=1-—73ar+4 0~ (46)
If, however, we integrate only the exact terms in (43] the
first-order representation of I is

C=1-ar+0(A. (47)

A comparison of (47) with equation (33) of Li and Ni'' shows
that they are the same. This establishes that the results of Li
and Ni contain only the exact terms for the representation of
r.

Now from (39) we have

RO, Prr | ve/r

LA
r 1 —ar + {ary — (ar)?

Wi=¢F=(V/M) — (XAl —ar+(ar?]
- lIRijkO’jrk(l - %a"') + 'i(er)iRoﬁ)krirk
+ (1/34Ryg s PP7 ) + (VX /{68,
+ AR PP — (1/3)@ X rYR O, PP
— &Py (5R ilpk;m —R iplm;k)rl’ﬁrm}r (48)

which when combined with (47) and the usual expansion of
the denominator of (48) yields

W' =F= —(wXrf[1 + ar—(ar?]

— IR, P (1 + Lavr)

+ V(1 +ans) + R P (1 +ar)

— 5P ,5R .. — R "k,,,,;p)r’r“r'"] +0(rY. (49)

A comparison of (49) with Eq. (37) of Li and Ni'' shows that
the two equations do not agree. This is indicative of the prob-
lems that are encountered in trying to obtain the coordinate
velocity by integrating the coordinate acceleration as per Li
and Ni. Basically, Li and Ni's equations (27) and (28) are
incomplete because they consider only those terms that give
rise to exact differentials and do not recognize that the co-
ordinate acceleration is given in the ¢ .., basis while Vis
stated in terms of the e, basis. The resulting mixing of the
components of ¥ in the exprcssmn for W in (49) does not
occur in special relativity because the underlying manifold is
flat and the two basis sets ¢, .,ande  arethesame to within
scale factors. We can also write (49) as the vector equation
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~ W, PP(1 = 3a7) + (1/3)Rog; /PPt

)
W= —(oXr[l+ar—(ar?]l — 1+ larR (rey)r
+ V(1 + ar)+ Ul +arR (V,rr
— 5(V.5R(r,Vir — VR (r,rr], (50)
which allows us to obtain the coordinate acceleration in
terms of either the é ., ore  basisset.

In order to calculate the coordinate acceleration, we
first note that the D matrix is

—~ D/ =2a#[1 — ar+ (ar?)
+ a«w X[l — ar] + (@)t —a-r]
~ 3R PP 1 —ar] + 2Ry o, P 1 — davr)
+ [ %Romj;g -+ %akROjki - %(a'f)Rowj] r'v
- _%(@X’)k(Rorjk + Ry i )Fr
- %{R()iok;j + Rox 0ij T+ Roko;‘;i)'j'jrk
+ (2/49(SR 1y — R %4y, JFFPY, (51)
DY/ =d' [l +ar] + 2uX#
—2oxrarn[1l —ar] +(nxr)
+ o{wr)— 8K’ ) — (ber)lw X rf —2a-w X Hes X 1)l
+ [Rmoj(l + 20")‘“2{a’x")kRoﬂk]’J +[
+ Rozow - %alRikij + %(a'f)Rokij} rr-
+ [ 2R, 0 — Yar)(Rowi; + Row ;) — Z(wxr)iRopk
— %(a’x")p(Rpkij + Rpikj)] Frt

- %Ro JOk,i

+ [ = 3R i — Yo X AR, | FiH
+l o,.u“Rom,l"‘*Rok,l;]’J’r
+ (274! )(5R e p — R ‘pr:k sl
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Combining (18), (42), and (51), we obtain the coordinate acceleration as given by
A = —d(l +ar) — [ex{eXn] —mXr —2AoX W) + 2{aW)wXr)

+ Wilbr+ 2aiw Xr) + 2aW(1 —ar)] + (br)fe Xr) + 2a0 X Ao Xr)
— 2a-Wa-rlwXr) — Wiarbr + 20'aW(ar) — 2W i arjaoXr
— Rop ;¥ — 2R, juo "W/ + 3R WW ' + 2R o W WP
+ 3R WWWwe + %akRijkpt"r" + 2(a)><r)"Roﬁpr"
- z(a‘r)Ro,o,'"i + %(a'r)(ROjik + ROijk)Wk’j - %a.WROjip’er
+ Z(er)iRopk Wirk + %(wxr)k(Rklij + Rkilj)erl

o

+ Ho X )Ry, WW P + 10" R W PP

— ${ar\Ro o0 W WP — 30 WRo o W PP + Y X P (R iy + Roye )W W7

- %(a.r)Rijp WWW e — %(Rijko;o + Riojo;k )’Jrk

+ %Rijkl;OrirIWk - R[le;prlrij + '11_2(5Rikjl;p + Riljp;k)WjWkrlrp

+ 4R po PP W + Ro oy P'r' W' W/

+ 4R so PP W W 4 5(5Ros i p + Ropj i PPPW WIW 5+ O (P). (52)

Equation (52)isidentical to equation (21) of Liand Ni.!! This
is no surprise as (18) is the parallel translation of (14) and
hence the same as equation (20) of Li and Ni. The proof of
this statement is the subject of the next theorem.

Theorem 1: Equation (18) is equal to the parallel trans-
lation of (14).

Proof: Writing (18) out in component form we have

(L /Ty, = — I plt.soft NW WP,

S I I =,
(47 + Tipltsot )W WP, = — FW‘e”W’. (53)
Parallel translating (53) to y,(¢ ) we obtain

r
Tey,

= — T ltsot )W WP,

[A'+ T gtsolt \WOWP e, = — ?W‘é (54)

o iy

which can be rewritten in vector notation as

I
ViraVaarilt)= — T Visa?ilt) QE.D. (55)

V. CONCLUSION

In this paper we have used Ekstein’s presymmetry and
covariance to obtain two distinct definitions of the observa-
tion of a vector field by a general observer, and modern dif-
ferential geometry to define a natural connection for the gen-
eral observer. This led to an invariant definition of the
coordinate velocity and coordinate acceleration of a geode-
sic particle and yielded closed form expressions for these
quantities. We have examined the consequences of our defi-
nition of observation based on the mapping of tangent spaces
to tangent spaces via parallel translation. Our results sub-
sume the exact special relativity treatment of DeFacio, Den-
nis, and Retzloff as well as the general relativity work of Ni
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and Zimmerman and Li and Ni. We have clearly identified
the tangent spaces of the relevant vector fields and in so
doing have shown that the expressions of Ni and Zimmer-
man and Li and Ni for the coordinate velocity and I are
incomplete to the order stated in their work. The procedure
for obtaining higher-order coordinate representations of 4
and W are clearly stated.
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The observation of a general vector field based on exp. is employed to obtain formulas for the
coordinate velocity and coordinate acceleration of a geodesic particle. Our results are shown to
reduce to those based on a parallel transport definition of observation in special relativity. In
general relativity the difference between the expressions for the coordinate velocity and
coordinate acceleration derived from the two definitions of observation is given in terms of the

Riemann curvature tensor.

PACS numbers: 04.20.Cv

I. INTRODUCTION

In a previous paper' (hereafter referred to as I) we gave
two distinct definitions of the observation of a general space-
time event by a general relativistic accelerating rotating ob-
server (GRARO) which are consistent with covariance and
presymmetry** considerations. In I we developed the conse-
quences of the second definition in which the observation of
an event at geM by a GRARO at peM is given by the parallel
translation map 7,,. The purpose of the current paper is to
investigate the consequences of the first definition wherein
the observation of an event at g by a GRARO at p is given by
exp. . The analysis will focus on the observation of a geodesic
particle by a GRARO. It will be shown that for special rela-
tivity the two definitions of observation of a spacetime event
give identical results, while by contrast, the difference in the
results of the two definitions of observation in general rela-
tivity is measured by the Riemann curvature tensor.

The organization of this paper is as follows. In Sec. IT
we show that exp. is the solution of an appropriate Jacobi
field equation and prove that the difference between exp.
and 7, for the observation of a geodesic particle by a
GRARO is determined by the Riemann curvature tensor.
Section I1I contains our calculations of the coordinate veloc-

ity and coordinate acceleration. Our conclusions are given in
Sec. IV.

Il. THE JACOBI FIELD EQUATION AND exp.

From Definition 1 of I the observation of the velocity of
the geodesic particle by the GRARO is given by

Vay V= exp). ¥, (1)
or

V= expml.m}'/,‘,) 14
as shown in Fig. 1. Using (1), we state and prove the follow-

ing theorem.

105 J. Math. Phys. 23(1), January 1982

0022-2488/82/010105-04$02.50

Theorem 1: The velocity vector V is the covariant de-
rivative with respect to dy,/ds of the Jacobi field associated
with the map a(s, /) —»exp,,s(H¢) + IV (¢)) for fixed ¢.

Proof: Consider the map

als, 1) = exp,,sirit) + 1V (¢), 2)
and the associated Jacobi field along s—exp,,,, 7t ) given by
J5) = a.(d/3l) o, (3)

with
JO)=0, J(0)=Vyud ,=V. 4)

This Jacobi Field is depicted in Fig. 2 and satisfies the
equation

Vd/dsVd/dstR (d/ds, J)d/ds (5)
Now from a consideration of the canonical isomorphism
T,(”: TPM-“)Tr(t)TpM (6)

" 23] =Y {t})
rit)

GRARO GEODESIC PARTICLE

FIG. 1. The manifold defined by the GRARO and the geodesic particle.
The symbols are defined as follows 3t } —world line of the GRARO;
¥1ld) = 7,(r) —world line of the geodesic particle; A —affine parameter of
the geodesic world line; # —nonaffine parameter; y,(s, £ ) —unique geodesic
passing through p and g, s —affine parameter of ¥2: Mt ) position of geodesic
particle relative to the GRARO; « —velocity of GRARO; ¥ —velocity of

the geodesic particle; V—velocity of geodesic particle as seen by the
GRARO.
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Y (t) 7,(t)

FIG. 2. The Jacobi field associated with the velocnty vectors P and V, Here
72is) is given by y,(s) = y.(z, 5) = {,n'(t)s, n’(2)s, n(t)s] for fixed t.

given by

. d
Ydl]:ETn"(r(t) +mJ){m _‘“’J, (7)

and the map
¢: T, M—>T, M (8)
determined by
¢= €XPote).

we have

°T )

\__—-J

¢J = eXPyyr). [———-—(r(t +ml)y

——(—id—expﬂ,,(r(t +mdy, =J)
=a.(d/dl), . |, =expy. sz V. (9)
At a general point along y,(s) we obtain
Jis)=a.(8/al), , . =expy, SV. (10)
Hence
JO)=0 J(O)=V,,.J, =V, (11)
J(1)= expw).wi'z 14
Q.ED.

It follows from the theorem that in special relativity
eXP,yy ). V is equivalent to parallel transport and hence
Deﬁnit}gn 1 and Definition 2 of I for an observation are
identical for this case. The proof of this statement is the con-
tent of the following corollary.

Corollary. In special relativity V = €XPyy). | V is identi-
cal to the parallel translation of ¥, i.e., ¥ = rﬂ,) P V.

Proof. Forspecialrelativity R (d /ds,J )d /ds = 0. Hence
(5) reduces to

VasasVasasd =0. (12)
Let €, be a set of basis vectors along y,(s} obtained from the
natural basis vectorse,  aty,(¢)by parallel transport. Fur-
thermore, let

Jis)=J%, V=Ve, V=V, . (13)
With these basis vectors (12) reduces to
diJe/ds =0, (14
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with

J*0) =0, aJ” (0) {15)
and

JH) = Ve (16)
The solution of (14) satisfying the boundary conditions (15)is

Js) = V. (17)
Combining (17) and (16) we have

V=re (18)

which are the equations for the parallel translation of ¥
along ,(s) to y(z ). Q.E.D.

We now consider the calculation of the coordinate ve-
locity W and the coordinate acceleration A4.

1ll. SPECIFIC CALCULATIONS OF A AND W/

To calculate the coordinate velocity W we must first
solve (5). To this end let e, represent the natural coordinate
basis vectors along the geodesic y,(s) based on the MTW
coordinate system given in I, and é, be the parallel translat-

ed basis vectors along y,(s) that are identical to e ' Latyg(r)
(see Figure 1). Then the tangent vector to p,(s), T, , at any
point 5 can be written as
d _dy, .4 .-
T =—=-"==7)e,, 19
" ds ds t) (19)

with ¢ fixed. Thus we have the following proposition.
Proposition. The A%(t ) given in (19) are independent of s.
Proof. In the MTW coordinate system ¥,(s) is written in
Ias

Yals) = [x%s), x'(s), x?(s), x*(s)}
= {1, n'(t)s, n¥(t Js, n’(t )s}. (20
T, is given by
T, =1fs) =A%t )e, = ., (21)
and
0=Vy, Ty =Yg, i Je,
= P (t)[V, Ar) )e,- (22)
This implies
= PV, A%(r) = AP (1)é,A%(t)
= xPe, A%t ) = ) (23)
ds

Hence 7i°(t ) is constant with respect to s. Q.E.D. We now
write (5) as

i Zim &5 = &, R %, t, SR VAW 5 5), (24)
AY

or 5

dJ =5 -
L RO A, B=0123,

with ¢ fixed. Here R # oyelt; 5) denotes the Riemann curva-
ture components with respect to the &, basis set. To proceed
further, we expand R ? . (¢, 5} in a Taylor series, i.e.,
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Ry, = Ry, 0) 4 SR, 0,01 /zﬁ Suw/n SROGW/M SRS TR 2(11«'/11\

d2 - 2 - -~ - .
g Ryt O 4 z R a,,gm— SR/ SRS/ FRA/A TR/
(26) N=|"~ _ | J _ J _ | J _ i
Then ZR S/ ZR s SRR TR/
R, lt, sYA(e (e 2 i, aove V(A1) \ZR S0/ SRS TR SRS )
=Y R (j)—. 30
Pl 27) The initial condition for (28) is =0
With (27) we can now write (25) as ZT(0)=(0,0,0,0, PO, 7, P2, 7?). (31)
dz _ Nz, (28 Using the matrizant method* as in I to solve (28), we can
dt write the solution to (5) to fourth order in s as
where - W=r-'I+B)P, (32)
ZT={Js), I ) s, I 3s), T %s), T M), T 3s), T )], where Wand ¥ =7 are given with respect to the &, basis set,
J(s)=dJ (s)/ds, (29) the spatial components of W are the components of the co-
and ordinate velocity [see (41) of I] and
So 0 11,50 So !
/ ol0)—— it )+2R°O(1) 3( ! (0) (” +2R° (1)3"(” R°2(0) ( ) 2R A= ( ) Roy0) sl )+2R 3(1)s°( )\
‘ am 2l 70 ‘ a2 (O)S"(” 2R, s"‘ Y SN °‘ Y gt
B= ~ ) 4] 0 t
0(0) o( )+2R o(l) o(t) EZI(O}SO(I) +21721(1)ﬂ—) Rzz(o) (t) Y 2ms (t) 3(0)s (t) Y 3(1)s ( )
_ 52 5 o( ) & So(t ) o( ) olt)
\R 30(0)s°2(! J +2R? (1) (t) (0) ( ) R 3,(1) ( ) 2(0) + 2R (1) 3 3(0) + 2R, (1) )

(33)
Using the notation that Vis the representation of Vin the e, basis set and ¥ is the representation of Vinthe é é,, basis set, we
have from I that

V=20(4t) )7, (34)
where 2 (s,(¢), ¢ ) is given by (10) and (39) of I. We further note that
W. =[~"UV=T""V=I"'0(s,t) t)V (35)

is the result we obtained from the parallel transport definition of observation in I [see (39) of I]. Thus the coordinate velocity
based on the exp,,,. definition of GRARO observation We,‘p can be written in terms of the coordinate velocity obtained

from the parallel transport definition of GRARO observatlon Wr,.,: plus a correction as follows:
P, =W, +T "BV (36)

expy

Ifwelet B be the B matrix expressed with respect to the e, basis set and note that W, exp,, aNd an are to be expressed in the é,
basis set, we obtain (36} in a form given by (37) that can be compared directly with (39) of L, ie,

Xy = WTD(( + r- IE'Q (SO(t )’ t)f;» (37)
where W, is given by (39) of I;
T = (1 PP, i (38)
and rrr re
/R 0 olt, 0)—— R a6, 05 R (6 O+ R O)i’i'f-
Py o Py
Rl O R a6 0T R0, 0L 4+ R Y00, 07
B= ‘
Py rr
Rt 0)——+R2,pk(t O Rl 0+ R0 o)ﬂ
rp PP Py
\ 2ol O)“’2—+R3q0k(t 0)—— R, (1, 0)7+R3.,1k( O)ﬂ
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to fourth order andj = 1, 2, 3. The R , are the Riemann curvature components in the

0 rr
R ij2 (t, 0)—2!_ + R 0‘-1-2‘;( (t, O)T

rr Pr i
’r R %t O)=— + R (8, O)ﬂ

2 31

s " 7
rer R Lalt, 0)—27 + R0 O)i;ﬁ

N
Rt Oy + R sl O

rv W
R0, 0 + Rt O)f_’;'i

rr o
R (6 07 + Rl O)T,’*

rr ”
R 2ij3 (s, 0)—2'— + R 2[]-3,,((t, O)Q;Tri

P

3 rv
Rl 0)—2!~ + R0 O)—}—!-

@y

(39)

basis. It is immediaiely apparent

from (39) that the correction is of the order of the Riemann curvature coefficients.
The general expression for the coordinate acceleration is given by (18) of I. The coordinate acceleration obtained from the
exp. definition of observation, 4., , can be written in terms of coordinate acceleration derived from the parallel transport

definition of observation, 4, , and a correction as

0
4! dr -
A =] = —_ -2
exp. A 2 [ Arp,, r dt Bn (so(t )r t)V+ Cs
3z

A,N=I“"(— ar 5 +D) ,
fz(u

(40)

(41)

T4t solt ) [B (soft ), )V 1°[BR2 (so(t), 1)V 1°

C=-rI-

I st solt )[B (solt ), £ )7 17 (B (soft ), 1)V 12
258 solt )[B (solt ) )P 1°[BR (so(t), )7 1P | °

(42)

I3 st solt LB (soft ), 1)V 17 (B (soft), £)V 12/ 10

T# 4(t, so(t)) is defined by (20) in L and [B12 (se(t), 2)V 17 is
the o-component of the vector expression within the brack-
ets. The correction terms for the coordinate acceleration are
also of the order of magnitude of the Riemann curvature
coefficients.

IV. CONCLUSIONS

In this paper we have used our definition of observation
based on the mapping of tangent spaces into tangent spaces
via exp. to obtain expressions for the coordinate velocity and
coordinate acceleration. The results are stated in terms of the
corresponding expression obtained from our parallel trans-
port definition of observation and a correction term that isa
function of the Riemann curvature tensor. Thus the differ-
ence between the formulas for the coordinate velocity and
coordinate acceleration obtained from the two definitions of
observation will be numerically small in most situations.
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This difference arises principally from the fact that exp. is
only a radial isometry while the velocity vector of the geode-
sic particle is normal to the geodesic y,(s). Finally, exp. isnot
defined through conjugate points. However, this presents no
basic difficulty when null geodesic photons are employed to
make the observations.
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Vacuum handles carrying angular momentum; electrovac handles carrying

net charge®
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Nonsimply-connected spacetimes can have locally defined Killing vectors that are globally
defined only up to sign (pseudovectors). We show the existence of asymptotically flat vacuum
spacetimes which are axisymmetric (have a rotational Killing pseudovector), are topologically
trivial outside a spatially compact region, and which nevertheless have nonzero angular
momentum. An analogous construction establishes the existence of source-free Einstein—
Maxwell spacetimes which are topologically trivial outside a spatially compact region and which
nevertheless carry nonzero net electric charge. The existence of such spacetimes leads to a new
variant of the combined positive energy-cosmic-censorship conjecture: Given an asymptotically
flat vacuum or electrovac initial data set which is axisymmetric and geodesically complete, the

asymptotic mass, charge Q, and angular momentum J satisfy m>[Q? + (J /m)

PACS numbers: 04.20.Cv

I. INTRODUCTION

In a nonorientable spacetime, the duality invariance of
the electromagnetic field is broken, because there is no glo-
bally defined, totally antisymmetric tensor. A remarkable
consequence, pointed out by Sorkin,' is that the topological
model for charge (a nontrivial spatial topology threaded by
an electromagnetic field) predicts the nonexistence of mag-
netic charge if one assumes that:

(a) Spacetime admits a Cauchy surface M which is com-
pact inside a neighborhood of spatial infinity.

(b) All prime factors (nontrivial topological structures)
of M are microscopic. That is, handles do not join measur-
ably distant points of M (points with, say, larger than nuclear
separation), nor, by (a), do they bridge two asymptotically
flat regions.

(c) The electromagnetic field is described by some anti-
symmetric tensor f,, satisfying V,f** =0, V,, f5,,=0.

A priori, one does not know which combination,
fsina + *fcosa, to identify with the usual electromagnetic
field tensor F, defined on the simply connected part M of M
{M is obtained by excluding from M the interior of spheres
containing its.prime factors). However, the observed nonex-
istence of magnetic charge is the statement that for one
choice of @ the net flux §, F,;dS ** vanishes through any
sphere o C M.? If o encloses an orientable factor of M,
Stokes’ theorem implies that both §, £, ,dS “ and
$* f.5dS ° vanish; there is no net charge of any kind. If the
interior of o is nonorientable, then an extension of Stokes’
theorem® implies $* £, ,dS ** is still zero; but §, f, ,dS **
does not in general vanish. Thus the model conforms to ex-
perience: There is a choice (@ = 0) of a for which
$, F,;dS “” through any (larger-than-nuclear) sphere o
vanishes, and one can detect only electric charges until it
becomes possible to probe the microscopic topology, to mea-

“Work supported in part by the National Science Foundation under grant
PHY 79 06657.
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sure, for example, the flux through just one of the entrances

to a handle.
There is a formal resemblance between the definition of

charge as flux through a two surface and the definition of the
angular momentum of an axisymmetric spacetime N with
rotational Killing vector ¢ “. The angular momentum J asso-
ciated with ¢ * may also be written as a surface integral,
namely

J= L§ Va¢BdSag9 (l)
87 o,

where o denotes a sphere at spatial infinity; if N is a vacu-
um spacetime with spatially compact interior—i.e., satisfy-
ing assumption (a) above—then J vanishes {even when ¥ is
nonorientable). We will find, however, that J can be nonzero
if N has a somewhat weaker symmetry—a rotational Killing
vector defined only up to sign. In Sec. I1, below, we will
establish the existence of vacuum spacetimes which have
compact interior, are axisymmetric in this weakened sense,

and whose angular momentum is nevertheless nonzero.
In Sec. III, we similarly show that nonorientable topo-

logies carrying net charge arise as solutions to the Einstein—
Maxwell equations. The proofs in Secs. II and III show the
existence of asymptotically flat vacuum (or electrovac) initial
data; that the Cauchy development will remain asymptoti-
cally flat is known for finite time evolutions.* In Sec. IV, on
the basis of the cosmic censorship hypothesis and Gannon’s®
singularity theorem for topologically nontrivial spacetimes,
we conjecture that any asymptotically flat, axisymmetric,
electrovac spacetime must satisfy m > (e2 + J 2/m?)'/?,
where e, J, and m are the asymptotic charge, angular mo-
mentum, and mass, respectively.

Spacetime indices will be Greek, and spatial indices
Latin. Our signature is — + + +, and we set
VeV, v°=1R v and R, = R,,,. Our notation for in-
tegrals has already been mentioned in footnote 2.

The portion of this work dealing with angular momen-
tum in axisymmetric vacuum spacetimes is also discussed in
S. Mayer’s Ph.D. thesis.*
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Il. VACUUM HANDLES CARRYING ANGULAR
MOMENTUM

Let N be an asymptotically flat spacetime with a rota-
tional Killing vector ¢ “ defined at least on a neighborhood
of spatial infinity. A spacelike hypersurface M of N will be
said to have compact interior if it is complete and has only
one asymptotic region—if, that is, it can be compactified by
adjoining a single point at infinity. If ¥ is a vacuum space-
time with topology R X M, where M has compact interior,
and if ¢ “ is globally defined, then the angular momentum
associated with ¢ “ vanishes

sm:f Vg ds,, = f V,VAds,=0. ()
T, M

Stokes’ theorem has been used to integrate by parts,” and the
final equality follows from the Killing identity

VsV =R47% (3)
and from the vacuum field equation R *; = 0.

A nonsimply-connected spacetime may, however, have
a weaker symmetry, which will be called a Killing pseudo-
vector field.

Definition: A pseudovector field on N is an assignment
to each point peN of a pair, {4 “(p), — ¢ “(p)}, of vectors at p
such that on any simply connected submanifold of M, ¢ “ is
itself a smooth vector field. (Pseudotensor fields are analo-
gously defined.) A pseudovector field is thus a vector field
up tosign, and it gives rise to a true vector field on the univer-
sal covering space N of N. A Killing pseudovector ¢ * is a
pseudovector field that Lie derives the metric

Vids, =0. (4)

For example, if one constructs a Mobius strip by identifying
left and right edges of a rectangle, a constant vector field
parallel to those edges becomes a Killing pseudovector of
the Mobius strip.

In what follows, the word axisymmetric will, for bre-
vity, be retained to describe a spacetime having a rotational
Killing pseudovector. The remainder of this section will be
devoted to proving the existence of axisymmetric vacuum
spacetimes whose spacelike hypersurfaces have compact in-
terior and which nevertheless have nonzero angular momen-
tum. Specifically, it will be shown that on some three-mani-
fold M with compact interior, one can find axisymmetric,
asymptotically flat initial data which satisfies the vacuum
constraint equations and has nonzero angular momentum.
We are then guaranteed a finite time evolution: a vacuum
spacetime N in which M is isometrically embedded and
which exhibits the axisymmetry and nonzero angular mo-
mentum of the initial data. This time development will also
be asymptotically flat at least for some finite evolution.*
Note that in a neighborhood of spatial infinity, M will have a
true Killing vector and Eq. (1) will therefore continue to
provide a well defined angular momentum.

A vacuum initial data set is a triple (M, g,, 0., ), Where
M is a three manifold, g,, a positive definite metric on M,
and p,, a symmetric tensor on M (which will be the extrinsic
curvature of M in the spacetime N evolved from the data),
satisfying
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D,(p* —g*p) =0, {5a)

R —p,p*—p*=0, (5b)
where D, is the covariant derivative associated with g_, , and
r=p-,.

The set (M, g, ,p.,) will be called axisymmetric if there
is a rotational Killing pseudovector, ¢ “ on M which Lie
derives both g,, and p,,. The angular momentum J can be
written in terms of the initial datag,, ,p,, as follows. Suppose
that M is an axisymmetric spacelike hypersurface of an axi-
symmetric vacuum spacetime N and let ¢, be the unit normal
to M. Let o, be any sphere in M enclosing all nontrivial
topology [any sphere for which (M — into_ }~(R* — a
ballj]. If n,, is the unit normaltoo_,

8mJ =J- V.85t °n”dS,
- f 6V 1,1°dS,

_ f Py 1S,

where £,¢“ = 0 was used in the second equality. In this last
form, J is expressed solely in terms of tensors on the three-

manifold M {tensors orthogonal in all indices to #_). Thus if
B shy P, and g, denote the pullbacks to M of @, .1, ,p.s,

and g, we have

8] = f Py °n® dS. (6)
S

Finally, we recapitulate a definition of asymptotically
flat initial data.® Let M be a compact manifold and let
M =M — {P}, Papoint of M. Then an initial data set (M,
8.0-Dap) 18 asymptotically flat at spatial infinity if there exists
a scalar field £2 and a metric g, on M such that

(i) £2is smooth on M and C ?at P, g, is smooth on Mand
Cc'atP g, =02%., onM,and

2=0 D,N=0, D,D,0=2g, atP,

where D, is the covariant derivative associated with g, ;

(1i) pop =12p,, is bounded in a neighborhood of P;

(iii) the tensors 22 V2 E_, and 2 '/? B,, admit regular,
direction-dependent limits at P, where (raising indices with
£7° and using the covariant derivative D, of £, ),

E:zzb = ﬁab - ﬁamﬁbngmn + ﬁﬁab ’

Eab = émn{aD mﬁnb)
are parts of the (spacetime) Weyl tensor.

In our existence theorems we will begin with smooth
fields g, and p,, on the compact manifold M and will then
construct a conformally related vacuum initial data set on
M, with

Bao = ¥ 8us> (7

Par =¥ Do (8)
(¥ is easier to use than 2 =¥ 7). Let r be the geodesic dis-
tance from P with respect to the metric g,, on the compact
manifold M. Then to prove asymptotic flatness of (M, £,
P.») it suffices to show that (a) ¥ is smooth and positive on M,
(b) near P, ¥ has the form ¥ = 1/r + ¢, where ¢ is continu-
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ous at P, and where (c) D, ¢ and 7 D,D, ¢ have regular
direction dependent limits at P.

In less esoteric terms, conditions (a){c) imply the exis-
tence of a chart £ on M (take % = x'/r?, where x’ are geodesic
coordinates of g, about P} in which the components of £,
and j,, are smooth on M and have the asymptotic behavior

£, =6; + o), 9.8y = O3, 3.9.8; = o),
By =0 )3y = O,

The point P of M, of course, plays the role of the “point at
infinity” of M.

Theorem 1: On some manifolds M with compact interi-
or, there exist axisymmetric vacuum initial data sets (M,
&.5+Pq5) which are asymptotically flat and have nonzero an-
gular momentum.

Proof: We first establish three lemmas.

Lemma 1: Let M be a compact three-manifold with
positive definite metric g,, whose scalar curvature is every-
where positive. Then there is a conformally related, asymp-
totically flat initial data set (1\7, £.,0), whereM =M — {P],
some PeM. (This result was suggested by Geroch.® Its impli-
cation—the fact that to any compact three-manifold M ad-
mitting a metric with positive scalar curvature R corre-
sponds an asymptotically flat space (1’\:1", 8., ) With vanishing
R—is mentioned by Schoen and Yau.)'’

Proof: Since p,, = 0, the momentum constraint (5a) is
automatically satisfied. Under a conformal transformation
of the form (7), the Ricci scalar becomes

R= —8¢~5D2—|R)¥, (9)
whence the Hamiltonian constraint (5b) will be satisfied if
OV=(—D*+R)¥=0 (10)

on M. If, following Geroch,® we set OF = 8, on M, with §,
the covariant & function at P, then we will see below that
¥ > €> 0 everywhere (thus g, will be positive definite) and
that asymptotic flatness of (M, g,,) will be guaranteed as
well. Now 8,eH _,(M ), where H,,(M ) is the nth Sobolev
space.'' Because R is positive definite, @ is positive definite
and ker® = 0. Because @ is symmetric (@' = @) the index
of ©,

ind@® = dim ker® — dim ker®°,

vanishes as well. Then by a theorem due to Seeley'? @ is an
isomorphism from H, (M ) to H, _ ,(M ) for all integers k. In
particular, there is a ¥ in H,(M ) for which @¥ = §,. Fur-
thermore, because @ is C * and ellipticon M, ¥is C © on M
by the local smoothness of solutions to elliptic equations. '

To prove (b) and (c), pick Riemann normal coordinates
x' about P so that x/(P) = 0] and write ¥ in the form

1 1 1 xix/
V= — 4+ — (R, — —6,R)P)=—
r 12 R, 4 Y &) r
1 1 Xk
+ E(V.’Rjk — VR liajk - TviRajk) ;
+ v, (1)

where r = [Z(x‘V] /2 Then, using
VI1/r) = 8(x) = 5, (x),
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we find that @¥ = §, has the form

x'x xxixkx! x..x"
@w =Aij T +Bijkl ‘_'3— + Ci/'klmn T + D,
(12
where 4;,B;;,C jimn» and D are smooth. The right-hand

side of (12) is C %,a > 0 and all the coefficients in @ are
smooth. Thus ¢ is C? and Eq. (11) implies that the require-
ments (b) and (c) for asymptotic flatness at spatial infinity are
satisfied. )
Finally, ¥ > € > 0 follows by noting first that ¥ is posi-
tive in a neighborhood U of P because ¥~ 1/r. Then ¥ can-

not be negative on the compactset M — U , for if it were, it
would have a minimum at some point ¢ and there R¥ <0,
— D?¥<0, contradicting (10). It now follows from (10) that
if ¥ = 0 at some g, all derivatives of ¥ vanish there as well,
and by a theorem of Aronszajn,"* ¥ would then have to van-
ish everywhere, contradicting ¥>0on N. Thus ¥>€>0
everywhere. [

Lemma 2: Let A and B be Banach spaces and T, a fam-
ily of continuously differentiable maps of a neighborhood ¥V
of ayeAd into B. Let T j(a,) be an isomorphism of 4 onto B and
suppose A continuously parameterizes 7, and T ;. Then for
sufficiently smalil A, there is an open set UC V such that the
restriction of T; to U is a homeomorphism onto an open
neighborhood of Ty(a,) in B.

Proof. The proof is virtually identical to that of the im-
plicit function theorem. For sufficiently small AR, beB, T ;
is an isomorphism and the map

Sla)= ~(T1)7'[Tila+ap) —Tofa) —b]+a (13)
is a contraction in a neighborhood N of Oe4. Hence S has a
unique fixed point, an gaeN for which S (a) = a. This a satis-
fies T, {a + a,) = Tyla,) + b. Thus a + a,, is the unique solu-
tion in the neighborhood a, + N of a, to the equation
T, (a) = Tofa,) + b.

Lemma 3:Let M, g, beasin Lemma 1 and letp,, bea
smooth tensor field on M with D, p® = 0, p°, = 0. Then for
sufficiently small real 4, there is an asymptotically flat initial
data set (M, &, (A ), A5,,), where M and g, (A ) = ¥"g,, are
as in Lemma 1, and where

Pap = W—zpah' (14)

Proof: Because D,5,° = ¥ ~°D, p,*, the momentum
constraint is automatically satisfied. As in Lemma 1, we
need only show the existence of a ¥, satisfying conditions
(a)—(c) and for which R satisfies the constraint (5b) on M:

R —p,p" =0,
or

@/{WAE(Dz—flKR)W/I +s“l({2pabpab"p/1_720~ (15)
Again we seek a solution to

o,V =65,

on M. If we write ¥, = ¥, + ¢, with ¥, the (unique) solu-
tion to @,¥, = 6, Eq. (16) becomes an elliptic equation for
¥, , namely

0,9, =0u); + (A 2/8)pabpab('1/0 + ?/’,1);7 =0.
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For ¢, in Hy(M) with ||¢, ||, sufficiently small, ¥, + ¢, is
bounded away from 0. Therefore 6, maps to H,{M ) a neigh-
borhood of 0 in H,(M ). Moreover, 8, is continuously differ-
entiable at ¢, for ¢, near O in H,(M ), with derivative the
linear map 6 ;: H,(M }—H (M) given by

6 ¢—[0, — 7 0Dy (Wo + )%

ForA =0,0, = @,isanisomorphism from H,(M |to H,(M ),
whence, by Lemma 2,8, ¢, = Ohasasolutiony,; eH,(M ) for
A sufficiently small. By the construction of the proof.of
Lemma 2, 4, will be close to O in H,(M)and so ¥,

= ¥, + ¢, will be positive on M for small . By an argu-
ment analogous to that used in the proof of Lemma 1, ¥,
will behave near P like 1/r + ¢, ¢ satisfying (c). Finally, to
show that ¥, is smooth on M, we proceed by induction on
the differentiability index k. Let {2 be any smooth submani-
fold with {2 compact in M and suppose ¥, isin H, (.() ). Then
because ¥, + ¥/, > €>0on 2 [and ¥,eC ~(2)}, p* p,,,,
(¥y + ¥,) " "eH, (12), k>2."° Because ¢, satisfies on 2 the
elliptic equation

Or = Ap,p™ (¥ o+ ¥,

with right-hand side in H, (2), ¢,eH, . ,(£2). By construc-
tion, ¢ /), is in H,((2), whence ¢, H, (2), all k; that is, ¥,
€C =(£2). Finally, since £2 was arbitrary we conclude that ¥,
=W, + 1, isin C~(M). 0]

To prove Theorem 1, we will pick a particular compact
manifold M, a metric g,,, with a rotational Killing pseudo-
vector and with positive scalar curvature R. We will then
find an axisymmetric divergence-free tensor p,, that yields
nonzero angular momentum on a conformally related as-
ymptotically flat manifold.

Let & be the cylinder of constant curvature R = 2/a?,
constructed as a product S 2 X I of the metric sphere with the

Ay

O%
By
B-

O_
A

FIG. 1. Boundary spheres o, of the cylinder S > X[ — 1,1] are represented
here. The manifold M of Sec. Il is constructed by identifyingo, ando _ in
such a way that points labeled by the same letter (e.g., 4, and 4 _) are
identified.
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closed interval [ — 1,1]. Let ¢ “ be a rotational Killing vector
of ¢ and let ¢€[0,277] parameterize its orbits. M is construct-
ed by identifying the boundary sphereso = = S?X{ — 1}
and o, = S?X {1} after an inversion. In terms of the natu-
ral cylindrical coordinates (6,4,2), the identification is (see
Fig. 1)

(6,4, — 1)—(m — 6,2 — ¢,1). (16)

Then the induced metric g,, of M is smooth with constant
curvature R = 2/a” and Killing pseudovector + ¢ “.
Let

Pab = 0P, (17)
where w, 1s a pseudovector on M Lie derived by ¢ “,
£40, =0. (18)

The projection of the momentum constraint {5a) orthogonal
tod °

K< D,p* =
where K °, = 8, — ¢ °$, (¢ ‘6.) ~',can be written in the
form

K‘.»"D,(¢“,)D,¢ =0, (19)
where Killing’s equation (D ,¢,, = 0) and the identity

¢, =¢ b¢bDa¢

have been used (¢ is a pseudoscalar on M ). The projection of
(5a) along ¢ “ takes the form

D, (w°¢,8"°) =0, (20)
after Killing’s equation and (18) are used. Then, by choosing
w“=€“"cDb¢Xc(¢d¢d)”, {21)

where . is a curl-free vector field (D, y, , = 0), both projec-
tions (19) and (20) of Eq. (5a) will be satisfied. The pseudo-
vector o® will be axisymmetric and smooth if £,y, = 0 and
if y,, vanishes sufficiently fast as ¢, ¢ “—0, i.e., near the axis
of symmetry (we find such a y, below).

Given such a y,, Lemma 3 now guarantees the exis-
tence of an asymptotically flat initial data set (A?,g",,,, Pab)s
withp,, = ¥ “?p,,, 8., = ¥ *g,,. for a scalar ¥ defined on
M = M — {P].Bychoosing Pto lic on the axis of symmetry,
we make the conformal factor ¥ axisymmetric.'® Conse-
quently (Mg, 5., ) will be axisymmetric with Killing
pseudovector ¢°.

The corresponding angular momentum J is conformal-
ly invariant:

87rJ=f 5.°*dS, =f p.8°dS,,

where o is any sphere in M enclosing the handle (equiv-
alently, as seen from the other side, o, is any sphere enclos-
ing P). To evaluate J, we will use the construction of M from
the cylinder ¥ with boundary spheres o, and ¢ _ identi-
fied. Let4,,B,,A_,B_,bethepointsof o, and o _ thatlie
on the symmetry axis [so that in the natural cylindrical co-
ordinates, 4, ,is(z= +1,0=0),B, is(z= +1,0=7),
A_is(z= —1,0=m,andB_is(z= — 1,60 =0)].In M,
A, and A_ (and B and B_) are identified (see Fig. 1).
Claim:Let y beany scalaron ¥ — { P j withD_y =y,
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where y. is the vector field introduced in Eq. (21), and sup-
pose that y is constant in a neighborhood of each piece of the
symmetry axis. Then

J=}lxd_) —x(B_) + xl4.) — x(B,)]. (22)
To prove the claim, notice that Stokes’ theorem implies

J= f P8, dS, = —

after Killing’s equation and (5a) have been used to eliminate
the volume integral. Here dS, = n,dS, where n, is the out-
ward normal, + V_z, on o ; the minus sign in Eq. (23)
comes from the fact that the outward normal to a sphere at
infinity used to define J is an inward normal when o is
regarded as a sphere enclosing Pin S ? X I. Equations (20) and
(21) now imply

8/ = — f 4[4 °€*D. 4D, x(6,,6 ™)' 18, dS,,

= —( +:f )D[a¢Db1XdSab
(J j D, #)dS ™. (24)

We can restrict the integral in (24) to parts of o, and o _,
where D,y 5£0: let 6, and 6_ be spheres o, and o_ with
small disks about the axis removed. Then

81TJ=(J;+ —L D, $)dS,

([ L oo

=34lxl4,) = x(B,)+x4_)—xB_)],
as claimed.

To conclude the proof of our main theorem, we need
only show that we can choosea y on C — {P } suchthat D _y
is smooth on M and J is nonzero. But this is easy: Choose a
constant j#0, and a function f(8 ) with f(@) = Onear § =0
and f(0) = — (1/2m)j near 8 = 7r; let y be smooth with

/(6) in a neighborhood of o, ,
1

0)+ —
) .

p*9, dS,, (23)

o, +o_

v

xX6,4.2) = j in a neighborhood of o _,

and with y constant on a neighborhood of each piece of the
symmetry axis. Then D,y is smooth on M and J = ;.0
Expressions of the form (24) are valid under more gener-
al circumstances. For stationary, axisymmetric vacuum spa-
cetimes with Killing vectors ¢ “ and ¢ “ (e.g., the exterior of a
rotating star, or the Kerr geometry), one can define a scalar ¢
for which V¢ is in the ¢ “~¢ ¢ plane, 1 °V ¢ = 1, and
¢ °V,t=0.On a t = const surface, p,, and w, have the
forms (17) and (21), respectively, with

Yo = Doy =6 (— g™V, 19,1)" €, D (;‘;)¢

X is constant along the upper and lower symmetry axes and
has the asymptotic form

y~2Jcos 8(3 —cos?@) + O(1/r),

and

113 J. Math. Phys., Vol. 23, No. 1, January 1982

J={[y(6=0)— y(0=m].

Il. ELECTROVAC HANDLES CARRYING NET CHARGE

An initial data set for the Einstein~Maxwell equations
is a quintuple (M, g,.,, P, E°, B°), where E° and B ° are
divergence-free vector fields,

D,E“=D,B°=0, (25)
and where
D, (p* — g*’p) = 2¢"E,B,, (26)
R —p“p,, +p*=2E*+ B?) (27)

On a nonorientable spacetime exactly one combination,
E“sina + B cosa, is a true vector. If we call the vector B ¢,
then E “ is a pseudavector (an axial vector, in this case}, and
by the generalization of Stokes’ theorem, Eq. (25) implies
that $ B dS, = O for any sphere o enclosing a prime factor
of M. In general, however ¢ _E °dS, #0 when o encloses a
nonorientable prime factor; we want to show that such elec-
tric fields with asymptotic charge can arise as solutions to
the Einstein-Maxwell equations on spaces with compact
spatial interior. We take B® =0 and p,, = 0 and prove

Theorem 2: On some manifolds M with compact interi-
or there exist asymptotically flat Einstein—Maxwell initial
data sets (M, §,,, E “) which have nonzero asymptotic
charge.

To the previous definition of asymptotic flatness we add
the requirement that £, regarded as a tensor field on M,
have a direction-dependent limit at P; that is,Ea ~1/PonM.

The proof of Theorem 2 is essentially the following

Lemma 4: Let M be a compact three-manifold (not nec-
essarily orientable} with positive definite metric 8., Whose
scalar curvature is everywhere positive. Let £ * be an axial
vector fieldon M = M — {P},somePeM, withD,E“ = Qon
M. Suppose that in a geodesic chart {x'} about P,

E'={(x/r)1 + 4%, xx*), (28)

some smooth 4 ', . Then for sufficiently small real ¢, there is
an asymptotically flat initial data set (M, g, , eE ), where
M =M — [P}, some PeM, where §,, = ¥'g,,, and where
E=¥,E,.

Proof of Lemma 4: Because D,E® = W 7 °D,E*E“ is
divergence-free. We need only show the existence of a ¥,
satisfying

O,¥,=(D?>— 1R\, + ¢ E E, ¥, * = bpy (29

where ¥, is smooth and positive on M and has the form
1/r + ¢ near P, some ¢ satisfying condition (c).

Just to show that @,:H,—~H, _, is an isomorphism re-
quires some discussion, because the Fredholm alternative
seems to be established in the literature only for orientable

manifolds. Let M—M be the orientable, two-sheeted cover

of M. Because 7 is a local 1somorph1sm ®, determines an
elliptic operator @ on M. @ is again symmetric and posi-
tive definite, so ker. @ =0, ind @ =0, and thus @ is an
isomorphism H (M )—H, _ (M }. Now the pullback to Mof
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any feH, _,(M}is a function f = forr invariant under the
involution [ M—»M {7 mterchanges the inverse images
{p1,p,} of each PEM ). Since @ is alsg invariant under /, if @
satlsﬁes @ = fso does WOI But @0 an isomorphism
means ¥ is uniqye: Wo o] = W Thus, there is a (unique)
YeH (M) with W= Yo, and @, is an isomorphism.

Let

Y, =¥, —(/8)r + ¢, (30)
where ¥, is the unique solution to

Op¥o = bp (31)

and r is any smooth scalar on M that agrees near P with
r=(x} +x3 +x3)"? (defined in terms of the geodesic
chart {x'}). The symbols f;,...,f;, will denote scalars on M that
are smooth on M and C * at P, From (28) and (30), and using

= 1/r + £, we find
b 102+ f00
EW 3= — +f, —-
(1 'f6+r¢e)
Then, using @y = 2/r + f;, we have
9e¢eE@e We - 5}’
L o St T2 + /50

W + e
40 U+t F

+ ey

and (29) becomes 6,9, = 0. Because f;,cC M ), 6, maps a
neighborhood of 0 in H,(M ) to H,(M ). Because @, is an iso-
morphism, 6|, _,:H,(M }—~H,(M )is an isomorphism for e
sufficiently small. By Lemma 2, 6, is an isomorphism from a
neighborhood of 0eH,(M ) to a neighborhood of OcH (M ).
Then for small e there is a ¢, in H,(M ) satisfying 6y, = O,
and ¢, is smooth on M (as in the proof of Lemma 3). Thus the
conformal factor ¥, = ¥, — (¢*/8)r + 1, is smooth on M.
Because ¢, eH,(M )| C C4M ), 8,¢.€C (M ); hence ¥,
€C***(M)and ¥, = 1/r + ¢, ¢ satisfying (). Finally, since
¥,>€e>00nM,soalsois ¥,, for e sufficiently small. (Note
that with this ¥,, and with E, defined by (28), £, = ¥ E,
has a regular, direction-dependent limit at P, as required.)(]
Proof of Theorem 2: We again construct M from the
cylinder § 2 X I with its natural metric, but this time we make
the nonorientable identification of the boundary spheres o

(6,0, — l)—>(m — 0,¢,1).
We now define a vector field E“on S * X — {P ], where Pis
the point z = 0, § = 0. Let a be any smooth axisymmetric
scalar on S2XJ — {P ]} satisfying
ez(z* + a*8?)~"/2, in a neighborhood of P
+ e(1 + cos 8), in neighborhoods of o
+e/2, 8=0,2z20
0, 6=m,

and Va = 0(sin’@ ) near the symmetry axes (6 = 0,7); (it is
easy to verify that such @’s exist). Then E ¢ = €**D,¢D.a is

smooth and divergence-free on S *XI — { P}, and its flux
through a sphere o enclosing P is

a =

J. E®dS, = (Qwp — Xporeom 127 = 41re, (32)

while
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J E“dS, = 2re,

where the outward normal + V,zis taken in each case.
Moreover, E“ = + (¢/2a’)Vznear o , so E “ is a smooth
axial vector field on M = M — {P}. Finally, in a geodesic
chart about P, E ‘ has the form (28).

Lemma 4 now guarantees an asymptotically flat initial
data set (M £.,» E,), and we need only check that
So. E“dS,, #0. But, like angular momentum, the charge is
conformally invariant, § E ° dS, = $E °dS,, whence, by
(32),

E:_‘Sﬁgads; — e
4

(The charge seen at o is — e because flux emerging from Pis
flux coming in from «.)OJ

IV. A CONJECTURE

A theorem due to Gannon® shows that any initial data
sets of the type constructed here (asymptotically flat with
nontrivial topology) evolve to geodesically incomplete spa-
cetimes. If the cosmic censorship hypothesis is true, the ulti-
mate fate of such initial data will be a set of charged, rotating
black holes, and these black holes will satisfy the inequalities

mi>Q7+J}/ml. (33)
The time evolution of axisymmetric electrovac initial data
with angular momentum J and net charge Q conserves both

J and Q, while the total mass m can only decrease. By (33),
the final mass will then satisfy

mp=Yym >3 (QF +Ji/mi) *>(Q% + T /m?)”.
We therefore conjecture that all complete, axisymmetric, as-
ymptotically flat electrovac initial data sets with net charge
Q, angular momentum J, and mass m, satisfy
m}(Q 2 + JZ/mZ)l/Z.

An analogous conjecture for initial data sets with
trapped surfaces was first suggested by Penrose and has been
discussed by several subsequent authors."”
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The form of Killing vectors in expanding .»» spaces
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The Killing vector structure of those spaces of complexified general relativity known as
expanding hyperheavens is investigated using the methods of spinor calculus. The Killing
equations for all left-algebraically degenerate Einstein vacuum spaces are completely integrated.
Using the available gauge freedom, the resulting homothetic and isometric Killing vectors are
classified in an invariant way according to Petrov-Penrose type. A total of four distinct kinds of
isometric Killing vectors and three distinct kinds of homothetic Killing vectors are found. A
master Killing vector equation is found which gives the form that the Lie derivative of the metric
potential function W must take in order that it admit a given Killing vector.

PACS numbers: 04.20.Cv, 04.20.Me
1. INTRODUCTION

The most general algebraically degenerate solutions of
the complex Einstein’s vacuum field equations are called
J¢° ¢ spaces.' These spaces have a curvature tensor with a
self-dual part that is algebraically degenerate (i.e., it pos-
sesses a multiple Debever—Penrose vector), while its anti-
self-dual part is completely arbitrary. This degeneration is
geometrically characterized by the existence of a 2-param-
eter congruence of totally null 2-surfaces which foliate the
four-dimensional manifold under consideration.” On the
other hand, these spaces are also characterized algebraically
by the possession of a Hertz-like potential function W. This
function determines the local metric structure of the space
and is itself subject to a single (nonlinear) partial differential
constraint,>* analogous to the wave equation that Hertz’s
potential must satisfy.

The general class of #°5 spaces may be divided into a
number of different subclasses. It is clear that all real-valued
(Minkowski signature), algebraically-degenerate Einstein
spaces are special cases of them. This is of course the princi-
pal reason for our interest in these complex solutions, al-
though quantum gravity theory may in fact have other uses
for complex-valued solutions as well as those sections with
Euclidean signature. However, staying on the complex level,
it is useful to subdivide by the special properties of the null 2-
surfaces. In Ref. 3, all #°7% spaces were divided into ex-
panding (case II), plane {case I), and left-flat (#” spaces). The
geometrical meaning of this division has its basis in the be-
havior of the variation over a given 2-surface of the vectors
normal to the surface. In particular, the normal components
of the covariant derivatives along the surface of the normal
vectors form a 1-form referred to as the (complex) expansion
of the leaves of the congruence. The general case is then
simply that in which the expansion is not zero. On the other
hand, if the expansion is zero, then the covariant derivatives
of the normal vectors lie totally tangential to the 2-surface in
question. Therefore, it is possible, in that case, to choose the
normal directions to all be parallel. It is then reasonable to
refer to such a situation as ““plane.” The case of #” spaces is
simply that in which the self-dual part of the curvature actu-
ally vanishes. In this case there is more than one (indepen-
dent and distinct) 2-parameter family of such 2-surfaces. (A
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more technical discussion of this division is given in Ref. 1.)

The fact that these spaces are describable by scalar solu-
tions of a single partial differential equation makes it possible
to study various properties of them without necessarily hav-
ing the general solution of the equation. Since this is such a
large class, it is reasonable to work toward a better under-
standing of its structure by studying various additional
structures, such as symmetry properties. In the case of #°
spaces it was shown some time ago” that the requirement of a
Killing structure on the space as well could lead to a consid-
erable simplification in the equations which must be solved.
More explicitly the coexistence of the “Hertz” structure
typified by the existence of the function W, and the Killing
structure given by the existence of (at least) one Killing vec-
tor gives rise to a coexistence relation referred to as a master
equation. (Put quite differently, the set of 10 Killing’s equa-
tions can be completely integrated, leaving only as a residual
consistency condition a single first-order partial differential
equation for W, in an analogous manner to the integration of
the 10 vacuum Einstein equations down to the constraint
equation which W itself satisfies.) In any set of coordinates
adapted to the existence of the special null congruence this
equation gives the form the Killing vector must have, modu-
lo some functions which are constant on any given leaf of the
congruence, and the form the Lie derivative (in the direction
of the Killing vector) of W must have, again modulo some set
of functions constant on each leaf.

The gauge functions which appear in the master equa-
tion and the description of the Killing vector can be consid-
ered as determined by these equations if W is given in a spe-
cific set of coordinates. On the other hand, more generally
these functions characterize the available gauge freedom in
the choice of suitable coordinates. By considering all gauge
transformations which preserve an appropriate choice of tet-
rad and coordinates, it was shown in Ref. 5 that the quotient
of all the modulus functions in the description of the Killing
vectors by all the functions in the description of the gauge
group is a five-dimensional set. That is, that any single Kill-
ing vector in a given " space can always have appropriate
coordinates chosen which are adapted for it in such a way
thatit takes on one of only five distinct simple forms (without
any arbitrary functions). In that case, insertion of each of
these forms into the equation which W must satisfy causes a
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simplification of that equation which allows the determina-
tion of the general solution in four of the five cases.®

In the case of plane 777 spaces the integration of Kill-
ing’s equations has also been performed in general giving an
appropriate master equation’ in that case, although the in-
sertion of this information back into the hyperheavenly
equation has yet to be done. In contrast to the exposition
given in Ref. 5, the discussion of the plane 5¥°5% case was
done in 2-spinorial coordinates that are particularly well
suited for calculations related to this 2-parameter congru-
ence of 2-surfaces, which were first introduced in Refs. 4 and
8. However, the general case of the integration of Killing’s
equations in an expanding 7 7 space has been somewhat
resistant. It is the purpose of this article to give the derivation
of a master equation (for the Lie derivative of i) in the ex-
panding case and to determine the allowed forms which
these Killing vectors may take when expressed in an optimal
gauge, so as to eliminate all arbitrary functions from their
expression.

To describe how this occurs and some uses to which it
may be put, we proceed in Sec. 2 to give a brief introduction
to the technical description of expanding 5757 spaces in a
spinorial notation, while sending the reader to Refs. 1 {or 4)
for more detail. In Sec. 3 we then outline the solution of
Killing’s equations and their attendant integrability condi-
tions, while Sec. 4 is concerned with finding the optimal
gauge mentioned above. Finally, in Sec. 5, we present two
simple examples of the use of these results.

2. EXPANDING 7#77 SPACES

A general 77 space is most efficiently described by a
pair of coordinates conceived of as a 2-spinor [but enjoying
somewhat more general transformation properties than the
usual SL(2, C )] p* which are coordinates along any given leaf
of the congruence, and another pair of coordinates given as a
2-spinor gz which are parameters which label the various
members of the congruence. The 2-surfaces in the congru-
ence are then the integral surfaces of the 2-form

= dg; Ndg". (2.1)

In general, the (nonzero) expansion of the congruence picks
out a special direction on any given leaf, which we specify by
the constant spinor J;, with the expansion 1-form being giv-
en (up to proportionality) by J;dp*.* As has already been
indicated, the structure of the space is essentially given by a
potential function W=W (p", ¢, that must satisfy the hy-
perheavenly equation®

1607 ~0°W )30 6 W)+ W,
—ud*d,4 ~'9,6 T'W + (/KT Bp i
=Np'+7, (2.2)

where 4, 7, and N, are any functions of the ¢, only that
permit the equation to be satisfied. In the statement of the
hyperheavenly equation we have used both the coordinates
p* and a version adapted to the direction of the expansion by

¢=J,p" +«, =K“p,, KT8] = reib (2.3)

where x and 7 are constants and K 4 is complementary to J
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in the sense that the pair form a constant, local spinor basis,
and we have used the abbreviations

9, W=0W /3p", W ,=3W /3", 3,W=0W/dp (2.4)
as convenient abbreviations for partial derivative operations
that will recur many times.

We prefer to describe the metric by a conventional null
tetrad

ds? =2e'0e® + 2% e, (2.5)

which adapts itself in the usual way to a spinorial treatment
via the usual symbols

4 2 B
B e, e E ) A4=1
gt = \/2(8,’ )_\/2( Y

P (2.6a)

and

ds’= —jg"Peg,, =2E ge;. (2.6b)
The 2-spinorial basis 1-forms are simply related to the differ-
entials of the spinorial coordinates:

ei=¢ ’dg;, E*=Q%dg; —dp’ 2.7)
The essential solution of Einstein’s vacuum equations for

7 spaces™ is then given by Eq. (2.2) and the following
equation which expresses the metric in terms of W:

Q4 = — 39495 W + (/T K KP. (28)

As a convenient summary of some of the essential char-
acteristics of these spaces we list here the components of the
conformal tensor in this tetrad,* from which we see how the
various possible complex Petrov types are determined by W,
H, N, and y:
C(S) 0= C(4) C(3)___ __2#¢ 3.

(2.9)

C®=7 ¢ { N JA [ pA'
C (1

=20"{¢ (/119 °K* — /3¢, |[Ni + (1/27)p K " & |
+I B NPt + 7+ 3uW) 5 — (0/27V PP s
+ [2N T = p el Pa + DV + kK3 /7)]0°W §;
Cises = ¢°0i059:95(W — Jud *n*/7).
We can see that 1 #0 is necessary for left-Petrov-type Il or D
while, when 1 = 0, the nonvanishing of N,J “=2v distin-
guishes between left-Petrov-type HI and N. In this last in-
stance N degenerates to a left-conformally-flat space (a right
# space) when J By, 5 vanishes as well as 4 and N;J4. (The
quantity K “N;=2¢ can always be gauged away if desired.
See Ref. 1 for a more complete discussion of optimal gauges
for the form of the C'%,)

We are looking for solutions of Killing’s equations for
the general case of homothetic Killing vectors:

+ (/27K 4 Ju i s

Ky = X080 (2.10)

where y, is a constant, covariant derivatives are indicated by
a semicolon, and K, indicates the covariant components of
our Killing vector. The case y, = 0 corresponds to the usual
case of a pure Killing vector—an isometry—while the case
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where y varies over the manifold—a conformal symmetry—
is known’ to be too restrictive to allow very general Petrov
types. Since, however, we have couched even our coordi-
nates for the space in spinorial terms, it is desirable and con-
venient to rephrase Killing’s equations in a spinorial lan-
guage as well.

In this language, Killing’s equations take the form'

Exs' 2=V "“Ks, %' =0, (2.11)

where the Killing spinor K ? is related to the Killing 1-form
by

K= —1g"%K ,; = #,E® + XPe;. (2.12)

Assuming that y, is a constant, the integration condi-
tions for these equations may be written as

LRSTA =V, Alsr + 2KUAC URST =0,
Mypsry =Kp,4 VPACRSTU — 4YoCrstv + 4lV(R C Vsrul
=0, (2.13)

with similar equations for objects with dotted indices, and
where [, and /57 are symmetric spinors such that

Vi AKSB = lefAB + IABERS - 2€Rs€ABX0’ (2.14a)
or

IRS Z%EABV(RAKS)B! IAB=%€RSVR(AKSE),

Yo= — 4€is€ SV K P (2.14b)

(Note that V,# = gz *“V,, are the spinorial components of
the covariant derivative.)

We next give the results of the complete integration of
Egs. (2.11), as well as a complete, simple classification of
these results. Details'® of these calculations are presented in
the following two sections. As stated above, these results are
restricted to the case where y, is constant.

We find that the Lie derivative of the metric potential
function W must take the following form to admit a given
Killing vector K:

L W=20W+P,
where P is a fourth-order polynomial in p”,
P=(1/27)ps K8 “° — (k/27%pi K o K 56
+ (9 /27K KpJe + 20 KpKe)oo"
+ (¢ 2/213)KEKcK95D’C'E
+ (/2P J K 58P CE — (¢ 2/3nK A€ (2.16)
(g /27K K587 41,
andw =3y, — 8, 4 is functionally the same form found for
plane hyperheavens.” The term corresponding to 2a,A for
plane-spaces was not carried through in these calculations
since, as before, it restricts us to left-flat spaces. The Killing

vector (in a coordinate basis), which corresponds to Eq.
(2.10) of Ref. 7, is given by

ad
K=3§;
* 9,

(2.15)

+(ps6™* — 2o "

= 2 K655 e, (2.17)
-

These two equations, (2.16) and (2.17), contain four appar-
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TABLE I. Classification of Killing vectors.

Left-Petrov  Master equation

Killing vector types allowed ' W=

Isometric

d,. ILD, LN 0

d, 11, D, 111 0

a, I, D 0

a, N (1/37)¢ *e(w, t)

wd, + ¢d,, I1,D (1720 ' + (1767)8 v
wd, + #d, I 0

Homothetic

Xof2td, — 834 +md,} 1L D 0

Yoltd, — ¢d,} 11 _X(DW+(1/3T)¢]e(w!t)
Xol#ds + 19, ) N 2xaW

ently arbitrary functions of g, namely &7, €', A% and. (7
degrees of freedom). In this form, a general solution is not
feasible, but when the integration conditions [L, st and
M ,pcp, Eq. (2.13)] are taken into consideration these results
become more tractable. The final classification is accom-
plished by treating each Petrov—Penrose type separately as
well as dividing the problem into the purely homothetic and
the isometric cases. This results in one distinct kind of purely
homothetic Killing vector per type and from two to four
distinct kinds of isometric Killing vectors, depending on
type (see Table I). All of the Killing vectors are then free of
arbitrary functions of g and are quite simple in form, while
the complete generality of the results is preserved.

3. INTEGRATION OF KILLING’'S EQUATIONS

We are now ready to begin integrating Killing’s equa-
tions. Starting with the simplest triple, £, AB = ¢ T23p 24P
= 0, weimmediately find that #% = ¢ ~*{ap® + 6%}, where
a and &% are functions of g only. Consideration of the
M ,pcp in Eq. (2.13) leads easily to the conclusion that either
a = 0 or the spaces in question are left-flat. Since the latter
are % -spaces, and their Killing vectors are completely dis-
cussed in Ref. 6, we hereafter restrict ourselves to the case
a =0, so that

AB=¢ 285 (3.1)
The first integration condition L ,fi, from Eq. (2.13), is iden-
tically zero, while one part of L, . yields the condition
J;J3;6%4 = 0 and the other part gives a compact expression
for /,,:
liy= — (ud /7K ;8% + 20 ~'76,J W, + (1/7)K 1 J 58",

(3.2)

The second triple £ ,z’m can be cast in the form

E=0=0"(#—-8,0"" -6 p). (33
This is of the form T8, which has the obvious solution
T® = £p” — €, where £ and €” are independent of p¢. Ex-
tracting £” from the above solution gives us an expression for
the other half of the Killing spinor X, ?:

=508 _M? (3.4)
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where, for ease of further calculation, we have defined
MB=p 6% — £p® + €2 (3.5)
We now have expressions for the Killing spinor K, 4in
terms of five arbitrary functions of g, namely 6, €, and £.
The third triple will yield a master equation for ¥, while
remaining integration conditions and the as yet unused sing-
let equation will impose restrictions on the arbitrary func-
tions in the Killing spinor. It is convenient to generate a few
more simplifying conditions before proceeding to the final
integration. Comparison of the direct calculation of /,, with
the expression generated from L,,,* yields
— K€+ (k/TW K854 = T, €. (3.6)
The expression for y, generates a relation between y,, con-
sidered as a given quantity £, and 8%, viz,
4y, = 2& — (4/7W ;K z8%*. Then the condition represented
by M, ,,, = 0 produces a further simplifying constraint, giv-
en by
pl4xe + (3/7M K 38°) = 8,u. (3.7)
Returning now to Killing’s equations and utilizing the infor-
mation gained to this point, the last triple becomes {with 3*
=¢2(3/9gi + Q"% }:
AB —0= alAao_QB)D . 5(AMB; + %¢ 25C_QDC8(AQDB)
. %QS ZMDa{AQDB) _ %é 25C‘Q DCaDQAB
+ %¢ ZM DaD Q AB
_ %¢ 25DQD1A8CQB)C + %¢ ZM(AaCQBK."
+ 85,05, (3.8)
With judicious combination of terms, Eq. (3.8) reduces to
E22AB =0= QD(B(SD"A' + MRaRQAB + 5RQAB.R
— MBI QCug . MP), (3.9)
~ At this point we int‘r_oduce4 a potentialization 4 Bof
Q@ “# having the form Q¢ = ¢ 3’4 #’ which causes (3.9) to
take the following form:

0=03" {64 A8 48,5147 —

— 4yl ® + MR, 4]

— {34 A P} M R 4 3P4 155 —
=d"“R* + H',

(1/7)4 2T K ,6°€

¢ —3M(B.A »’
(3.10)

The first term 3 'R 2'is already in the desired, easily integra-
ble form, while the second term may be cast in this form after
introduction of a potentialization of A “4in terms of W, name-
ly, A" = — ¢ “23'W + (u/7)K *. After this substitution
and appllcatlon of earlier integration conditions, Egs. (3.10)
takes the form 3“7'#) = 0 which imples T2 = Ap® + A .
This new equation can then be written as Jd 8§+ PE=0.
Operating with d; yields the condition d; P = 0, leading to
two new conditions between the integration variables 5”‘, e",
A, and 4 “. When these conditions are applied, the final
equatlon reads  °N = 0 so that we may immediately write

= t(g¢). This last equation is the master equation for W,
and after appropriate sorting of terms, takes the form of Eq.
(2.15). Up to this point we have generated five integration
conditions, these being
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J;J;6%4=0 (fromL,," =0)
Jiet = — k{2 + (1/7W;K 5654
(from L,, 1" = 0 and y,);

w40+ (3/7M,i K854} = 8" (from M.z, =0);

{3.11)
A= — Ww/2AK K654 (from E;,** = 0);
(/K K 5854 — 2u/T)Kg€R =254 °
(from E,,*% = 0).

Conmderatnon of the remaining integration conditions
(M, 22, L125" Ly12*, Lyp,™ and M,,5,) gives rise to three more
conditions on the variables 8%, ¢*, 4 4, and ¢. These condi-
tions will lead to further simplification of the Killing vector
and master equations, as well as aiding in the classification of

the Killing vectors by eliminating the arbitrariness in the
coefficients of Eq. (2.17). They are

0 =3ue;" + 26,0 + (/76 Ksp® V' + (1/7M, €K gu®
+INCT(8,7 + (1/kM €1) + 28, 3N P4
(from M, = 0);
0 = 472K ;654 + 206 ;7% + 6ure + 3uk’K i K 3 K 6%
— KKK I8P 84 1 2P0 N (K ye® — kK 3K o6 )
+ 26728 Ky N B4 — 3urrK ;K 3€%* + k7K ;'K ey
+ 127K K 5K 8% (from Ly = 0 (3.12)
and
0=2urt ;KA 5 + 2uN,J K ;K6 + 2ur8 ;K 3N *4
— QUK AN K J 6% + urK iy K y€®
(from M,;,, =0).
This completes the task of integrating Killing’s equations
E ,;"® consistent with the constraints L, and M 5cp.
4. CLASSIFICATION OF KILLING’S VECTORS

It is convenient at this point to introduce explicit varia-
bles ¢ and w for the q" and to decompose the spinor integra-
tion variables 8%, 4 4, and €* into parts parallel toJ “and K “.
Following Ref. 1, we introduce the following choice of ¢*:

w=J,q", t=K"q,, (4.1)

which implies 73, = J;(3/dq ;)and 78, = K ;(9/3q ;). Upon
setting « = O (the case k70 is only relevant to plane hyper-
heavens which have been dealt with elsewhere’) and taking
account of the first and fourth conditions of Eq. (3.11), 8%,

ya) A, and €* take the form

&' = (1/7aw)K A + (1/7)b (£, w4,
€' = (1/7)elt, w4, (4.2)
A4 = (1/7)elt, w4 + (u/me(t, w)K *.

With these definitions, the relevant integration conditions
become

duxo — 3ub, =au, + by,

3uc, + 2cu, + ™a, + 2b, — 2y,) + Tav,, + rbv, =0,
4ya, + 2ay,, + 2by, + 6t —a,,,,, —vc =0,

— 2ue, +uvb, —pat, — ubf, —4uéa,, — pcu, =0.

(4.3)
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Further progress is facilitated by breaking the investigation
down by Petrov type and also handling the isometric and
homothetic cases separately. We will also utilize the trans-
formation properties of the q”‘ to simplify our calculations.
Thus, we wish to determine the conditions for those trans-
formations of the g ; which allow both e; and E * to trans-
form in a form-invariant way. Define ¢’ ; =¢q';(¢;), where
the transformation matrix is given by D *=(d¢'x /3g ;) with
determinant 4 0, i.e., locally invertible. By first transform-

ing e; and demanding form invariance forg = 2E“ e, we

are led to the transformation equations for e, E A, énd pA,
which are

e’R -——/lDRAeA,
E®=(1/A)D ' ,RE* — he %e*), (4.4)
pR=(1/\D " Rp’ 4 g},

whered = A (w,t),h =h(w,t),{ =& (w,t)andwhere£and A
are related by §, = A ~ /250, . The quantities Dy A

D ~';4,J' s and K ' are determined by the requirement that
J'x, K'g, «' be constant in the new coordinates, and are
given by

Dy = (1/71 135 /3g, — (j/T)K "
D= R = (/7 — aK T " +ah T
‘+‘j/l I/2JA'KIR })
(4.5)
J'x =A'"2Dg A,
, .y Lo
K'x =(aO/J)DRA(KA - é—JA' :

1
where 7'=a,7, J';, K i are constant additional degrees of

freedom for the transformation if J; and K, are, g = g(w),
and j denotes dg/dw. Finally, o'® is

o R=sI"® 4 k&, — kK 'R /7, (4.6)

wheres = s(w, t)and k' =4 ~ "% — J'x0'X ensure that the
transformed «( «') is also constant. With the above, one final-
ly finds the transformation relation for ¢, namely,

g'e=E/TV"c +8/TK'¢. (4.7)

These transformation equations then give transformed
versions of ¢ and 7,

g =A%, = (ao/Aj)DRf*(KA- - i—‘“h ) (4.8)

The independent variables w and ¢ obey the transforma-
tion equations w' = g{w) and ¢ ' = g, (¢, w). Considering the
transformation of C® and the hyperheavenly equation, we
obtain the equations for ', v', £ ', and ', where u, v, &, and y
are the arbitrary functions of ¢4 only that enter into the
hyperheavenly equation (2.2). The relations are
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,U' =A 3/2
vi=Aag v — 2Ajspu, — 3uj( As), §,
£ =4 /P)E+ A,y + 276,
+ /{ |/2js [ﬂ’ (é‘w:u'f - /J'wg[) + %u’(gw}‘l - /{'wgr)] 14
(4.9)
v = (/) y + 3pv + (1/2))6%/0w* — (3/4))(9j/dw)
+ Wjrsv + ATAPS (ud, + Auw,)
+ Wrs[24jsu, + 3uiids), 11,
where 6 = w(w, t Jand v = v(w, ¢ ) are new degrees of freedom,
j =dg/dw, and we have chosen x = 0 = «'. Lastly, before
beginning the simplification of the Killing vector, we need
transformed expressions for the functions which appear init,
namely a, b, and c. The appropriate relations are
a' =ja,
b'=lap/A ") [b+ 8./ )a] = ayG,b +&,a), (4.10)
C’ = (aO//{’j)[c + Sﬂ,j'r [aw - 2bl
+ 2o + afln Ajs),, + b (In As), 1},
where these equalities are determined by considering the

transformation of the Killing vector. The quantities e and ¢,
which appear in the master equation, transform as
e =a0/13/2{e +3—'u§ic _*a 3/2j(c9w - g—“’)i 12
2r ¢, 2 £,
X (b + i_—w a)] —27{a, — xo)0 — 768, — Taf, },
t
(4.11)

= (/A + 2 153,429, [A Vb +¢w/8)al}
+ 14 129 (1/4)) (¢ + sAjr[a, — 2b, + 2y, + a(In Ajs),

+ b(In Ajs), 1)) + (4xo — 3b, + 2a,, v + Wjes,
+ av, + bv,.

It turns out to be possible to always gauge  to a con-
stant and ¢ to zero, so we will work with the set of constraints
simplified in this way (as well as setting k = 0). The Eqgs. (4.3)
then become

4oyo — 3uob, =0,

Juge, + ™a,, +2b, + 2y,) + Tav, + thv, =0,
(4.12)

4ya, + 2ay, + 2by, —a,,., —vc=0,
Hol2e, + vb, —af, — b, —4fa, ] =0.

We now divide the remaining computations according
to Petrov type and according to the nature of y,, (0 or con-
stant). Further, for the isometric Killing vectors, we will in-
vestigate the cases a#0,a = 0#6b,and a = b = 0#c
separately.

Case 1: Petrov—Penrose types [II] @ [Any] and
[D]® [Any] with y, = O. In this case we have u,#0. For the
first situation, a #0, it is possible to gauge away b, ¢, e, v, §,
and 7, leaving a very simple form for the Killing vector and
master equation, namely, K =4d, and £, W= W, =0.In
the case a = 0#b, we find two distinct solutions, one with b
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a constant and the other where b = w. The first choice leads
simplytoK =9, W, =0withé =y =c=e =0,v = v(w).
The other possibility, 6 = w, leads to £ =y = ¢ =0, but

e = Jvt along with K = wd, + ¢d, and .Z ¢ w

= uoé >0/ + (1/67)¢ *v.Finally,ifa = b = 0c, thenwe
findé=v=y=e=0andK=4,, W, =0.

Case 2: Petrov-Penrose type [111] ® [Any] with y, = 0.
Type I1I implies © = 05 v, and we are always able to obtain
v = v, For the initial conditions @ # 0, we are able to obtain
y = ¢ = 0, but we may not have both ¢ and £ gauged to zero.
For the simplicity of the master equation we choose to elimi-
nate e and get K = d,,, W,, = O but £ #0. The second possi-
bility, a = 05 b, again splits into two cases, b = w and
b = b,,. The first yields K = wd, + ¢3,,, L x W =0,

Yy =c=e=0, § #0, while the second gives K = d,,,,
W,=0,andy=c=e=£=0.Thecasea = b =0s#cis
not allowed for type [III] since one of the conditions states
vc = 0 and we require v#0.

Case 3: Petrov—Penrose type [N ] ® [Any] with y, =0.
Type N requires 4 = v = 0, ¥, #0. For the condition a #0,
we finde =0, & #0, K =43, and W, = 0. One of the inte-
gration conditions states that by, = 0, so the case a = 0#b
is not allowed. Finally, fora = b = 0#¢, weobtaine £05#y,
K=4,, and & W = (1/37)¢ e(w, t ).

Case 4: The purely homothetic Killing vectors for all
algebraically degenerate Petrov—Penrose types. For this case
we have y,70 and choose @ = ¢ = 0. The general case is
then a linear combination of the homothetic and isometric
Killing vectors. For types II and D we must have b = $y,¢
but we may eliminate v, &, 7, and e and obtain
K =y,{213, — 3, +ndn} and .& W = 0. For type I,
we must have b = y¢; we may gauge £ and y to zero, and are
left with K = y,(td, — ¢p }, &L W

= — yoW + (1/37)¢ *e(w, t). Finally, for type N, we may
havea =b=c=0leadingtoe =0,{ = §,,
K =yo{89¢ + ndn}, and LW =2y, W.

We present the above results in tabular form (see Table
I).

From the table we see that there are four possible dis-
tinct isometric Killing vectors for types II and D, three for
type 111, and only two for type N. Each type has one distinct
kind of purely homothetic Killing vector allowed.

5. APPLICATIONS

The use of the above results will be demonstrated for
two simple cases in order to give an idea of their application.
First we will find the Killing vectors for the Schwarzschild
metric and, secondly, we will find the metrics corresponding
to a given Killing vector.

We obtain the Schwarzschild Killing vectors by taking
the limit of the general type D Plebanski-Demianski'' solu-
tion to the Kerr metric, and then from Kerr to Schwarzs-
child. At the same time we perform similar limits on the
complex extension of the PD metric, giving us the form of
the metric function Q ## for the Schwarzschild case.

The PD metric can be brought to the Kerr form by
applying the limits (p, ¢)—! ~'(p', ¢'); 7—I7', 0—1 30,

m—l " m', e~ €, y—I "%, andn=e=g=A1=0by
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making the identifications p = — g cos @ and ¢ = r. With
this
ds’ = (1 —pq){(p* + ¢")7 ~'dp> + 2 (p" + ¢°) "

X(dr + ¢’do) + (p* + ¢°)2 ~'dg’ ~ 2(p* + )"

X (dr — p*da)*} (5.1)
becomes

ds’ = —dt? + (P + a’)sin’0 dp® + (2mr/ %)
X (dt —asin*0dp)? + 3 (4 ~'dr* +d6?), (5.2)

whered =r* +a>—2mr, X =1r +da*cos*6,and Z, 2
are structure functions involving p and g, respectively. The
relationship between PD coordinates and Plebanski-Robin-
son (PR) coordinates'? is given by

x=—(g+ip)”", y=palg+ip)",

u=r—+—f@"q2dq—2f@”‘p2dp,

v=ia—iJ92"dq+J97’"dp. (5.3)

P=u37 - 2)p°+ 497",

Q=pp'2 ' —¢*'Z)p* + ¢,

R= —1ix"p*2 + ¢ 2)p* +¢°) ", (5.4)
where Q4% = ($R), is the metric. Taking the limit as in PD to

Kerr then yields the Kerr metric with the following
identificiations:

P1g 25 ~ (3 — 2mr),
Q— — 1¢ 23 ~'(r'a’sin’0 — a*A cos*0),
R— — li¢ 23 ~'{Pa’sin’6 + a’4 cos’d),

(5.5)
$p—o>x= —(r—iacos @), p—> —y= — xarcos 6,
du= —dty,,. +adp + A ~'Pdr — ia cos*GcscHdb,
dv=ia"'dp —id ~'dr+a="'csc8 dob.

It is clear that simply allowing a to go to zero does not yield a
satisfactory limit for v and also causes Q and R to vanish.
However, if we write out the metric and take the limit as
a—0, we can identify choices for x, y, 4, and v which will
yield the Schwarzschild metric.

The following choices give the proper form:

dx =¢2dr, dy =sinfdb, du =dt + A ~'Fdr,
dv=idp+cscdf, P= —ir 31 —2m/r),
Q= —}sin’9, R=0. (5.6)

Passing over to x, y, w, ¢ using the relations (5.3) and the
definition of w and ¢ in Sec. 4, one obtains

x=¢=—r', —y=cosf=1,
dw= —idp+ (1 —75%""'dy, .
dt= —dts +¢ 1 +2mg)~" do. (5.7)

~Having the metric, we may find Wfr_om. the relation
Q¥ = —WYPW — 3'°W + lud K K *, yielding
W= — 1) (5.8)
Substituting this # into the hyperheavenly equation (2.2)
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gives the conditions
=1, £=v=0 (5.9)
Insertion of W into the master equation (2.15) and use of the
integration condition then gives the following forms for a, b,
c e, Xo*
a=ay+cee’ +doe *, b=b,,
e=0=y,. (5.10)
Taken together, we have a four parameter group (a,, b, ¢,
d,), with Killing vectors
K =aed, + byd, +coe“{d, + (1 +1)d, ]
+dge *{d, +(14+7)d,}. (5.11)
The timelike vector is b,70, while the other three param-
eters generate the usual rotation group SO(3).
As a second example, we will demonstrate how a class
of metrics is generated by a Killing vector; in this case we

choose K = d,, for types Il and D, where v =§ =y =0.
When this information is inserted in the hyperheavenly

c=4a,—a,

equation we find a differential equation for W:

Wy =ul[d W,y — 3¢ W, + 36W ). (5.12)
Using u = (u/7)t and W = T (u)X (¢ ) to separate variables
yields

T,= —2BT and X,,4°+ (28— 363X, + 36X =0.
(5.13)

The general solution is then given by W such that
W, J ds((1 — 5)/5)"/*F (w f ds (1 + 5)/5)"/%G (v),

w=2u—s/¢> v=2u-+s/d? (5.14)
where Fand G are arbitrary, sufficiently smooth functions of
one complex variable, except that G must be such that the
integrals converge.

We next calculate the Riemann curvature correspond-
ing to this W, with J,; chosen such that ¢ = x = — p? and
7= —yp=p'. The components are

Cisns =& Waggsr Crasi = Gaiii =Ciiii =0, Cspii = — (/T 5C =C¥=C? =0,
C¥= —2u? C"=6up’rW,, (5.15)
where
1
Wosss = —6 f [s(1 — )]~ 2{12(1 — 25)F + 95(3 — 45)F, + 255 — 6s)F, } ds
(¢]
+¢ 73 [s(14 9] 2121 + 25)G + 95(3 + 45)G, + 25*(5 + 65)G,, } ds (5.16)
0
r
6. CONCLUSIONS sections on these metrics in a systematic way, nor has an

In this paper we have determined the Killing structure
of the expanding hyperheavens of Plebanski and Robinson.
We have also deduced an invariant classification of these
Killing vectors and have determined a master equation
which gives the form that the Lie derivative must have in
order to admit a given Killing vector.

This work, combined with the earlier work of Finley
and Plebafiski, completes the determination of the Killing
structure of all one-sided algebraically-degenerate, complex-
ified, Einstein vacuum space—times. These results then allow
one to determine the symmetries (Killing vectors) of the met-
ric of any hyperheaven and, conversely, to determine all me-
trics which allow a given Killing vector. In addition, the
present work once again demonstrates the power of the
spinor approach.

No attempt has been made to determine the real cross
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attempt been made to find all metrics corresponding to each
of the Killing vectors presented here.
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An exceptional type D shearing twisting electrovac with 4

Alberto Garcia D. and Jerzy F. Plebanski®
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A new electrovac with A type D solution and with both Debever-Penrose vectors aligned along
the real eigenvectors of the electromagnetic field is presented. The principal null directions are
shearing and twisting. The existence of this solution, endowed with an O{2,1,R) symmetry,

requires A <O0.
PACS numbers: 04.20.Jb

1. INTRODUCTION

This work is a sequel of a previous paper (Plebanski and
Hacyan') dealing with exceptional electrovac with 4 type D
metrics; it corrects a serious error in that paper. The quoted
paper belongs to a sequence of articles which had the objec-
tive of determining all type D electrovac solutions with 4
which have the principal null directions aligned along the
real eigenvectors of the electromagnetic field. With the null
tetrad members ¢ and e* (we use the same notation as in
Refs. 1-3) oriented along principal null directions, the con-
formal curvature has only the component C *5£0; then, with
the invariant (complex) of the electromagnetic field defined
by

F = Yo == YE+iB),

(1.1)

v

FE = (i/2V = Qe o
the invariant
L=(E>+ B —gC™y (1.2)

plays a crucial role in the problem considered. If 7 #0, the
Goldberg-Sachs* theorem applies and e* and e* must be geo-
desic and shearless. Moreover, by a theorem of Hughston et
al.’® the solution admits two commuting Killing vectors. The
solutions of this type with complex expansion Z #0 are com-
pletely described—modulo contractions—in the presence of
A in terms of the Plebanski-Demianski® metrics. The case
Z = Ohas also been covered completely in the recent work of
Plebanski.? The exceptional electrovac solutions with A arise
when I = 0, with two subpossibilities:
E , :E*+B>=3iC"#0, E_:E>+B?= —3iCY#0.
(1.3)
In the twosubcases £ , | and E| _, the Goldberg-Sachs and
Hughston theorems do not apply. In the paper by Plebanski
and Hacyan' the branch E, , | was correctly integrated; it
contains the Bertotti~-Robinson”* solution, with both ¢* and
e* geodesic and shearless, together with an exceptional solu-
tion given in a chart {x*} = {£,&,u,v} by
g=2¢e'0e +2e'w¢",

©:=\f,, +fo)dx Adx" = (E + iB)e' Ae* + & A,
(1.4)

?0On leave of absence from University of Warsaw, Warsaw, Poland.
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where
e' =dE, & =dE, e =dy,

e’ =du+ [/lu2+§ m—FEF(U)]dU,

E+iB=const, }C"=E?4+B*= —1>0, (L5

with F = F(v) = A (v) 4+ iB (v) containing two arbitrary (real)
functions of one variable. With F 50, the principal null di-
rection ¢* is not geodesic, and with F () being a general
enough function, the solution does not admit any Killing
vector whatsoever.

In Sec. 3 of Ref. 1 the subcase E, , was also treated.
The logical chain up to (3.38) of Ref. 1 is correct, but the
argument given after (3.38), which attempts to show that a
nontrivial solution within the branch E, _, does not exist, is
wrong. In the subsequent formulae after (3.38) in
zdz-zdz-dv, the factor ““i”” at dv was missed. The present pa-
per integrates correctly the branch £, _, (in a different tetrad
gauge from that of the formulae of Sec. 3 of Ref. 1) determin-
ing the most general form of the nontrivial solution which
exists when A < 0. This solution, with both principal null
directions geodesic but shearing and twisting and nonex-
panding, is of interest for reasons of completeness within the
category of D-type electrovac solutions with A which have
principal null directions aligned along real eigenvectors of
the electromagnetic field. The solution is also of some inter-
est, per se, exhibiting rather unusual singularities of the con-
gruences of the principal geodesic null directions, which are
characterized by infinite values of the shear and the twist.

2. THE DIFFERENTIAL PROBLEM AND ITS INTEGRAL

The differential problem of the exceptional branch
E, _, states in the null tetrad formalism (notation is the same
as that which was used in Refs. 1-3) can be summarized as
follows. The tetrad e“ and connection 1-forms I",, = I
must satisfy the first structure equations

lab |

de* + M, Ne® =0, 2.1
while the second Cartan structure equations with built in
Einstein equations G,,, = 87E,,, + Ag,, amount to

dly, + T N(Dy2 4 Tyy) = —2ue’ Ae',

dly, + (Da+ Ty ACy = —2ue* Ae?, (2.2)

d(Mn+ )+ 2F W ATy = — (101 + 24 )e' Aé?

+ 2ue* ANéd,
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where, with electromagnetic field given by (1.4),
p= —YA—E*—B?, (2.3)
and the Maxwell-Faraday equations take the form
dIN(E + iB)"2 4 Ty 0" + Fyye® — Ty 00’ — [yype = 0.
(2.4)
The Bianchi identities require, with the £, , condition
from (1.3) assumed, that ¢* and ¢* be geodesic; that is,

r424 =0= r}l}' (2.5)
This granted, the Bianchi identities reduce to
dC" = 6C'I(My e + 2007 (2.6)

Within this formulation of the E, | branch differential
problem, we are still left with the freedom of the phase and
boost gauge of the null tetrad; i.e.,

! 12 b2 '3

e'l=¢ee' eP=e ¥, e =eve', 4

et =e " Yo',
2.7)

where the functions (real) ¢ and y are arbitrary. The connec-
tions transform under this gauge correspondingly (see Ref.
1).

Now, the E, _, condition from (1.3) demands that C¥is
real. Hence, consistency of (2.6) requires

Fya=T45 ay= o (2.8)
Moreover, combining (2.5) and (2.4), one easily infers that
Fpy=0="T,, o +Tp=0=+1, (2.9)

and, therefore, C'*' and E > + B? are constants. Hence y is
also a constant. Consequently, setting

E+iB=:(E*+ By (2.10)
we infer that (2.4) reduces to
—idp = [ype* + Ty e, (2.11)

In the next step, employing (2.1), one deduces from (2.2)
the further necessary algebraic conditions

(r421)2 + r4221—:422 =0= (F3|2)2 + rznf,m’

(2.12)
2y [y — yppl 5y — F422F1|1 +4u =0.

Ify =0—E” + Bi=A= — 3C", one canselect a tet-
rad gauge (2.7) such that I, = 0 = I';,. In the subcase the
solution reduces to the Bertotti-Robinson solution with e’
and e* geodesic and shearless {see comments after (3.17) of
Ref. 1]. The nontrivial branch of the problem considered
arises when 0. With £ #0, denoting € = sign(u),
€ = 1—eu >0, and employing the freedom of {2.7) gauge,
one can always select the tetrad so that

- ’_\.{fﬂ_(a e, Iy = _lf__.‘/_fﬁ(e,'vel +él).
sinv sinv
(2.13)

With this tetrad gauge (2.12) reduce to identities and (2.11)
takes the form

— dyp = (v eu/sinv)(ee® + e*). (2.14)

Using (2.13) in (2.2)—accompanied by (2.1) and {2.14)—
one extracts then the complete information contained in the
second structure equations. One easily finds that consistency
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of (2.2) requires
p=—A/2——CP=E>{ B>= — 241 <0,
(2.15)
so that within the nontrivial £ _, branch, A <Oand € = 1.
This granted and integrating the remaining information con-
tained in (2.2) and (2.14), one finds that

W{—4/2)

Ty = i {e! + e"e?),
sinv
r}l — l\/( M/i /2}(el\él + el),
sinv
=V —A/2) cosvie’ —e'),
L= — {720/ (— A /2)sinv (e* — &%),

W = cotv + ¥,, (2.16)

with ¥, being constant, (2.14) assumes now the equivalent
form

dv =1/ — A /2)sinvie’ + &*). 2.17)

Given (2.16) and (2.17), the equations modulo (2.1} are
now identities. It remains thus to integrate the first structure
equations (2.1), which if we introduce the 1-forms

Ii=V(=A472)cotiv/2)e' +e*)=:I",

Iy= —iv/(—A/tan(v/2)(e' —e) =",

Fy=W(—A4/2sinvle’ —e*)y=:—T", (2.18)
are equivalent to (2.17) and

dr, + Y€, "N =0, ab, =123, (2.19)
or explicitly

drr, - N,ANI'y=0, dI,—I AT"'/=0,

dry+ KNI, =0. (2.20)

We observe also that (2.17) and the definitions (2.18)
imply
0# —ih’e' N Ne’Ne* =T\ NI, AT, Ad (cotv). (2.21)

The real I',’s can now be interpreted as the connections of
the group O(2,1,R) and there are many obvious manners of
expressing the I",’s in terms of three independent group pa-
rameters, say p,,p»,p; which together with v can therefore be
considered as the chart {x#} = {p,,p,,p5,v}. Some explicit
parametrizations of the I, ’s will be discussed below. At this
moment, however, it is convenient to summarize the result
obtained in terms of abstract 7, ’s and the coordinate v, as-
suming I", A I'; ATy Ad (cotv)#£0. The metric g and the elec-
tromagnetic field w from (1.4), with 4 <0, have the form

(—A)g =tan’(v/2)[, e, + cot* v/ e I,

dv o 4V _ _42 rer,
sinv  sinv sin’y
VI{—A 2w =ie od (e ~ 20T, (2.22)
the invariants of the electromagnetic field being
E+iB=2v(—A/2e Yt~ 2o, (2.23)

According to (2.16), the principal null directions e* and
e* of this type D solution of the electrovac equations with 4
are geodesic and possess the common complex expansion Z
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and shear S given by
—Tpy= -y, = —iV{(—A4/2)/sinv =2,
(2.24)
Ty, =5 =V —A72)icotv — 1) =:S.

With Z pure imaginary, the congruences e> and e* are diver-
genceless but twisting; forv =nm,n = ... — 1,0,1,-.Zand §
are singular.

The solution described above contains only the con-
stants A < 0 and ¥, the last corresponding to the remaining
freedom of the (constant) duality rotations of the electromag-
netic field. Observe that if one uses in place of v the equiv-
alent variable z defined by

tan(v/2) = :e*—dv/sinv = dz, (2.25)

the basic formulae which describe our solution assume the
slightly simpler form

(—A)g=eT el +e 8T,
+dz®dz — (2coshz)’Iy 8 I,
V(=24 /2)w = ie ™ ¥¥d (e~ 2502,
(2.26)
E+iB=2v ~ (A /2)e ~ 2itn.g = disinhz
Z= —iV(—A/2)coshz,
. S=1v/(—A/2)isinhz — 1),
with the values z = + o« being singular.

3. PARAMETRIZATIONS I",’s AND SYMMETRIES OF
THEE, , SOLUTION

Let k, and /, be a pair of real spinors normalized so
that

kA, =k, —k,l, = 1. (3.1)
Then
I, =1k, + k*dl ,=2k *dl ,=2l"dk ,,
(3.2)
rs=k'dk, —14dl,, I's=k"'dk, +14dk,,

is the most general analytic form of the SL(2,R) [equivalent-
ly, O(2,1,R)] connections which satisfy (2.20). Parametrizing
k, and /, in terms of real 4 and complex f according to

eirr/4kA + e*iTT/“lA — [eiu/Z/([ —ff_)l/z]
X[(1=if)gy — i1 +if)5% ],
(3.3)

so that (3.1) reduces to an identity, the connections are

oo _ _.fdf—f‘_ff_ .
I +ir, 1~_ﬁra’f, I's=du ll—ff (3.4)
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With the I',’s so understood, (2.26) gives our solution in
terms of the chart {x*} = {u,ff,z}. Equivalently, using the
chart {x*} = {u,g,8,z}, where

f=wge " f=ge", (3.5)
we have

[ o+il= 2@;@‘;'_‘_’ I“3=1+—g‘g:du _j&_gf_i_g_
1—gg 1—g2 1—gg
(3.6)
Working in the last chart, one easily finds that our E, _,
solution always has three Killing vectors; namely,

k=0, k=e“gd, —ill—gzd,)

) (3.7)
1§ =e~“gd, +i[1—gZ1d;),

which close in the SL{2,4) algebra
kkl=ik, [k k]= —ik, [k k]= —2ik. (3.8)
12 2 1 2 2 2 2 1

Therefore, the E, _, solution always has a three parameter
group of symmetries.

4. CONCLUSIONS

The results of this paper correct the conclusions of Ref.
1 in the form of the following statement: the electrovac with
A type D solutions with principal null directions aligned
along real eigenvectors of the electromagnetic field are ex-
hausted by the solutions from two classes; the regular (gener-
al) class with principal null directions being geodesic and
shearless, consisting of the solutions of Refs. 6 and 3 includ-
ing those of Refs. 7 and 8; and the exceptional class, charac-
terizedby thecondition/ = (E* + B*)* — (3C"')* = 0, where
the Goldberg—Sachs theorem does not apply. Nontrivial ex-
ceptional solutions exist if and only if 4 < 0, and are exhaust-
ed by the solutions of type E, , | with one of the principal null
directions being nongeodesic, and type E, _, characterized
by principal null directions being geodesic, nonexpanding
but shearing and twisting. The Robinson-Bertotti solution is
a trivial solution with 7 = 0.

'J. Plebafiski and S. Hacyan, J. Math. Phys. 20, 1004 (1979).

*J. Plebaiiski, J. Math. Phys. 20, 1946 (1979).

*G. Debney, R. P. Kerr, and A. Schild, J. Math. Phys. 10, 1942 (1969).
*J. Goldberg and R. Sachs, Acta Phys. Pol. Suppl. 22,13 (1962).

SL.P. Hughston, R. Penrose, and P. Sommers, Commun. Math. Phys. 27,
303 (1972).

®J. Plebariski and M. Demiafiski, Ann. Phys. 90, 280 (1975).

’I. Robinson, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 7, 35
(1959).
“B. Bertotti, Phys. Rev. 116, 1331 (1959).

Alberto Garcia D. and Jerzy F. Plebafiski 125



A Schwarzschild-like interior solution for charged spheres

K. D. Krori

Mathematical Physics Forum, Cotton College, Gauhati-781001, Assam, India

B. B. Paul
Nowgong College, Nowgong, Assam, India

(Received 3 September 1980; accepted for publication 31 October 1980)

A Schwarzschild-like interior solution for charged spheres is presented in this paper. The solution

is regular everywhere.

PACS numbers: 04.40. + ¢, 04.20.Jb

I. INTRODUCTION

The study of charged matter distribution in general rel-
ativity has attracted wide attention recently. De and Ray—
Choudhuri' have shown that a charged dust distribution in
equilibrium will have the absolute value of the charge to
mass ratio as unity in relativistic units, i.e.,c =G = 1.
Efinger,? Bailyn and Eimeral®, and Nduka* have obtained
some solutions of static spherical distributions which are not
free from singularity at the origin. On the other hand, Kyle
and Martin,® Wilson,® Kramer, and Neugebauer,’ Kroriand
Barua,® and Chakraborty and De® have presented solutions
for charged fluid spheres which are very regular. But no
solution has so far been derived such that it may reduce to
the Schwarzschild interior solution in the absence of charge.
In this paper we present a new solution for charged spheres
which has the interesting feature that it reduces to the
Schwarzchild interior solution for a fluid sphere in the ab-
sence of charge. But it possesses the peculiarity that in the
presence of charge, it does not represent a fluid distribution
because it sustains tangential stress. The solution, however,
is regular everywhere and is free from any singularity.

1i. DERIVATION OF THE SOLUTION

We take the interior metric in the form

ds® =e'dt* — r’(df?* + sin’0 d¢ *) — &' dr (1)
where A = A (r) and v = v{r). The field equations are
1 1
8mp, —E = -*(ﬂ —)——, 2
P, NS TR (2)

87p, + E =8mp, + E

Ay, Vi v —4
=e"‘(m— L4 RATTS| 1), 3
2 4 4 2r Gl

A 1 1

8mp + E = —i(._'_—) L 4
7P + 4 P + = (4)
where p, is the radial pressure, p, and p, are the tangential
stresses, E = — F,, F°,F,, being the electric field, and the

suffix 1 indicates differentiation with respect to r. Maxwell’s
equation is give by

d —
=g F")Y=4r’/—g, (5)
dr(J gF”) V—8

where o is charge density and V* = 5f\‘/\/g00.
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Now since there are four equations and seven variables
let us assume

e’ =(4—Bvx), (6)

et = 1/x, (7)
and

E=arvx/(A —BVx), (8)
where 4,B, and a are constants and

X=1-K~P+0r, 9)

K and @ being constants.
With Eq. (1) the Eqs. {2)-(5) give
_K(3Bvx—4)+ Qrid — 5BV/'x) + a*’rv/x

8ap, A _Bvx , (10)
8mp, = 8mp,
_KBBvx—-4)+20r(4 —5Bv/x) —a’rvx
A—Bvx ’
(11)
a’rv'x
87p = 3K — SQﬂ————A _;/‘/x, {12)
4o = [3a — (a/4)rA, + v,)]e ~BF V4, (13)
Now at r = 0 (center)we have from (10)—(13)
Sip Jy = 8ok = 87yl = "L (14
8mp, = 3K, (15)
8mo, = 6a/\J4 — B, (16)
and Eq. (8) gives
E=0. (17)
At the exterior since (¢*-¢*) = 1, we have
A—Bvx)/x =1, (18)
where x,, is the value of x at the boundary. With
A=3x,and B=] (19)

Eq. (18)is satisfied. Again for e*tobecontinuousatr = r, we
have

A—Bvx)=1=2m/r +é/7, (20)
where m and e are respectively the total mass and charge of
the sphere.

From Egq. (19) and (20) we have
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x,=1=2m/r +é/r. (21)
With Eq. (19) we have for the value of p, at the boundary

87ip,)y = (— @ + ). (22)
since (p, ), 1s zero at the boundary we have

Q=2 (23)
The value of p at the boundary using (19) is given by

8mp, = 3K — 6a’r}. (24)
For p, to be positive at the boundary we have

ro<(K /2a%)""2 (25)
The continuity of E at the boundary r = r, gives

arvx, &2
B Ty (26)

Thus from (18) and (26) we have

e=ar;. (27)

From 4 = 3y/x, we have
K—[K2—4Q(1 —gAz)l 172
20
The value of r, given by (28) must satisfy the condition (25).

This is possible if 4 <3. Again p,>3(p, ), gives 4> 1.
Thus 4 lies between 1 and 3. From (28) we have

K=0r +(1/r)1—§47) (29)

n= (28)
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Now from (21), using K from (29) and e from (27), we have
m=40r +(1—#4°r], (30)

which is the geometrical mass of the charged sphere. It ap-
pears that the charge makes contribution to this mass.
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We investigate the generalized Jordan—Kaluza—Klein type scalar tensor theories of gravity with
gauge fields present for the purpose of restricting the spacetime dependence of the scalar fields.

These scalars are essential in building Lagrangians for fields with internal degrees of freedom. By
one rather simple consistency restriction on covariant differentiation we are able to show that the

scalar fields must be spacetime constants.

PACS numbers: 04.50. +h

. INTRODUCTION

The fiber bundle structure of the generalized Kaluza—
Klein theory was described by Trautman and its extension to
contain scalar fields (generalized Jordan Theory) was pre-
sented by Cho and Freund.'~® The geometry used here will be
almost identical with that used in these references. Space-
time, M, is assumed to be endowed with a metricg,, and to be
the base space of a principal G bundle P, for some gauge
group G. The gauge field is assumed given by a connection
form w on this bundle. If we denote the action of G on P by
¥, :P—P for aeG and the projection of P onto M by m, then
¥ w=ad] %0 and mo¥, = 7. To proceed further and do
physics we must provide equations of motion for, and inter-
actions between, the two given fields g, and w as well as their
physical interpretation, e.g., we need to supply a Lagran-
gian. We will follow the previous references and construct a
metric on P and from it a Ricci scalar which will serve as a
Lagrangian.'™ In the next section we try to make clear the
procedure for building certain tensors on P from tensors on
M and from tensor fields of type ad’ on the bundle. The
purpose is to enlarge the stage for events from the four di-
mensions of spacetime to include the N internal degrees of
freedom associated with the gauge group. In Sec. ITI we de-
fine a metric g, on P and relate its covariant derivatives to
those of g,, on M and those of w. In Sec. IV we go on to show
that the spacetime scalars that appear in g, are constants. In
Sec. V the geodesics of g, are projected onto M and seen to be
classical particle trajectories. We conclude by giving the La-
grangian for the gravity and gauge fields.

II. LIFTING TENSOR FIELDS FROM THE BASE SPACE
AND SLIDING OVER ADJOINT FIELDS FROM THE LIE
ALGEBRA

The purpose of this section is to show that two types of
physical fields—those defined as tensors on the base space
(spacetime) e.g., stress—energy—momentum, and those de-
fined as tensors of type ad’, e.g., standard Higgs fields, can
both be uniquely associated with group invariant horizontal
or vertical tensors defined on P(e.g.,in TPor TP *,etc.). This
procedure also allows the introduction of mixed type fields,
i.e., those with horizontal and vertical components, e.g.,
conserved currents.

First we lift spacetime tensors. Any form on M can be
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lifted onto P by the pullback of 7. Given a connection form
w, any vector field v on M can be uniquely lifted as a horizon-
tal vector field 4 on P. If h = lift of v from TM, to TP,, then
wh)=0and7.h =v. Given a coordinate chart, x°, on M we
denote the lifts of 3/9x° and dx° by h_ and 8 ° respectively.
Any tensor field # on M can be lifted horizontally as a tensor
field Ton P,

tx)= ta“‘b,ﬂ.(X)i ® @dx’ ® o,
ox*
Tp) =t", (TP, & 860° ..

These horizontal fields are invariant under the action of the
group, i.e., T{¥,p) = ¥, T (p} where vector components
transform by ¥ . and dual components transform by ¥ ...

Now for adjoint fields.” Let 4 ':P—G ' be a G '-valued
field on Pof type ad’, i.e., 4 (¥, p) = ad. A’ {p)eG ', where
G’ is the Lie algebra of left invariant vector fields on the
gauge group G and where ad’ is the adjoint action of the
groupon G’. Wewish to ““slide” the field 4 "back from G ' into
the vertical tangent space of P. This we can do because of the
Killing or fundamental map X of G "—TP;i.e., toeach LeG"’
there corresponds a unique vertical vector field / on P de-
fined by / (p) = pushover of L (e} by the map ¥, ,p:G—P. The
unique vertical field 4 on P can then be defined by
A (p) =2 (4" (p))].,- Itis easy to see that the ad’ invariance
of A’ implies the right invariance of 4, i.e.,
¥ .4 (p)=A(¥,p). To"slide” aform field f":P—G '* of type
ad’ over to the cotangent space TP * as a vertical form we
must make use of the connection form «w:TP—G . Define
fP—TP*byf,(V,) =1, [@(V,)] Toclarify the notation, ad’
can be thought of as an action of G on both G’ and G '* (the
vector space of left invariant forms),
ad,:G'—G',ad,:G '*—G '*, defined by

ad,(L)=XK, where K {e)=ad,.L (e,

ad’(®) =6, where O(e) = ad.- P (e).
It then follows that £, the slide over of f”, is invariant under
the action of the group on P, i.e., f(¥,p) = ¥, .f (p). Given
any tensor of type ad’, ¢ :P—G' ® -G '* & -+, it is now
straightforward to build a vertical tensor field on P which is
invariant under the action of the group. It is somewhat more

instructive to make the general construction by using a basis
on P constructed from a basis of G’ and TM. Let L,
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[a = 1,-,N]be abasis of G’ and @ * its dual basis of left
invariant forms, and let /, be the vertical Killing basis on P
associated with L, i.e.,/, = 3 (L,). Asabasis of the tangent
space TP we take (h,,],) and its dual basis becomes (8 “,¢ *),
where 0 is the lift of dx® and ¢ © is the slide of @ “. If
T'(p)=T>p. (p)L, ®-® D" is a tensor field of type
ad’ on P, then associated with it is a vertical tensor T on P
given by

Tp)=T"%. @), p)®--24”(p)8
Because T’ was of type ad’, T will be invariant under the
action of the group on the bundle.

Finally, tensors of mixed type can be defined on P. For
example the gauge covariant derivative DT’ of a tensor field
T'oftypead’,is a 1-form (horizontal at that) on P with values
in the same tensor product space of G ' as T’ is. This form can
now be “slid” back to P as a mixed tensor with one horizon-
tal form index and the rest vertical indices. As an example if
T PG’ ie, T (p)=T°(p)L,, then
DT’ = h,(T“ (p))8°® L,. This tensor is “‘slid” back to P as
the mixed invariant tensor DT =4, (T“ (p))8° (p)® 1, (p).

{1l. A METRIC FOR # AND COMPATIBILITY OF
COVARIANT DERIVATIVES

If we wish to derive equations of motion and conserva-
tion laws from a Lagrangian we must be able to construct
scalar fields from fields of type ad’. The simplest way to do
this is to assume the theory contains a nondegenerate two-
index-symmetric-tensor field g5 = g.;(P)® *® ®* of type
ad’, i.e., a metric field of type ad’. When this field is “slid”
back to the bundle, it becomes a metric on the vertical part of
TP,

8c P)=28.5 P10 (P)® & ” (p). (3.1)
At this point it is possible to define a metric on the bundle
space P by

8r =8¢ + 8> (3.2)
where g,, is the horizontal lift of the spacetime metric. This
metric is invariant under the action of the group and is iden-
tical with the one used by Cho and Freund, and, at this point,
more general than the one proposed by Trautman.'~> We
intend to use the Ricci scalar of the bundle metric as a La-
grangian as many authors suggest.'~'° At this point it would
be appropriate to call this theory a generalized Jordan theory
because g,; (p) will not be a constant on any cross section.®™®

However, at this point we are in possession of three
types of covariant differentiation, one from the gauge con-
nection, one from the spacetime metric, and the other from
the bundle metric. We call them D, 4, and V respectively.
Since we have defined a straightforward procedure for relat-
ing physical fields (tensors on spacetime and fields on type
ad’) to fields on P, it is tempting to ask that appropriately
comparable covariant derivatives agree. By this admittedly
ad hoc restriction, we mean that if ¢, and 7"’ are two such
fields and we wish to compute their change in some space-
time direction v, , then we would compute 4, (¢,,) and
D, (T ), where h, is the horizontal lift of v, (the latter de-
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rivative usually being evaluated only on some cross section).
Because these fields are also defined on P we could compute
V. (Ty)and V, (T,4). These two sets of derivatives can be
compared by (1) lifting the tensor 4 (¢, ) from M up the fiber
to p and comparing it to the horizontal part of V(T,,) and by
(2) sliding the G’ valued form D (T ;) of type ad’ back to the
vertical tangent space at p by the procedure defined in the
last section and comparing it to the vertical parts of V(7).
We find that a necessary and sufficient condition for these
two pairs of covariant derivatives to agree is that the gauge
covariant derivative of the group metric field vanish, i.e.,
Dg¢. = 0. This restriction on the metric reduces it from being
a set of spacetime scalars to an invariant element of the
theory.’

Necessity is relatively easy to show once it is observed
that the vertical part of V,, {g) vanishes. This directly im-
plies that Dg¢ = O for consistency. Proof of sufficiency re-
quires more details; we simply write out the connection sym-
bols for V in the basis X, = (4,,/,), where Vy X, =I'§, Xc.

rs =- %[Zg"c"Cﬁ,‘fﬁ 8oy T C;,,],
a a ¢ ¢
re =i, roe=| o)

I oo p) =T 50 (p) = \F 785007 (P)8 g o

i =1 5, =185 ha(8g0);

Il = — 1800 (DA (gGn)s
where the various functions on P are defined by

[lurla] = Clil,,

[hahy] = — Fo )= — F3, (P (),

8 ) =gl P)O°“ ()@ 6° Ip)

+85 P10 )2 8" p),

a a { c} a
h, = — 4. . |—)= .
e fla Ix° Aax (6xb) bal gxe

It is straightforward to see that the horizontal part of

V(s . (mp)h, ® - ® 8° 8 .-} is identical with the horizontal
liftof 4 (¢ &, (x)3/0x° ® - ® dx” ® ---) without any further
restriction on the bundle metric. However, when we com-
pare the vertical parts of V,, (72" (p)s. [, ® @2 ® )
with those of the “slide” over of

D, (T 4" . P),® 0P’ weseethat V, (I,)and
V,.(#”) can have no vertical parts, i.e., h,(gs ) =0is not
only necessary but also sufficient. Since this is the compo-
nent version of Dg;. = 0 we conclude that a necessary and
sufficient condition for compatability of all three covariant
derivatives, spacetime, gauge, and bundle metric, is that the
group metric field be gauge covariantly constant.

(3.3)

(3.4)

IV. SPECIAL GAUGES, g ..., = CONST

In this section we show that Dg;; = Ois a necessary and
sufficient condition for finding a gauge (a local cross section
of P) where the components of g; are constants when re-
stricted to that cross section. Because of the absence of the

T. Bradfield and R. Kantowskj 129



spacetime scalars it is more appropriate to call this theory
the generalized Kaluza—Klein theory, rather than the gener-
alized Jordan or Brans-Dicke theory.®*'*!" We prove the
conjecture in two steps. First, the necessary and sufficient
conditions for 4,8 .. = O to have solutions is that the inte-
grability conditions [A,,4, ]g.s = O be satisfied or
equivalently,

2FG, (Plgg - P)IC Gy, = 0. (4.1)
Secondly, we show that Eq. (4.1) is the necessary and suffi-
cient condition for finding a gauge transformation, b:U—G
{Uis some open neighborhood of xeM ) which would produce
a local coordinate chart on P, [ p = (x,a}], in which
(0/9x°)g ; .s(x,a) = O These coordinates are defined by
x =7 (p)and p = ¥, (s(x)) where s is some local cross section,
s:U—P, such that 7705 = id,. If we define the matrix (ad; )2
by

ad;(L,) = Ly(ad, )] (4.2)
it follows that in the (x,a} coordinate system
l, p) = L,la),
a ’ o
h. (p)=———(ad, .} 4 Z{x)Lg(a),
ax
6°¢ (p) = dx°, (4.3)

¢ (p) = P°a) + (ad, - J;4 } (x)dx",

8o (P) = gys(x)(ad, )7 (ad, )3,
and

Fy (p) = (ad,  JaF & (x)Lg(a),
where F¢, (x) = {8/9x)A §(x) — (3/9x° )4 %(x)
+ A V(x4 5(x)C %5, and g,5(x) = g ;s p = 5(x)). These can
be compared with equations given by Cho and Freund.? The
vanishing gauge covariant derivative, Dg¢ = 0, becomes

2]
= e (x) + 24 {(x)g 1 (X)C 51y = 0, (4.4)
and its integrability condition Eq. (4.1) becomes
2F % (x)g o (X)C 5y = 0. (4.5)

A gauge transformation can be looked at as a simple coordi-
nate transformation

X =X,

a=blx)a (4.6)
given by a mapping b:U—G. Under such a transformation
g.5(x) changes by

gaslx) = g,5(x)(ad; (X)L (ad; (X)) (4.7)
By putting g,,4(x) = const, Eq. (4.7) becomes an algebraic set
of equations for b (x) which can be turned into a set of differ-
ential equations by taking its exterior derivative.

b*¢ 8, X)Chs = — 4d8aplx); (4.8)

where b *¢ ® = dx°(@b "/3x) ¢ ° (3/3b ™) in some coordi-
nate system on G. This equation obviously cannot be solved
for an arbitrary g,4(x) at any point x, however, from Eq. (4.4)
we can rewrite Eq. (4.8} as

(b*p® — A°8ux)Chys =0, (4.9)
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where A ®(x)==A4 °(x)dx* and where g,;(x) and 4 °(x) are re-
stricted by Eq. (4.4). Equation (4.9) can be solved at any point
X = x,, and its exterior derivative vanishes identically pro-
vided Eq. (4.4) is satisfied. This can be easily checked by
usingdg®= —1CJ, 4" Ng“.

In one of these special gauges we have

8aplx) = const, A°(x)8,Chs =0

(4.10)

as well as F2(x)8,.Chis =0

The remaining gauge freedom is restricted by
b*$°%,,Chs =0. (4.11)

If the metric g;..» (p) is invariant then g ,..C} s = 0 and no
algebraic restrictions are placed on the vector potentials by
Eq. (4.10). Since g¢; is a field of type ad’ it follows that
1,(8;uw) = — 28 (PICj,,, from which we conclude that
an ad’ invariant metric must be constant up the fiber as well
as along the cross section. This case contains the semisimple
groups and their “Killing” metrics as Trautman proposed
and Cho elaborated.!? It, however, contains many more
groups which possess invariant metrics but whose Killing
forms are degenerate. One interesting solvable four dimen-
sional case is given in Sec. V. See Patera et al. for invariants
of low dimensional Lie algebras.!? The other and most fre-
quent case is that for which g5 is not invariant and conse-
quently Eqgs. (4.10) and {4.11) place restrictions on the com-
bined set of gauge field, vector potentials, group metric, and
gauge transformations. Examples of this case include the
nonunimodular groups (C 54 #0) for which no invariant me-
trics exists. As a consequence of Eq. (4.10), however, for all
cases the metric g; (p) must be invariant under the holon-
omy group of the connection.'*'*

V. GEODESICS AND LAGRANGIANS FOR THE
GENERALIZED KALUZA-KLEIN THEORIES

We start by giving the geodesic equations for the bundle
metric defined in Sec. III. It is found that up to a global gauge
transformation (action of G on P by ¥ ), the geodesics are
uniquely determined by a spacetime particle trajectory and
by the “gauge charge” of the particle. The gauge charge be-
ingaform of type ad’, ¢’ = ¢, P ¢, whose components g,, are
constant along each geodesic in P. If we use an affine param-
eter A for the geodesic through point peP and write the tan-
gent vector V{4 } = v°h, + ¢°I,, we have the following geo-
desic equations,

Loy v"v°[a} + v, Fi g =0

dA be
and
d o3 o "
L — g5 CliydPg, =0, (5.1

where g, =g, ..¢”. The second equation impliesdg,, /dA = 0
producing the conserved gauge charge, and the first tells
how it must transform under the action of ¥, in order that
the geodesic projects onto a fixed particle trajectory, i.e.,
q.F 5. has to be constant up the fiber.

T. Bradfield and R. Kantowski 130



From Eq. (5.1) it follows that ¢°¢, (and hence v“v, re-
mains constant along a geodesic. We conclude that the spa-
cetime distance along the curve projected by 7 can be used
for A in Eq. (5.1). The conclusion is that the projected geode-
sic gives a spacetime curve x%(s) with tangent vector
vls) = v¥(s)d/dx" satisfying Eq. (5.1) which is the equation for
a classical point particle with gauge charge g, (at least from
the E&M analogy)."’

For a Lagrangian we use the Ricci scalar of the bundle
metric,

L =(—8,)""Ry , n, (52)

where (—g,)""" = ( —8.86)'""%
and

R4 +N = Rsx - Zigc"/’F:zIbFfd g:tc ggtd - géﬁczycgé

- { GBC 2;6 Zy - };ggﬁgéscgycgﬁgc ope

This can be compared with Cho and Freund by leaving out
their cosmological constant term as well as the kinetic ener-
gy of the group metric, and by adding — g2C’, C, which
is present for nonunimodular group.

The volumns ¥V, over which R, | y istobe stabilized are
given by the gauges permitted in Sec. IV and submanifolds H
of G of finite volume as measured by
gc)'*@ (@) A AP ¥(a).

I:J (—gp)‘/2R4+NB"A---A03/\¢‘/\---/\¢N, (5.3)

where V,={¥, (x):xeU, acH }. In coordinates adapted to a
gauge this becomes
I= 1,-1g,

where

I, = f( — g, (%) X)) R, | y(x)dxO A A dix
U

I, =fdet(ad; )@ (a) A AD " (a). (5.4)

In the above

gs! (x) = det(gst (x)ab )’ g(x) = det(gG (p)aﬁ)atp = S(x), and
det(ad;) = det[(ad,)3 ]. Up to a constant factor which de-
pends on H, [ is given by

I= JU( g (X)) Ry, Xl A A d, (5.5)

when evaluated in one of the special gauges
[8.4(x) = const].

As can be seen from Eq. (5.2) most examples of this
theory will have an undesirable cosmological constant term,
however, some will not. We conclude by giving the smaliest
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dimensional nonabelian group with an invariant metric
without a cosmological term. It is the four-dimensional
group whose solvable algebra is given by

[L4’La 1=0,[L,L,] =L,
[L,.L;]=L,, (Ly,L\]=L,, (5.6)

and classified as U3I2 by MacCallum.'® The invariant met-
ric is the Lorentz metric,

1 0 0 0
0 1 0 O
8aplx) = 0 0 0 1
0 0 1 O

and R, , y simplifies to

Ry v =Ry (x) — 18apF Gy (X)F 2, (x)gi(x)g5 x).
A somewhat different approach is used by Kopczyfiski to
remove the cosmological term.'®
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Stochastic field equations for linearized gravity are presented. The theory is compared with the
usual quantum field theory and questions of Lorentz covariance are discussed. The classical

radiation approximation is also presented.

PACS numbers: 04.60. + n, 11.10.Np

I. INTRODUCTION

Quantum systems which are described by a Schro-
dinger equation allow a stochastic interpretation. The Fen-
yes—Nelson model' and its generalization*® provide such a
stochastic description of quantum mechanics. Several field
theories have been considered in this context,”!' and the
results have so far been of some interest. In the present pa-
per, the generalized Fenyes—Nelson model is applied to the
weak field approximation of Einstein’s general theory of rel-
ativity, the so-called linearized gravitational field.!>!*

It is worthwhile to attempt a stochastic model of quan-
tum gravity for several reasons. First, since the gravitational
field in the classical theory has the interpretation of a metric
tensor, itis disturbing that in the usual quantum formulation
this geometric interpretation is completely obliterated be-
cause the field and its derivatives become abstract operators
on a rigged Hilbert space. Because of this difficulty it has
become fashionable to play down the geometric role of grav-
ity when dealing with quantization, as in the formulation of
Weinberg.'* A stochastic formulation of the quantized
gravitational field may revitalize the geometrical interpreta-
tion of quantum gravity.

Second, the stochastic formulation of quantum me-
chanics, at least in spirit, is a progeny of Einstein’s profound
discomfiture with the complementarity vision of Bohr. Since
Einstein’s views were based at least in part on considerations
of the general theory of relativity, it seems fitting to pursue a
stochastic model of quantum gravity.

Third, the great successes which gauge theories have
had in the theory of elementary particles suggest that funda-
mental efforts such as the stochastic reformulation of quan-
tum mechanics be concentrated in this general area.

The linear theory of gravity has been selected for analy-
sis because it avoids the extremely difficult problem of diver-
gences in the full theory, and it is sufficiently simple to allow,
perhaps, the beginning of a probabalistic geometric interpre-
tation of quantum gravity.

In Sec. II the linearized Einstein field equations are
briefly recounted. In Sec. III the usual quantization proce-
dure is outlined. In IV the method of stochastic quantization
is applied to the linear theory, and in V the curious random
classical radiation approximation is presented.

Il. THE LINEAR FIELD EQUATIONS

The Einstein field equations in the linear approxima-
tion may be written

— Ppa® — My o™+ B, + g%, = 160GT,,, (1)
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where the notation of Ref. 13 is followed except that the
gravitational constant G is not set to unity. Indices are raised
and lowered via the Minkowski metric n,,,. The full metric
tensor is related to the above fields by

8 =N, +h,, (2)
h,, =h, —in, h°, (3)
h/tv = hyv - %n;‘vh aa’ (4)

where T, is the energy-momentum tensor of all nongravi-
tational sources.

Once the linear theory is solved, classically, the nonlin-
ear corrections of the full theory may be included as a pertur-
bation by introducing a suitable term in the energy-momen-
tum tensor (Ref. 14, p. 165). This procedure has not worked
so far in the quantum theory because of the celebrated diver-
gences introduced by the nonlinear terms.

Weinberg has suggested that general relativity be treat-
ed as an ordinary field theory with the linear theory as the
starting point. This will be the approach taken here, al-
though one of the primary motives for seeking a stochastic
model of gravitation is to restore a geometric interpretation
to the quantum theory.

The linear theory possesses a gauge invariance similar
to electromagnetism (Refs. 13, p. 439; 14, p. 254). The field
equations are left invariant under the transformation

hy—>h,, —OF,/3x* —IF ,/3x", (5)

where &* is an arbitrary 4-vector field. All observables are
independent of the gauge, and so gauge conditions may be
imposed by fiat in order to facilitate solution. We shall work
in the Lorentz gauge where one requires

e, =0, (6)
The field equations become in this gauge
—3,0%,, = 16rGT,,. (7

The solutions to Eq. (7) may be written as a sum of a
retarded solution plus a free field solution,

h_,uv = h_/,lzlv + h_i:lv’ (8)
where

hR, =f4GT#v(x‘,t— [x —x'|)/|x —x'| d3x' (9)
and

3,0%k™, =0, (10)

The gauge condition {Eq. (6)] does not determine the
gauge completely. Any additional transformation such that

3,3°€, =0, (1)
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will preserve the Lorentz condition. This gauge transforma-
tion of the second kind can be used to make the free part of
the field equation both transverse and traceless (Ref. 13, p.
946). No generality is lost, therefore, by requiring

hs, =0, (12)

hin=0. (13)

Periodic boundary conditions in the spatial coordinates
will be imposed as an aid to quantization. If the length asso-
ciated with this periodicity is L, then wave numbers in a
Fourier decompositon are restricted to have components
which are integral multiples of 27/L. Although the energy
momentum tensor must also have this periodicity for consis-
tency, no generality is really lost since L will be taken to
infinity eventually. With these conditions, the Fourier de-
composition of the free part of the gravitational field is

hiy=(1/V2L 3/2)2 €;(A.ke**Q(4,k,), (14)

where we have dropped the distinction between 4 " and 4 ™,
since in the transverse traceless gauge they are the same. A
denotes the polarization state and it can take on one of two
values. The €’s must satisfy the conditions

€; = €, ke; =0, €; =0,

€A =84, € —K=eXik.  (15)

The polarization tensors can be chosen real, and, with k in
the z direction, they can be taken as

€,€; =1,

L[t 0 o
€,(+)= 0 -1 0 (16)
VI o o
Lo 1o
€;(X) = 1 00 (17)
0 0 0

for the two independent states of polarization denoted by +
and X. The following expression is often useful:

> e;(d)enld) =4 — 858%, + 858 + 8i8y),  (18)
A

where
85 =8, — k.k; /K. (19)

The equations of motion for the field require that the
Qs satisfy

0+kQ=0, (20)
so that a Lagrangian may be chosen of the form
L=f% (IO~ Q[ 1)
Ak

where f'is an as yet undertermined parameter. In the sum
over k each Q appears twice because reality requires:

Q4, — k)= Q*1 k) (22)
The conjugate momenta are
aL : aL .
— = fReQ = ReP, - =fImQ = ImP,
GReg I RC=ReP Fig =/me
(23)
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and the Hamiltonian may be written as
H = ;;(1}’ 274f + 3 £1Q )
=/ 3 WP +4IQ ) (24)

This must now be compared to the actual energy of the gravi-
tational field to set the scale for quantization.

The physical energy to be associated with a free gravita-
tional field has been calculated (Ref. 13, p. 955). It is given by
the 00 component of the stress energy tensor:

1 J in j, in
T =5 = L (@, A=@K ™d *x, (25)

where the integration is taken over a three-dimensional cube
(£2) of edge length L. One finds

Ty =(1/327G) f (hd *x
(¢

=(1/321G) Y (IO > + 12| ), (26)
Ak
so that we may make the identification
f=1/327G, (27)
and therefore,
P=(1/327G)Q. (28)
IIl. QUANTIZATION

Quantization is achieved by imposing commutation
rules as follows at equal times:

(1/327G)[ReQ (4,k),ReQ (4 ' k)]

= —ifi0,; by + 6 1) (29)
(1/327G)[ImQ (A,k),ImQ (4 ' k')]
= —ifib,;. (6k,k’ - 5k, ) (30)

In terms of the fields, the equal time commutation rules
become

[h—.y(x)’h—kl(y)] = - iﬁ‘sijkl(x —¥) (31)
where
3
S alx —y) = (‘;ﬂ’; e =5, (K, (32)
and where
5ijk1(k) = ; fij('l:k)fkl(/l:k) (33)

is given by Eq. (18). The dynamical relation which fixes the
quantum theory is

0= -Ko. (34

The field theory is equivalent to uncoupled harmonic oscilla-
tors. In the ground state one finds

(01A 5 (x)h 5 (v)[0)

= (327G )iﬁf d’k 5ijkl(k)eik"(xu_y“) y L >t
@7 —k*k, +ie ==

(35)
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Using the rule of Gaussian combinatorics,

(0178, (x,) X - X b, (x,,)|0)

—Z (OlT¢ (xl)¢2x2)|0)x X<O|T¢n71 n-—l)¢n ’O>
(36)

where n is even, T denotes time ordering, 7 denotes a sum
over distinct permutations, and the higher order moments
for the ground state of the quantum field may be calculated.
The spectral energy density for the field is found to be the
same as for electromagnetism:

plo) = A/ 2>, (37)

corresponding to an energy of }#w for each degree of free-
dom of the field in the ground state.

IV. STOCHASTIC QUANTIZATION

The linearized gravitational field as a quantum system
may be reduced to an infinite dimensional Schrédinger equa-
tion of the form

[Z( - éﬁz——) + V(@ )] Y= 171— (38)
7 a9,

The dimensionality of this equation can be made finite by
imposing a cutoff in momentum space. Since much of the
theory upon which stochastic quantization relies has been
done for only finite dimensional systems, it is convenient to
impose a momentum cutoff which may be taken to infinity in
most expressions of interest. This is not an important limita-
tion and it can be expected that as the theory of Markov
fields advances it will eventually be eliminated. For the pre-
sent, we shall assume a momentum cutoff. Let us choose the
following notation

p=eR"", 4 228_2 (39)

° 7 aQ,.Z’
where R and S are real functions.

Direct computation shows that the following equation
is equivalent to Eq. (38) so long as R and S have a first time
derivative and a second Q derivative, and so long as z has a
nonzero real part

[__ (zz)z AQ +(V(Q)—ﬁ72(22— 1) AQRe )] eR+iS/z
e
— I(Zﬁ) _éa_teR+iS/z’ (40)

where z is a constant which may be complex.
Suppose that z is purely imaginary, so that

z=ilz|. (41)

Then Eq. (40)is still true if (38) is true, but (40) is only one real
equation

2 A ef
[(|z|2ﬁ) AQ+(V+§(1+|Z|2) :Re )]eR+S/lz|

— |z|ﬁg—eR+s"z|. (42)
at
This equation must be supplemented by another real equa-
tion since the original Schrodinger equation contains two
real equations. Another equation may be generated by
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choosing
z= —i|z|, (43)

which leads to
(lz|#)* 7 2 Age” S/
I:TAQ+ V‘+‘?(1+|Z| )—eR— eR 5712
%eRfs/\z\' (44)

= |z}#

Equations (42) and (44) taken together are equivalent to
Schrédinger’s equation by direct computation.

Consider the two real Egs. (42) and (44). They have the
mathematical form of the heat equation. Equations of this
generic form are characteristic of a certain type of diffusion
problem called generalized Brownian motion or Ito pro-
cesses. In Ref. 4 equations of this form were derived within
the context of diffusion theory. The fact that Schrodinger’s
equation can be rewritten in the form (42) and (44) is the basis
for the stochastic interpretation of quantum mechanics.

The stochastic interpretation rests on the hypothesis
that all of the experimentally verifiable predictions of quan-
tum mechanics may be deduced from Schrodinger’s equa-
tion. This hypothesis shall be assumed true in this paper.

Stochastic quantization is achieved, following Nel-
son,”” by associating with each coordinate Q a stochastic
process which is defined by the stochastic differential
equation:

dQ, = b,(Q,t) + dW (1), (45)
where the W’s are Wiener processes which satisfy
E(dW.dW,) = 2v6,dt. (46)

Processes defined by Eq. (45) go by the name: generalized
Brownian motion, Ito processes, or multidimensional diffu-
sion processes. The mathematical background contained in
Ref. 2 is sufficient for an understanding of stochastic quanti-
zation. Other good sources for this subject are Refs. 15-22.
Since the formalism of forward and backward derivatives
has been developed only by Nelson,” a careful reading of his
book is essential to an understanding of stochastic quantiza-
tion. A method relying on an operator formalism, rather
than the forward and backward time derivatives was pre-
sented in,* but it is completely equivalent to the Nelson
procedure.

Many existence and uniqueness theorems for the pro-
cesses defined by Eq. (45) are presented in Refs. 2, 15-22.
The most important theorems show that if b satisfies a global
Lipschitz condition then Eq. (45) has a solution which is a
continuous Markov process and which is unique {for exam-
ple, Ref. 2, p. 43).

In Ref. 2 forward and backward time derivatives D and
D. are defined by

Df(Qu) = lim - E(f(Qlt+h )i+ )
—fQUL)Q() = Q) #7)

D.f(Q1) = lim — E(f(Q (1))
—fQU—h)i—R)QE)=Q),  (48)
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and independent of any dynamical assumption, these satisfy

DQ, =+, (49)
D.Q,=b,, (50)
b — b, = 2v%1n[p(g,zn, (51)
D=§;+§i:bi§%+vAQ, (52)
D. = (—f:; ¥ 2b,,7‘;7—vag. (53)

The dynamical assumption which leads to Schro-
dinger’s equation is

\(DD. + D.D)Q; + £ (D—-D.YQ, = — ——q—V, (54)
8 a0,

where S is a constant and where

v="H#2vV ({1 - B/2). {55)
The Schrodinger wave function is written in the form

Y= KR+ izSN, (56)
where

z=1/(1-8/2)"? (57)
and

by =2v -2 (R +5,) (58)

aQi

It is straightforward to show that Eq. (54} implies that (56)
satisfies (38).
If v is to be real, then we must demand the condition

B<2. (59)

It is possible, because of Eq. (55), to choose any value of the
diffusion parameter v for a stochastic model of quantum me-
chanics. In the limit when v—0, the model becomes deter-
ministic and equivalent to Bohm’s hidden variable theory,*
as was first pointed out in.®

In applying this formalism to linear gravity, we use the
Q’s in Eq. (14), but mindful of the condition (22) which re-
lates Qs for antiparallel wave vectors. If we define

by, =Dh} (60)

i
bp =D.h}, (61)

then with the aid of the operator

Ax,t) = YA Kje™

1 Ak
Va2

x (a lfeQ + ’;a Ian)’ ©2)

the forward and backward time derivatives can be expressed
as

D=i+fbﬁAUd3x+va”AUd3x, (63)
at  Jo 2

D. =i+f byd id —vf A9A,d>x. (64)
at n n

If we define a random field by
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) 1 y
Wixt) = ——— % €¥A,kle™ W,

)= R AR ), (65)
where the real and imaginary parts of W, x are Wiener pro-
cesses which are independent of one another and which
satisfy

E [d(ReW/I,k) d(ReW, )] = 298, By + By _ - )dt, (66)
Eld (ImW, , )d (ImW, W)= 26,4 8y pe — 6y _ i )dt, (67)

then the stochastic differential equation may be written as
dh}=bydt+dW,. (68}

With the gravitational field expressed as in Eq. (8), and with
the retarded solution still given by Eq. (9), the field equations
for the free part of the field become

[{DD. + D.D)+ 8D —D.} — 3,8 [ =0, (69)

which is the stochastic version of Eq. (10} in the transverse
traceless gauge.

In order to solve these equations, Schrodinger’s equa-
tion must first be solved in @ space. Then the b ’s are calculat-
ed using Eqgs. (56) and (58). Once the b ’s are known, Eq. (68)
can in principle be solved.

In general, it is more difficult to solve the stochastic
equations than to solve the usual quantum mechanical equa-
tions. Even for the free field the stochastic processes for ex-
cited states are difficult to calculate. So far, the stochastic
method has proven useful in practical problems only for sta-
tionary state problems where considerable simplifications
occur. See, for example, Simon** for a review of results in
this area. Although Simon does not explicitly make the con-
nection with Nelson’s theory, many of the methods he dis-
cusses may be considered as applications of the Fenyes—Nel-
son model to stationary state quantum systems.

We now illustrate the theory for the ground state field.
The solution to Schrodinger’s equation in  space for the
ground state is

_ _ 2 w
¢(Q)—pkexp[ Qw2 |

up to a normalization constant. The b ’s are found from Eqgs.
{56) and (58) with S, = 0. One finds for the & ’s of Eq. (6)

bYx,t)= —2v/(V2)L?"?

w=1lk| (70)

Lk )
Xy YA k)e™ PrTe Q A.k,t). (71)
The stochastic differential equation becomes
dh?<=pidt +dW". (72)
Using the property of the W ¥ in Eq. (66),
E [dWix,t )dW¥ (p,t,)] = 2vdt6™ (x — y), (73)

where the delta function is that of Eq. (32), the stochastic
equations may be integrated to yield

E (Bx)h " (y)) = #(167G) j gs_’)‘} e -y
T,

X " CICTORIL T Llgik )/ k[ (74)

Since b Y of Eq. (71) is linear in the Q s, the process turns out
to be Gaussian with zero mean so the covariance (74) deter-
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mines all higher moments from the rule (36). The covariance
may also be written as a four-dimensional integral

E(Bx)h () = (320GH) f (‘;;;j k‘i‘"ﬁ‘zz

KAALOTG )i — ¢

k(X — y)

Xe {75)
In expressions (73)—(75) the infinite volume limit has been
taken. Nelson’s value for the diffusion parameter is

vy = 167GHh. (76)

Comparing Eq. (75} with (35), it may be shown that the sto-
chastic covariance in (75) may be obtained from the quantum
covariance in {35) by analytically continuing

t— —i[v/thl6nG)lt,, 1, —i[v/(fil6nG ),

(77)
This procedure of analytic continuation yields the
Schwinger function. Using the rule (36), we obtain the gener-
al result: The moments of the stochastic theory are equal to
the Schwinger functions of the quantum theory with the
times scaled by the factor v/{#i167G ). When Nelson’s value
for the diffusion parameter is chosen [Eq. {76)] the stochastic
covariances become equal to the Schwinger functions. This
result is similar to the results obtained in scalar field the-
ory”>'® and in electromagnetism.®%!!

Examining Eq. (75), we see that the covariance is not
manifestly Lorentz covariant, even discounting for the fact
that we have chosen a noncovariant gauge. Lorentz covar-
iance is violated by more than just a harmless gauge transfor-
mation in Eq. (75). This is a surprising and perhaps paradox-
ical result which has been known for some time.”"*' Despite
this lack of manifest Lorentz covariance in the ground state,
there is good reason to believe that the experimental predic-
tions of the stochastic theory are consistent with special rela-
tivity and are in fact the same as ordinary quantum theory.
The argument is as follows. Since for any real value of v we
have a stochastic model for a given solution to Schrodinger’s
equation, and since we believe that this equation contains all
of the experimentally verifiable predictions of quantum me-
chanics, then there is reason to think that it is impossible to
measure the diffusion parameter. If this is true, then all of the
experimentally measurable predictions of the theory (scat-
tering cross sections, line spectra, etc.) must be constants
when considered as analytic functions of v. Because of this,
we may consider analytic continuations to complex v with-
out affecting measurable predictions of the theory. When the
stochastic theory is continued to

v =if167G), (78)

then one finds that the moments of the stochastic theory
become the Green’s functions of quantum field theory. This
result was also found for the scalar field'® and the electro-
magnetic field.'" The stochastic theory can be expressed in a
mathematical form which is identical to ordinary quantum
theory when v is continued to the value in Eq. (78) (or its
complex conjugate). See, for example, Ref. 25 for a deriva-
tion of the operator formalism of quantum mechanics within
this framework. The methods of*> generalized easily to the
present theory in Q space.
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Stochastic quantization in the ground state for a field
theory leads to moments which are analytic continuations to
imaginary times of quantum moments. The stochastic inter-
pretation suggests that a certain reality be attributed to the
theory so continued. It is interesting that imaginary time
continuations have played a surprisingly important role in
modern physics. Euclidean field theory?® has led to advances
in constructive field theory. Complex manifold techniques®’
have led to a deeper understanding of gauge theories. Bound
state problems like the Bethe-Salpeter equation are often
best solved by making a ‘“Wick rotation” to imaginary times.
Perhaps the results of stochastic quantization provide an ex-
planation for the usefulness of imaginary time
continuations.

V. THE APPROXIMATION OF RANDOM CLASSICAL
RADIATION

In electromagnetism it has proven interesting in several
applications to approximate the ground state of the quantum
field by a superposition of classical plane waves with random
phases. This approximation has become known as random
electrodynamics®® and it has been found that the diffusion of
charged particles in harmonic oscillator potentials and ex-
posed to such radiation leads convincingly to Schrédinger’s
equation with the correct nonrelativistic Lamb shift.”® We
present this random phase approximation for the linear
gravity theory in the hope that it may find similar uses and
also for comparison with the stochastic theory.

We first write the metric perturbations as general solu-
tions to the free field equations. We consider only the free
field in the transverse traceless gauge

i _ 1 i k-x
h¥x,t) = (-—__1/2)L 7 ;k( eIk 04 k1), {79)
QAk,t) = 320GH/ K|

X {cosfwt + 6,{4,k)) + i cosfwt + 6,4,%)}}.
(80)

Reality demands
8,4, — k) = 8,{4,k), 6,4, — k) = 6,(4,k) + 7. (81)

The 8°s are all independent of one another except for the
conditions in Eq. (81). They are random phases which take
on values from 0 to 2. The averaging process is carried out
by integrating over these phases. One finds for the
covariance

Ey(h Y(x)h * (v) .
= 167G# j —ed : k} Melx =¥ cos(lt, — 1,))67 (k)/|k|.
(2m) 82)

It is easy to show that this is equal to the symmetrnized quan-
tum expectation

Eqfh ")k “(y) = (O] Sym( “xlh “ ) 0), (®3)

where Sym denotes the symmetrization operation

SYM(1) X X b (x,)) = z% 100X = X B, (%, )
: (84)
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and where P denotes a sum over all permutations of the argu-
ments of the fields.

It can be shown that in the infinite volume limit the
higher moments of the random phase average satisfy the
Gaussian combinatoric rule [Eq. (36)]. This is true despite
the fact that the individual Fourier coefficients in Eq. (79) are
not distributed normally. The reason is the central limit
theorem, as the field is a sum of an infinite number of inde-
pendent random variables. Since the symmetrized quantum
expectations also satisfy the Gaussian combinatoric rule, it
follows that

Eq(h e X X b " (x, )
= (O] Sym(k “"(x,) X Xk (x,))|0). (85)

A more detailed derivation of this result has been given for
electromagnetism by Boyer?® whose analysis can be applied
with little modification to the linear gravity theory to derive
Eq. (85]. It is important to realize that (85) is not true for a
one-dimensional oscillator or even for a finite dimensional
oscillator. It can only be derived in the present case in the
infinite volume limit. Thus the random phase approximation
does not give a very detailed model of the quantum field
accurate down to the level of a few normal modes. It is un-
likely, in the author’s opinion, that a consistent interpreta-
tion of the full quantum field theory could be obtained from
a classical random phase approximation for field theory.
This is in sharp distinction to the stochastic quantization
theory of Sec. IV which allows a consistent reinterpretation
of all quantum phenomena. Still, the random phase model
can be useful when considering the effects of vacuum fluctu-
ations on matter.
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The continuum limit of a classical 3-component, one-dimensional Heisenberg
model is Brownian motion on the surface of a sphere

D. Isaacson®
Ruzigers University, New Brunswick, New Jersey 08903 ¥
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We show by explicit computation that when the temperature 7 is chosen as a function of the
lattice spacing € so that the correlation length stays fixed at one as é—0, then the correlation
functions of a classical one-dimensional Heisenberg model converge as e—0 to the correlation
functions of Brownian motion on the surface of a sphere. We remark that this provides a
“statistical mechanical” construction of Brownian motion on the surface of a sphere.

PACS numbers: 05.40. + j

I. INTRODUCTION

In this section we define the correlation functions (or
moments) for Brownian motion on a sphere, and for the clas-
sical one-dimensional Heisenberg model with lattice spacing
€ at temperature 7.

In Secs. 2 and 3 we give formulas for the moments, and
we show that the temperature may be chosen as a function of
the lattice spacing so that as the lattice spacing goes to zero
the correlation length stays fixed at one. With this normal-
ization the correlation functions of the Heisenberg model
approach the correlation functions of Brownian motion on
the surface of the three sphere (S ?).

This computation was inspired by the scaling limit con-
jecture of Glimm and Jaffe (see Ref. 1 where the conjecture is
explained and proven for ¢  and references are given to the
papers of Glimm and Jaffe). We note that the conjecture has
been extended to |¢|} in Ref. 2.

The proof given in this paper is for S 2 however with
slight modification it holds for S for when n>1. When
n =0, S?is just two points and we get Brownian motion on
two points (a Bernoulli process) as a limit of the spin 1/2
Ising model.! We comment on weak convergence of the asso-
ciated measures at the end of Sec. 3. We do not prove weak
convergence here. We give a direct proof of the convergence
of all correlation functions using only elementary properties
of the spherical harmonics.

To establish notation we briefly describe Brownian mo-
tion on S 2.? Let’s introduce coordinate functions on S? by

The Laplacian on S? is given by
A= (sind)~'3/30sin0 3 /30 + (sind)~23%/34>. (2)

We denote the kernel of e'/** by P (t;u,v). Thus, for t>0
and u,veS ?

8/t P (tu,v) = (4 /2)P (tu,v), (3)

where & (4,v) is defined by
J‘ za(u,v)h (v)d2 (v)=h (u). (4)

Here 4 is any smooth function on S % and
dn (v)=(1/4n) sinb, d6,ds,. (5)
An interpretation of P (t;u,v) is that if a particle begins

Brownian motion on S % at ¥ when ¢ = 0, then the probability
it willbein BCS?whent =7>01is

P(ru,B )ELP(T;u,v) da (v). (6)

The semigroup property e + /24 = ¢'/24¢/24 is reflect-
ed in the Markoff property

Pt + si0) = f P(tu P s:20) d2 (2), ™

whichhastheinterpretation that the probability P (¢t + s;u,B)
of finding the particle at time ¢ + s in the set B is the ‘sum”
over all regions df2 (z) of the product of the probability for the
particle to go from u at ¢ = 0 into df2 (z) at time ¢, with the
probability that a particle starting in df2 (z) goes into B at
time s.

®, = 0,(6,¢ )= cos¢gsing, 0< 0« . . .
o ) The correlation functions B, (-+) for the coordinates of
@, = (0,4 )= singsind, 0<¢ <2m, (1) the particle undergoing Brownian motion on S 2 are (for
@5 = 04(0,¢ = cosb. 1 1L <L)
Bn(tl’tZ!""tn;jl’jZ""’jn)Ej "'fwj. (ul)'"wj"(un)P(tZ - tl;ul’uZ)"'P(tn - tn— 158n — l’un)dn(un )'"dn (ul)' (8)
(s

We next define the correlation functions for the one-
dimensional, 3-component, classical Heisenberg model.*®

The one-dimensional Heisenberg model describes the
behavior of a line of particles with spins, 0", =0,

*Research partially supported by N.S.F. Grant No. MCS-77-03568.
"'Present address: Rensselaer Polytechnic Institute, Math Dept., Troy,
N.Y. 12181.
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!
+ 1, + 2,..., where

o =(05,05,05) and lof|=1 )

We assume the particles are located on lattice points of
spacing € apart (see Fig. 1).

For any point ¢ we make the definition
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FIG. 1. Typical configuration with lattice spacing €.
olt )=a"t%. (10)

The n-point correlation functions for the Heisenberg
model at temperature 7= ~' are

ELAH,(t,,...tp; J1s--dniBr€) = (0}, (t1)0; (2,)) e (11)
=lim z; 'J. f%. (tl)"'a'j,,(tn)
N jo= M =1.je¥{=1
8 Nil Kokt
Xe k=N dﬂ(O_N)...dn(a'N),

where

8 Nil orgk 1
zN-Ef ---fe k=ow dn (o= N)-dn2 (oV).
le= ¥ =1..lc" =1
(12)
We may now state

Theorem 1: If the temperature 8 ~ ' is chosen so that the
correlation length £ =1, then

cothB—B'=e—¢ (13)

and

lgno Hn (tl"'tn ;jl'"’jn ;B (6)96) = Bn (tl'"tn ;jl":in )‘ (14)

The proof is given by direct computations in the next
three sections.

il. CORRELATION FUNCTIONS FOR BROWNIAN
MOTION ON 52

Let Y7 = Y (6,4 ) denote the spherical harmonics’
normalized so that

[ Frorroiaem =5, 8, (15)
Thus

Y7(0,6)=N7P™ (cos@ e,

NT = [(2I+ 1)/ — |m|)M/( + |m|)']"2 (16)

The Y*for!l =0, 1,2,... and |m| </ are a complete orth-
onormal set of eigenfunctions [on L,(S ?)] for the Laplacian,
i.e.,

AYr= —I{l+ )Y (17)
]

ky—1
ﬁ ; Uk.0k+l

= [sinhB/B 1N "%k ”J....J.aﬁ-...g]’f:e

We next use the Funk-Hecke theorem?® to write
) v . ! -
TN = 3 Y )Yt Tret Y, (29)
[=0m= —|

where, if P,(t) denotes the / th Legendre polynomial
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The spectral theorem applied to ¢4 2 yields the formula

Pltuy)= ¥ i e~ M+ 12y my) Yy (18)

I=0m= —1{

If we substitute (18) into (8) we get the formulas (assum-
ingr,=t, , —¢t,forj=1,.,n—1)

B, (t)...t,5]1-n) (19)
. n—1
-3 exp( S L+ 1)/2)(00|w,| 1,
=1

Lol

my.m__

X <Ilmlle, |lamy)-ll, _ym, _, |w;, |00)

where
{Im|w, | ',m')—ELZY;"(u)wkiu)Y;'f’(u) dan (u). (20)

We remark that the series (19) reduces to a finite sum.
In the next section we give an analogous formula for the
correlation functions H,,(--) of the Heisenberg model.

li. CORRELATION FUNCTIONS FOR THE HEISENBERG
MODEL

The partition function z,, and two-point function
(a(0)-0(t)) 5, were computed explicitly in Ref. 4, where it
was pointed out that the Heisenberg model is exactly solv-
able. It follows from Ref. 4, and from the formulas given in
the rest of this section, that

zy = [ sinhB/B 1Y

(U(O)'U(t»;;.e =evs§*l{t/el’ (21)
where £ is the “correlation length” given by
&= —¢[ln(cothB—B8 ")~ ". (22)

We express the correlation functions in a form suitable
for proving Theorem 1. Observe that if we let k;=¢, /€],
then

L M= lmfwa _ ()0, (¢)

x exp(s 'S ottt ) 40 (o~ )-d2 (o)

k= - N
k,—1
= .. OJF'-.- ,.(" ( —_ ) . +1
ja'|_| J;knl:l 0" eXp Bk;k‘ 1 Jo*.o*
k=1
X A o alts aal
[J;a M=1 \o"'1=1exp(ﬁk=2_1v )

% exp(ﬂk :ik"o*-a" - ‘) a2 (o N)./.d02 (" )]

X d2 (0*)-d2 (™)
(here the / means omit the variables o* with k, <k< k,)

do (*)-d2 (o*). (23)

+1

CB)= 5[ PPt ) dt. (25)

—1

We substitute (24) into the integrals in (23) of the form

(when a and b denote consecutive k;).
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f f A expﬂbilo*-a"‘ 1A (0t Yed2 (0P )

k-a

k=all=0ms= —{

It

=ZZof obc, (B)° Y (0" Y e(o?).

/

a

If we substitute this into A ) and use the notation
D,(B)=(B / sinh B)c,(f) then
H(troky s jniB5€)

= S DB *.D,

Led,

By
X (00|a;, |I,m,){Iym,|0;, |I,m,)
wl,ym, _,|0; ]00). 27)
We now prove Theorem 1 by showing thatif 8 = B (€) as
in (13) then

yrBDI(B)k,-ka,=e7r,l(/+1}/2 (28)

’

where 1, =¢; | — ¢,

Proof: We have that (13)

@+e PYf—eF)-p =" (29)
We find the Laurent expansion for /3 (€) by taking € small on
the right and S large on the left. Thus

I_B—1+O(e—lﬁ)=1_6+€2/2+0(63) (30)

which implies that
Ble)=€e""'+0(l). (31)
We study ¢, (B ) for large B by integrating by parts twice
1
cBy=4| €#Pt)dr
-1

= (e°P,(1) —e #P,(—1)/28
—(PPi(1)—e PP)(— 1))/28% + O(#/B?).
(32)

The Legendre polynomials satisfy®

() =1, P(=1)=(=1), Pil)=1(+1)2
Pi—1)=1(+1)/2(—1)*", (33)
Since D,(3) = ¢,{B)(B /sinhB)
D,B) = f—ef(—1 L+
T B ek 28
eB_e—B(_1)1+l s
X " +0B73. (34)
Now use (31) in the above to find
D/Ble)=1—1{+ 1)e/2 + O(). (35)
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f ff, ,,.H Z Z aB)Y 7)Y ) dR (07 * )d2 (0P )
L4 Z €, f fO“ Y o) Y (o e Y I ot )Y f0?) d2 (0"t )d 2 (0" )

(26)
Thus
lim D,(B)% Y
€ 0
= 11m[1 — I+ Ve/2 4+ Oyl el - el
- e—r/(/+ 2 36)

This concludes the proof of Theorem 1.

We remark that the techniques of the above proof could
be used to prove weak convergence of the associated prob-
ability measures on the space of functions on the sphere.

We thank the referee for pointing out that another ap-
proach to proving weak convergence of the probability mea-
sures associated with the discrete time Markov semigroup
P_(t), induced by the Heisenberg model (acting on functions
on the surface of the unit sphere and defined for ¢t = 0, ¢,
2¢,-+), would be to show that P, (¢ ) converges strongly to the
Markovsemigroup P (¢ ) of Brownian motion by showing that
(P.(e) — I)/e—~P(0)= — (1/2) (Laplacian on surface of
sphere) and using Chernoff’s “generalized Trotter product

formula”® which essentially says that
[P(t)] = [Pc(et)]—P(t)if (P.(€) — I)/e—P"(0).
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A cluster expansion in field theory ®
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A cluster expansion is proposed for the calculation of certain Green’s functions in field theory.
The results presented are for A¢ * theory, expanded in the number of scalar closed loops through
the introduction of the composite field, ¥ = iv/4 /12 ¢ >. As an intermediate step, Feynman path
integrals are used to perform the functional integration over the field degrees of freedom. The
cluster expansion that results is equivalent to perturbation theory, but at lowest order sums up all
the infrared behavior of the theory. Higher orders systematically include ultraviolet effects.

PACS numbers: 11.10. — z

It is well known that the infrared behavior of abelian
field theories (as in QED) shows a simple exponentiation
with the soft part of every Feynman diagram summing up to
an eikonal form.' This infrared exponentiation is easily de-
rived by a number of approaches, but the systematic inclu-
sion of ultraviolet corrections has not been dealt with within
these schemes.? An exception to this is the work of Fradkin,
Esposito, and Termini,> who have obtained modified pertur-
bation series expressions for Green’s functions in external
potentials. At lowest order these solutions show infrared ex-
ponentiation, but systematically include higher order cor-
rections to this effect.

The present paper proposes a cluster expansion, which
at lowest order sums up all the infrared behavior and shows
the simple exponentiation of Feynman graphs. Higher or-
ders in the cluster expansion systematically include ultravio-
let effects. This expansion has the property, that at Ath order
it reproduces up to kth order in perturbation theory exactly.

The calculation will be limited to A¢ * theory expanded
in the number of scalar closed loops through the introduc-

tion of a composite field y = iv/A /124 2. These Green’s
functions are of interest as the n = 0 limit of the n-compo-
nent O (n) invariant scalar field theory. As an intermediate
step, Feynman path integrals are introduced to enable the
functional integration over the fields to be performed, and
the scalar field is represented as a particle coordinate. The
path integration is performed exactly to obtain the perturba-
tion series expansion of these Green’s functions. From these
expressions the cluster expansion is derived.

The field theory that is considered here A¢ * theory in D-
dimensional Euclidean space. The Lagrangian density is

Z = — V8P —iM387 - 224,

with x a D-dimensional vector in Euclidean space. The inte-
gration notation used is

Jax=[ax [ax= (‘;;’;.

The generating functional for Green’s functions is given
by the functional integral

“'Supported in part by the U. S. Department of Energy under Contract No.
DE-AC-02-76 ER03130.A005 Task A-Theoretical.
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Z11= [ 2181 exp ([ 2015 + [ 1 ax).

This is evaluated through the introduction of a composite
field, y = iv/A /12¢ 2, by the identity

oo ifo)
= J D x] exp ( — 5!){2 + i(/10/12)"2J¢ ZX)
It is convenient to consider

7Lkl = [ 20| 216)
xexp( [+ [k + [16-1[o616),
with

G 'xyly)={— V2 4+ md —i(Ay/3) " (X)}6°(x — y).

The scalar field integration is now Gaussian, and is evaluat-
ed to give

Z[jk] =fD[x] exp<—£fx2+ka

x +1[i6 1 +L )
with
Liyl=—{Trin[—V?+m} —i(1,/3)"%]

representing the sum of all one scalar closed-loop graphs
interacting with the composite field y (x).

The Green’s functions that are considered here are the
scalar propagator

§ 6
Gx—y)= ——
8j(x) 8j(y)
and the composite field propagator (which is simply related
to the scalar four-point function),

8 b
Dx—y)= -2
6k (x) 8k (y)
These propagators will be considered in an expansion in the
number of scalar closed loops via the power series

InZ|_,_o,

InZ|_,_o-
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=3 L),

which results in a loopwise expansion of the theory. *® This
expansion is a simple limit of the theory, and gives the n = 0
behavior of the n-component scalar field theory

$= (¢l’¢2""7¢n )s
with
= Yo

This limit is of importance to the excluded volume problem
of polymer physics, and to the random potential problem in
solid state physics.*

The expansion in the number of closed loops results in

Glx—)= 3 G-y
Dix—y) = 3 D"ix—y)

with
D(O)(x ___y) — 6D(x __y)’

DM —3) = [ D LIt [xle” ¥,

and

z

G9%% —y) =J.@[)(]G(x,y|x)e_!fx.

Only these Green’s functions will be considered in the ra-
mainder of this paper.

In order to carry out the functional integration, proper
time representations for these expressions are now intro-
duced. These take the form

G (xyly) = f " dee oy,

=i Lo ax pleix
o §
with the density matrix

P(é';X,y) = (xle —&l-v - i(/lo/f")"zx]ly)‘
This may be represented as a Feynman path integral.’

_ ¢ d
x(§) = x ;‘J. dsp- _di
plxo= [ DN xne
x(0) =y
- f aslpis) — ij47 yixts))
Xe ,

where all particle trajectories are integrated over subject to
the endpoint constraints. * The composite field integration
is now Gaussian, and is performed to give

G(O)(x _y) - fw d§e~§m[2:/1/‘
° X ) = x
Xf D [x(s)]e

x (0) =

—8x]
’

and

DVx —y) = — %f dk,J d kye™= ~ %
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j d§ Jj ds,J;§ ds, V"

f @[x(s)]e Slx]e % x{s)) + Ky xr‘)
X(0) = X&)

where the particle action is given by

S [x] =£L§d ( ds) f dsf ds'8P (x(s) — x(s"))

and the normalized by
¢ dsp?(s)

N=f@[p(s)1e* :

Note that the particle action includes a point nonlocal selfin-
teraction for the scalar particle as it moves on its trajectory.
The closed-loop nature of the composite field propagator is
reflected in the constraint of periodic orbits.

These Green’s functions are now to be expanded in per-
turbation series, with

GO =5 = 3 —(—A/61G1x )
and
DY =)= $ L~ A/ Dllx )

There then follow the identifications

® Lt £ £
GO —y) = J dée” gm“j d51f ds; J ds,,f ds,,
0

x(E)=x
fdkl fdk N g[x(s)]e*5~“',

x{0) =

and

Dl —y1 = [ ak[ awers—s[" L oo
f dsJ dsf ds; - f ds,
xfds;.NJ.dkl...fdkn
XJO D (xls)]e” S,[x] — dkx(s) + K"x(s")
0} = x(£)

where

S,,[x]=lf ds( Zf) —tZ[x(s)—xs)]k

i=1
Written in this form all the path integrals are now
Gaussian, and may be evaluated. The result of this integra-
tion gives for the Fourier transforms of these Green’s func-
tions the expressions

- ® e[t £ £ £
G‘,f”(p)=f dfetlmote J‘ dSIJ‘ ds; f ds,,fds,’,
0 0 (¢] 0 (4]
~ $is—swe
dekl---fdkne =

—w 3 s, —Ski—-2 ¥ mk,
Xe i=1 isi=1

and
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© ] 3 vz
5(1'(1() — I dpj ié_-_e—é‘ [m3 + p’]J. dso_[ dshe” Is0s5]k
" 0 5 0 0
N £ £
><e2‘s°‘s°"’"‘f f dS;'"J ds"f ds’
o Jo

XJ-dkl...fdkn exp[ z |s —S; lkz
j=1

+23 (5, — s pk;
j»l
—23 mykk, —2 3 mk, k]
j=1 i>j=1
where
m;=(s, — /)0 (s; —5]) —s; —5;)0(s; —5,)
+ (s; —5;)0 (st —5;) — (s — 57)0 (5] — 5);
and
1, x>0,
6(x)=494 x=0,
0, x<0.

These expressions explicitly determine the contribution of
all Feynman diagrams at nth order to these Green’s func-
tions in terms of parametric integrals. It may be observed
that the k; integrals label the momentum flowing through
the n vertices at nth order, while the S; integrals label the
proper times at which the vertices are arranged, and so deter-
mine the ordering of propagators in every Feynman dia-
gram. The final integration over p in the composited field
propagator is the integration over the closed-loop momen-
tum, while s, and s, 1abel the proper times at which the
external legs are attached.

There is a natural cluster expansion that suggests itself
from the form of these parametric integrals. Defining the
quantity

fy=e iR,

the fully interacting propagators may be written as
- 1 Ao\
G(O)p _f de £(md +p?) __( ___0)
(p) 3 "ZO o 6

dsfdsfdk e~ |s; — 57 1k? + 2(s; — 5/ )p-k;
]—l 0

x I (L+£),

isj=1

and

—_~ 2 2 g g
D(I)(k)z _ %depfi;—_e—§[mn+n]f dsof dS(’,
o o
— 150 — 5o + 2so ~sipk = L [ Ao\
xe HZO n! ( 6)

dsfdsfdke I =
j—l

X 1‘[ (1+1£;)

i>j=1

sy + 2{is, — 57)p — mo b,

Notice that the m,; are bounded
|m;|<&,

while on dimensional grounds in the above integrals it is
expected that
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o¢)~1/7.
This then indicates that the f;; are small for small momentum
transfers; that is,

| f;1€1 forall |k |<|pl,

and that an expansion in the f; will sum up the effect of soft
exchanges at lowest order. **

This expansion is now performed. Following the usual
treatment of statistical mechanics,® a cluster expansion is
defined, which at lowest order sums up all infrared effects
and in higher orders systematically includes ultraviolet ef-
fects. The result for the scalar propagator is

GOp) __J dge =t trherel v 1]exp[ ’;(_ '%)[b,(f,p)] ,

where the b, are cluster integrals,)
b, = —ll—'[sum of all possible /-clusters],

and the /-clusters are /- particle graphs with each particle
attached to at least one line and directly or indirectly to all
other / — 1 patricles. Some examples are

b, =®=f dsf dslfdke 1 = ikl 20— s

2
3 & 3 3
- L O-@i-= if ds,f ds;f dszf ds;Jdk,fde
2! 2'Jo 0 o o

Xfroexp [ — |s, — st |k} — |s, —s5|k3 + 2
X(s; — s1)pk, + 2(s, — 53)p°k, ],

»=3le2 o' oo o' ol

This result clearly shows the exponentiation of Feynman
diagrams that is characteristic of summing the soft part of
every graph. However, this result goes far beyond the simple
infrared exponentiation; it is exact. The expansion to k th
order in the cluster expansion will give up to the k th orderin
perturbation theory, exactly. The rules for writing down the
cluster integrals are also very simple.

The result for the composite field propagator is similar

- L Y 3 3
DM = _ ’%J.dpf d§ g—é’[mo'*-l? ]J dsof dS(')
o & o o

X exp { — [so — 56|k + 2(s, — 55 )p-k}

conf3 (el

where these cluster integrals are given as

5 ]
Cl — '[ dslj dS;J-dkle_ |5:_S”kf+2k|'[(s| _:;)p‘mmk]
0 0 ’
1 g g e
= —1] [J ds,f ds;J-dkie“S"S“k‘
21212000 o

2".' r‘,’ - mk
¢ g2 llsi—sip —m ]]fu,etc.

Similar expressions may be written for all the n-point
Green’s functions of the theory.
The techniques presented here depends upon the possi-
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bility of replacing functional integrals over field degrees of
freedom by Feynman path integration.’ The expansions gen-
erated are systematic ones, and should be applicable to a

variety of problems with more ease than those of Fradkin, et
al’

'F. Block and A. Nordsieck, Phys. Rev. 52, 54 (1937); D. R. Yennie, S.
Frautschi, and H. Suura, Ann. Phys. 13,379(1961); H. M. Fried, Function-
al Methods and Models in Quantum Field Theory (MIT Press, Cambridge,
Mass., 1972).

H. M. Fried, J. Phys. Lett. 40, 89 (1979); Nucl. Phys. B {to be published}
Brown Univ. HET preprint.
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3E. S. Fradkin, V. Esposito, and S. Termini, Rev. Nuovo Cimento, Ser. I,
Vol. 2, 498 (1970). See also E. S. Fradkin, Nucl. Phys. 76, 588 (1966).
**This loopwise expansion should not be confused with the ordinary loop
expansion in field theory. The number of closed loops here refers to the
propagation of the ¢ field in the presence of the composite y field, with the
effective interaction of the form ¢ 2y. Note that the y propagator is a §
function.

*V.J. Emery, Phys. Rev. B 11, 239 (1975).

*“Here the integration measure follows Feynman’s original formulation;
see Feynman and Hibbs, Quantum Mechanics and Path Integrals,
(McGraw-Hill, New York, 1965).

*For a different application of the loopwise expansion and use of Feyman
path integrals see J. Kowall, “A Semiclassical Calculation of the Photon
Propagator in Two-Dimensional Scalar QED,” Brown Univ. HET Pre-
print 406.

**Note that one difference here from the usual statistical mechanics case is
that the f; are unbounded.

*K. Huang, Statistical Mechanics (Wiley, New York, 1963).
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Similarity solutions of nonlinear Dirac equations and conserved currents

W. -H. Steeb and W. Erig
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Nonlinear Dirac equations in one space dimension and three space dimensions are studied. Using
the continuous symmetries of the nonlinear Dirac equations we reduce the system of nonlinear
partial differential equations to a system of nonlinear ordinary differential equations, applying
group theoretical methods, and give solutions of these equations. Moreover, we determine
conserved currents using the continuous symmetries of the nonlinear Dirac equation.

PACS numbers: 11.30. — j, 02.20. — b, 02.40. + m
. INTRODUCTION

Recently, several authors'~ have investigated nonlinear
Dirac equations with fourth-order self-coupling. In the case
of one space and one time dimension exact localized solu-
tions have been described."? Solutions have also been given
in four-dimensional space-time.>* Takahashi** has shown
that stringlike and ball-like soliton solutions exist in four-
dimensional space-time.

The purpose of the present paper is twofold. First of all
we demonstrate how with the knowledge of continuous sym-
metries, solutions of nonlinear Dirac equations can be ob-
tained. We compare the solutions with those given by the
authors cited above. For investigation of the continuous
symmetries we adopt the modern approach due to Cartan.
This means we cast the field equation (i.e., a system of partial
differential equations) into an equivalent system of differen-
tial forms>® and calculate the Lie derivative of these differ-
ential forms with respect to the infinitesimal generators (i.e.,
symmetry generator). As symmetry generators we consider
space and time translations and an infinitesimal generator
which is associated with a gauge transformation. The second
purpose of the present paper is to derive conserved currents
and conservation laws. Here we adopt the Hamilton—Cartan
formalism®'" (jet bundle formalism) for first-order Lagran-
gians. In this approach the field equations, i.e., the nonlinear
Dirac equation, is derived from a two-form when we study
one space and one time dimension and from a four-form
when we study three space and one time dimension.
Noether’s theorem can easily be formulated within this ap-
proach.'' With the help of an example we show that con-
served currents and conservation laws can also be obtained
without the knowledge of a Lagrangian and a symmetry gen-
erator. Only the differential forms which are equivalent to
the field equations are taken into account. The approach is
similar to that given by Estabrook and Wahlquist.'? More-
over, we describe a third possibility which to our knowledge
is not known so far for obtaining conserved current, namely,
taking into account the symmetry generator and the differ-
ential forms which are equivalent to the field equation.

The case with one space and one time dimension is de-
scribed in detail, while the case with three space and one time
dimension is only briefly studied since the approach is the
same.
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Throughout, the type of nonlinearity is given by the
scalar interaction. However, the extension to other types of
interactions like vector, tensor, axial vector, or pseudoscalar
interaction is straightforward.

Il. NONLINEAR DIRAC EQUATION

The Dirac equation with rest mass m, can be written as

2 ﬁ (n ¥ -

k=1

w4 mep =0, (1)
dx,

where x, = ct and ¢ = (¢,¥,,¢¥,¢,)" (T means transpose).
¥1,¥2¥3 and ¥, are the following 4 X 4 matrices

0 0 0 —i
0 0 —i 0
Y= ; 0 ot
\i 0 0 0
( 0 0 0 -1
0 0 1 0
=1 010 of
\— 1 ¢ 0 0
0 0 —:71 O
_]0 0 0
=Y 0 o0 of
0 —i 0 0
1 ¢ © 0
0 1 0 0
"=lo 0o —_1 o ) (2.2)
0 0 0
Throughout we assume that m,> 0

Introducing the quantity
A =#/mg (2.3)

which has the dimension of a length, we obtain

A Z (v ¥)

K=1 axk

A ai (Vad) + ¥ = 0. (2.4)
X4

In the following we study the nonlinear Dirac equation of
the form

i3

K=1 axk

Vit — Ai 3?;‘ (vad) + ¥ + A ed(if) =

(2.5)
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where ¢ is a real parameter (coupling constant) and
y=(y*, ¥¥ — ¥, — ¢*). This means that we investigate
scalar Fermi interaction. We mention that the extension of
the following approach to other Fermi interactions such as
vector interaction, pseudoscalar interaction and so on is
straightforward. Now we put ¢;(x)=u,(x) + iv;(x), where
J=l..,4and x=(x,, x,, x;, x,). 4;(x) and v;(x) are real
fields. If we insert ¢, {x)=u; (x) + iv;(x) into the partial differ-
ential equations (2.5) we obtain a real system of partial differ-
ential equations. In the following we mainly investigate the
case with one space dimension [x=(x,, x,)]. In this case we
have

ad
ia—)ﬂ(%!//)

Then we obtain the following nonlinear coupled system of
eight partial differential equations;

A D) + UL+ Al =0, (2.6)
ax,

/l a;;(X) +A M + u,(x)[l +16K] =O’
1 X4
A0 4 300 4 dek ] =0,
3X| aX4
) dv,(x) ) 9vy(x) + u;x)[1 4+ AeK ] =0,
axl x4
1 av,(x) _i dv,(x) + uyx)[1 + 1eK 1 =0,
axl x4
i Fu4lx) _A M +0,(x)[1 +AeK']1 =0,
x, Ix,
) 3(1;3(x) .y auZ(x_) +vx)[1 +AeK ] =0,
X, X4
1 4
| 4
where

K (u(x)vix)= 2 (u2(x) + v2x)) — ;(u (x) + 1))
. 2.8)

with u=(u,, u,, us, uy)and v=(v,, vy, V3, v4).

Iil. NONLINEAR DIRAC EQUATION AND SYMMETRIES

Now we use group theoretical methods for reducing the
nonlinear system of partial differential equations (2.6} into a
nonlinear system of ordinary differential equations. For this
purpose we cast the system of partial differential equations
into an equivalent set of differential forms.>~® We put
Ju;(x)/dx;—p,; and Iv,(x)/Ix;—q,(i,j = 1,2,3,4). Then we
find

F(tyyee VgD 101G 44)
=A (a1 + q14) + t4(1 + 2K (1,0)) =0,

=A(— g2 — gs4) + (1 + A€K (u)) =0,
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Foyloiiimien, )

=A(— g1 — Gaa) + us(1 + AeK (u0)) =
) O O )

=A(—psy —pra) +0i(1 + AeK (u,0)) =0,
Fofooiiiicans )

=A(—py) — Paa) + 021 + AeK (u,0) = 0,
Foloiinn, )

=A (21 + Pas) + v5(1 + AeK (u,0) =
Fyloiooiiiene. )

=A Py, + Paa) + va(l + A€K {(u,0)) =0, (3.1)
and

a;=du; —p,dx, — p,dx,,

Bi=dv, — g, dx, — g,,dx,, (3.2)

where / = 1,2,3,4. Instead of considering the nonlinear
Dirac equation (2.5) we consider the differential system giv-
en by Eqgs. (3.1) and (3.2) for investigating the symmetries.

A comment about the approach is in order. We consider
the nonlinear system of differential equations within the jet
bundle formalism®™'' (compare also Sec. 5). The quantities @,
and f3; are called contact forms.

In a previous paper the authors have shown that the
differential system (3.1} and (3.2) is invariant under the in-
finitesimal generator

= 4 d d
Z = —_——,
kz::l (uk v, O Ju, )

4 4

+3 3 (pk, a‘i G 5‘?—) (3.3)

K=1=h P

It follows that the nonlinear Dirac equation is invariant un-
der the transformation group generated by the infinitesimal
generator Z = 3, (4, 8/dv, — v,3/3u,). Z is the once-ex-
tended vector field of Z.

Moreover, the nonlinear Dirac equation is invariant un-
der space and time translation, since the partial differential
equations do not depend explicitly on time and space coordi-
nates. The infinitesimal generators taken the form

X= 9 T= i (3.4)
5x, ax,
The once-extended infinitesimal generators are of the same
form. Instead of considering the infinitesimal generators X
and T for deriving conserved currents and similarity solu-
tions we can take the infinitesimal generators

d
U= — Z (pll + g 5;)

=1

(3.5a)

and

- #l;( 2 44 a‘z ) (3.5b)

We notice that X la, = U_la,-, X418, =U1B;, and
Tla, = Via, T8 = VB,

IV. SIMILARITY SOLUTIONS

In this section we derive similarity solutions to the non-
linear Dirac equation (2.6). For this purpose we consider a
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linear combination of the infinitesimal generators X, 7, and

Z,ie.,
d d 3 ] a )
Y= —+ Uy —— ;
T o, ax, s Ix, as(;(g] * v, , du,,
(4.1)

where a,, a,, a5 € R. The contraction of the one-forms «, ...,

ay, 3, ..., B, by the vector field Y yields the zero-forms
Yla, = —a,py —a,ps —asv;,
Y1B, = —a,9q — asqu +asu;, (4.2)

where i = 1, ..., 4. In order to obtain a similarity solution to
the nonlinear Dirac equation we consider the linear partial
differential equations which are given by s*(Yle,) = 0 and
s¥(Y1B,) =0 wherei =1, ..., 4. s is the mapping

six) = (x,u(x), vix), plx), gix))and s* is the pull back map-

ping induced by s. We obtain a linear system of partial differ-
ential equations of first order, namely

dulx)  ulx)
+ X =O’
@ T 0
av, av,
1 bitx) +a, vilx) —asu;(x) =0 (4.3)
ox, ox,
fori=1, .., 4.

Let @, #0. Then we find as a solution to Eq. (4.3},
u;(x,.x4) = fi{m)cos (asx,/a,) — g;(N)sin (asx,/a,),
= fi(n)sin (asx /a,) + g;(n7)cos (asx /a)), (4.4)

where n=a,x, — a,x,. f,(n) and g,(7) are smooth functions.
Now let a,#0. Then we find as a solution to Eq. (2.10),

= fi(n)cos (asx,/a,) — g;(n)sin (asx./a,),
(x1,x4) = filmlsin (asx,/a,) + g.{n)cos (asxs/a,). (4.5)

Now the theory tells us that when we insert the functions u;
and v, into the nonlinear Dirac equation (2.6) we obtain a
system of ordinary differential equations, where the inde-
pendent variable is 7. Consequently, taking into account
symmetry generators we have reduced a system with two
independent variables to a system with one independent
variable. The quantity 7 is called the similarity variable.

Inserting Eq. (4.4) into Eq. (2.6) and after some algebra-
ic manipulation we obtain the following coupled nonlinear
system of ordinary differential equations:

/1<_a|if—l+a4j—{;+gs‘g4)+gl(l +AeK (f8) =0,

V(X5 )

u;(xy,x4)

dg, _ dg,  as _
A(a, b0 Iﬁ.)+f.(1+/16K(f,g))

A(af—ﬁ—a.i’f—wﬁg.)—gm+AeK(f,g))=o,
dn dnp  a,
d,
A(—a4&+a.—gi+“*f) — £l + AeK (fg)) = O,
d77 d77 a,
dfs d
A(—a. JERL i g;)+gz(1+/16K(fg))-
dn dn
. d
A (a. B _ 4, %, —5f3) +Aill + LK (fg) =0,
dn dn a,
i(a4ﬁ—a|%+a—5gz)-&x(l+/16K(ﬁg))=0,
dn dn a,
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1( - ra Bt B2 )~ 1+ 26K ) =0,
dn dn
(4.6)
where
Kifgy=fi+gi+fi+e—fi—g—fi—&.
Inserting Eq. (4.5) into Eq. (2.6) and after some algebra-

ic manipulation we obtain the following coupled nonlinear
system of ordinary differential equations:

A (al L/ "—Sgl) _g\(1 + 1K (fg)) =0,

a, == —

dn dn a,
A(a. a8 _, %+Z—5fl) + £l + €K (fg) =0,
4

4d17
4(_a4ﬂ'—+a5 s —ﬁga) g1 + AeK (£g)) =0,
dn d a
z(—a4dgl+a,dg“ "m) —fi{1 + AeK (fg) =0,
dn dn
d,
A(a d—fl—a,li+—5g3)—g3<1+AeK(fg»=
dng a,
i(az&—a.igi—ﬁfs)wﬁ%(l+/16K(f.g))=0,
dn dn a,

d d, )
A(—a. /o 4 zﬁ+ﬁgz)+gz(1+ie1<(ﬁgn=o,
dn dn a,

0, %, B ) _
A( @b, G 2f2) il + AeK (£g)) =O0.
(4.7)

In the following we are only interested in localized (confined)
solutions. Hence we require that for x,— + o the functions
u; and v, (i = 1,...,4) vanish. We consider solutions of the
type given by Eq. (4.5). This means we study solutions with
oscillation in time. Thus we have to investigate the Egs. (4.7).
It is obvious that the general solution of this coupled system
of nonlinear ordinary differential equations cannot be given
explicitly. However, for particular cases we can find solu-
tions which can be given explicitly. For example, let

Sin) = fi(n) = g2(n) = g3(n) = Oand fy(n) = g,(n) =0
Moreover, we put a; = 0. We obtain the following system of
ordinary differential equations:

d
Do Bt g1+ el - )
dn a; ald
d, 1
e B — S+ 2e(f2 — &) (4.8)
dn a4 a
Since a, = 0, we obtain 7 = — a,x, and therefore
ah _ (& _ L) _ gelf?
dx, 2. A g, — 84€lfT — &3),
d, a 1
e (S fi—rert - (49)
X, a, A
where 1/k = — as/a,. k has the dimension of a length and is

a positive quantity. In the following we put € <0 (attractive
force) and 1/4 > 1/k since we consider confined solutions.
We find as a solution to Eq. (4.9),
2(1/4 — 1/k))‘/2 1

—€ cosh Cypx,(1 — C?tanh®C,x,)’

fiwd=(
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gu(x,) = (2(1//1 - l/k))‘/2 C,tanh C,x,
o — cosh Cpx,(1 — C2tanh2C,x,)’
(4.10)
where
Ci=(k—A)tk+2)""
and
C,=(1/A% = 1/k?Y)"2 4.11)
As a consequence we obtain
21/A - 1/k
u=pivg =LA
v 1 + C1tanh®’C,x,
cosh’C,x,(1 — C}tanh®C,x, )
(4.12)
and
- 2(1/4A - 1/k
IW=f —g = (_:_E_)
1
X .
cosh?C,x,(1 — Citanh®’C,x,)
(4.13)
The quantity k is determined by the equation
f Ydx, = 1. (4.14)
+ o

We see that both /'y and ¥4 vanish rapidly as x,— + co.

We have found the solutions given by Lee ez al.,' where
the solutions given by these authors have been written in a
somewhat circumstantial manner. In order to find further
solutions of Egs. (4.7) we must solve these equations
numerically.

V. CONSERVED CURRENTS

We now calculate the local conservation laws which are
associated with the symmetries described by the vector fields
(3.3) and (3.4). Our approach to the calculus is based on the
theory of jets. The theory of jets'is applied to the calculus of

variations.®~"'

Let us briefly describe the approach. Let M be an orient-
ed manifold of dimension m, with local coordinates x; and
volume m form 42 given in these coordinates by
2 =dx,Ndx, \--Ndx,,. Let N be an n-dimensional mani-
fold with local coordinates z; and let (E, 7, M ) be a fiber
bundle with fiber N. The & jet bundle of local sections of(E, 7,
M) is denoted by J “(E ).

In the case with one space dimension we have M = R?,
N =R® and (E, 7, M)=(M XN, pr,, M ). Let (x, z;) be a co-
ordinate system on E and (x,,z;,z;) the corresponding co-
ordinatesonJ '(E ). The Cartan fundamental form (an n form)
defined on J '(E) is given by

8 2
>3 oL z; ).()
J=1i=1 32,7
S & dL d
+ j; ,-; 5 dz; A\ (ax in )
where 2 = dx, Adx, and L.J '(E }—R. In physics L is called
the Lagrangian density.

In order to adopt the notation of the Secs. 2 and 3 we set

X = (X,%5) = (X,%,4), (2),724) = (1,00 u4) = U, (25,00,25)-
= (Vy,0a) = 0, (21, 244) = (D110 Paa) = P, and (25,+,244)-
= (g1, qaa) = ¢

For the nonlinear Dirac equation L takes the form

L=A(—ugy +vapi — Usqy + 39y
— Uxq3 + V3 Py — U\ Gay + U Py
— U G1a+ VU P — UsGra + V2 Doy
— UsG3q + V3 P3g — UsGas + Vs Pas) — K (1 + 1K )’(5 2

6=(L—

(5.1)

i

where
2 4
Kup)=Y @ +v})— 3 W+
= §=3

We mention that the exterior differential systems generated
by {¥1dO }, where V denotes the vector fields on J '(E)
which are vertical over M, is equivalent to the Euler-La-
grange equations for L.

A straightforward calculation yields

& (oL aL JaL aL
L— ( P + P + g, + q )) —K(1+ AeK), (5.3)
( ,-;1 Iy " o gy T Ogu
and
4
( dL du; Adx, — oL du; Ndx, + oL dv; Ndx, — 9L dy; /\dxl) (5.4)
/=1 \dpy, 3pp ag; dg;
= A (vdu, Ndx, + vydu, Ndx, + v,dus Adx, + v, duy Adx, — v, du, ANdx, — v,du, Adx, — vsdus Adx, — v du,Ndx,
— uydv, Ndx, — usdv, Ndx, — udv, Adx, — u,dv, Ndx, + u,dv, Adx, + u,dv, Adx, + uydvs Ndx, + udv, Adx,).
In order to determine the conserved current we have to calculate the Lie derivative of the two-form
O= —K(1 +AeK)dx,Ndx, + A (vydu, — uydv, + vy du, — u3dv, + v, dus — u, dvy + v, duy — u, dv,)\dx,
+ Au,dv, —v,du, + u, dv, — v, duy + uy dvy — vy duy + u, dvy, — vy du) Ndx, (5.5)
with respect to the vector fields X, T, and Z given by Eqgs. (3.3) and (3.4). We find
L,6=0, L 6=0 (5.6)
and
L,6=0. (5.7)
In order to obtain the conserved currents we have to calculate the contraction X 16, T 16, and Z16. We obtain
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4
X10= —K(1+AeK)dx,— A Y (u; dv; — v, du;),

i=1

—A z (vs_, du; —

i=1

T10 =K (1 + AeK ) dx, —

Z10 = — 24 (u uty + Uslts + 0,04 + 0y05) dxy + A { Z (u? + v}))dx,.

Consequently, the conserved currents are given by

— *X10) = [,1 3 ( ) ”(x’ ,(X)M)] dx,

i=1

A Z (ui(x)

i=

—s‘(TJG)—[ i (vs_.x)

avi(x)

+ [/1 3 (vs_,-(x) P )

ax,

i=1

and

i=1

where s is the following mapping: s(x} = {x,u(x),v(x),
Bu(x}/dx,dv(x)/Ix); s* is the pull back mapping induced by s.
Notice that s*d (-}=ds*(-). We are interested in solutions

u{x),v;(x)( = 1,2,3,4) which vanish at infinity, i.e., we are
looking for localized solutions. Then we have

(5.8)
—us_; dv;), (5.9)
(5.10)
Ix,
— (%) —— Iu,lx )) + K (u(x)v(x))(1 + AeK (u(x), v(x)))] dx,,
8x4
(") L ) — K (u{x)ox))(1 + AeK (u(x),v(x)))] dx,
ax, ax,
8u-(x))] dx
—sNZ1O)= -4 2 (u}(x) + v} (x))] dx, + 24 [u(x)uy(x) + uxfx)us(x) + vy(x)oglx) + valx)vs(x)] dxs
{
3 (5‘9—(1( (1 + AeK o, Adx,=d (K (1 + AeK )dx,)
i=1 OU;
— z p,l( K(1 +/?.eK))d Adx,,
pidx\= —a; +du; —p, dx,,

d [ ¢ a() ux)
) Z( — v(x) . )dx,—O,

® =1

(5.11)
d (*" Ju,fx) av, (x))
dx, ) A,Z. (US"x dx, —us_;(x) o
— K (ulx)v{x))(1 + AeK (ux)oix))] dx, =0,  (5.12)
di‘x4 3 o:o :igl (uxz(x) + U,Z(X))] dx, =0. (5.13)

Instead of considering the vector fields X and T for obtaining
the conserved currents we can also find the conserved cur-
rents with the help of the vector fields U and V¥ which are
given by Eq. (3.5). By a straightforward calculation we find

L,E= Ep,l [ai (K(1+/1€K))]dx,/’\dx4

i=1

+3 4 [_‘9_(1((1 4 AeK ))]dx,Adx4

i=1

+A z v; dpy Ndx, —

=]

— Py du; Adx)

+i Z (plldvs—l /\dx4 - vs_,dp‘l /\dx4)

i=1

+A4 2 (—u;dqy Ndx, + g, du, Ndx))

+A Y (-

=

»

gqdus_ Adx, + us_,dg, Ndx,).
Owing to the identities
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dp, Ndx,= —da — dp,, Ndx,,
du, Ndx,=a, Ndx,

and so on, where a; is given by Eq. (3.2), we obtain

— Piadx, Ndx,,

L, 6 = dy modulo (contact forms a,,5;),
where
y=K(1 +ieK)dx,

4
+ Z (—u,q, dx, + v;p; dx,

=1
+us_ gy dx,—
4
+4 Y (u dy,
i=1
The conserved current is given by y — UJ6 and we find the
result given by Eq. (5.8).
In the following we show that conserved currents can

also be obtained without the knowledge of the two-form O
and therefore without the knowledge of the Lagrangian den-
sity L. The approach is as follows (compare also Estabrook
and Wahlquist'?): We make the ansatz

@ = f(u,v) dx, + fo(u,v) dx,,
where f, and f, are smooth functions. Let
J=(F,,...Fy, dF,,...dFys, a,,...Bs, da,,...dB) (5.15)

denote the ideal generated by F,,....dB,. F,,....d3, are given
by Eg. (2.7). The condition for obtaining the conservation
laws is as follows: If

dwe(F,,....Fy, dF,,...dFs a,,...Bs da,,...dB,),(5.16)

Us_ P dX,4)
—v, du,).

(5.14)
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then

s*dw = 0, (5.17)
where s is the mapping s(x) = (x,u(x), v(x), p(x), g(x)). We do
not describe a general treatment, but we show that the one-
form given by Eq. (5.10) can be derived. For this purpose let
us construct a convenient two-form which is an element of
the ideal generated by F|,...,dJ3,.

Let

o, =B Ndx, — B, \dx,,

oy =By Ndx, — B3 Ndx,,

0y = — By Ndx, + B, Ndx,,

oy = — By Ndx, + B, Ndx,,

os= —a,Adx, + a,Ndx,,

0e= —a,Ndx, +a;N\dx,,

o; =az;Ndx, — a, Ndx,,

oy =a,Ndx, —a, Ndx,. (5.18)

It is obvious that the two-forms o, (i = 1,...,8) are elements of
the ideal. Since both f, and £, do not depend on p;; and g;; we
have to eliminate the terms which contain p; and g;;. There-
fore, we consider the two-forms 7,.=Ao; — F; dx, Adx,
which are elements of the ideal. We find
Ty = A (dv, Adx, — dv, Ndx,)
— u,(1 + AeK (u,)) dx, ANdx,,
T, =A(dv, ANdx, — dvs Ndx,)
— (1 + AeK (u,0)) dx, Ndx,,
Ty =A(—dvyANdx, + dv, Ndx,)
— uy(1 + AeK (u,0)) dx, Ndx,,
Ts =A{ —dvyNdx, + dv, Ndx,)
— uy(1 + AeK (u,v)) dx, Ndx,,
7s=A(—du, Ndx, +duy,\Ndx,)
—v,(1 + AeK (u,v)) dx, ANdx,,
Te =A(—du, Ndx, + du, Ndx,)
— 0y(1 + A€eK (u,v)) dx, Ndx,,
7y =A (dus Ndx, — du, Ndx,)
— (1 + AeK (u,0)) dx, Adx,,
Ty = A ([duy, Ndx, — du, Ndx,)
— (1 + AeK (u,v)) dx, Adx,. (5.19)
We notice that the conditions s*7, = 0 (j = 1,...,8) lead to
the Egs. (2.6). It is worthwhile to mention that in the ap-
proach described by Harrison and Estabrook® the two-forms
given by Eq. (5.19) are the starting point for investigating the

symmetries.
We consider now the two-form

T=A (VT 4 VUaTy — VD3T3 — U4T4 — U Ts — UaTs

+ U377 + UsTs) (5.20)
which is again an element of the ideal. It follows that
(5.21)

4
r=24 (z (v, dv; + u,-du,-)/\dxl)
i=1

+ 2 (—v,dv, — v, dvy — vy dv, — v, du,
—u,duy — uy duy — uy dus — uydug) Adx,.
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Now the two-form 7 can be represented as the exterior de-
rivative of the one-form w, i.e., 7 = dw, where

fluw) =4 S (u} +v))

i=1

(5.22)

Llu) = — 24 (uuy + ustiy + 0,04 + 0o03). (5.23)

Finally, we mention that the two-form © can be expressed
with the help of the two-forms 7,(i = 1,...,8), namely

O = — U, — Uy + U Ty UT, — U T
— V5T + U377 + U475 (5.24)

It follows that Ge(F,,...,df3,), but dB #0 and therefore O
cannot be obtained as the exterior derivative of a one-form.
For field equations which can be derived from a Lagrangian
density it is obvious that Oc(F,,...,df3,).

Thus far we have derived the conserved current given
by Eq. (5.10) applying two approaches. In the first one we
have taken into account the Cartan form 6 which contains
the Lagrangian density and the symmetry generator Z. In
the second approach we have only considered the differen-
tial forms which are equivalent to the nonlinear Dirac equa-
tion. Now we describe a third approach for obtaining the
conserved current given by Eq. (5.10), where we take into
account the symmetry generator Z and the differential forms
which are equivalent to the nonlinear Dirac equation. Hence
we consider the differential forms given by Eq. (5.19).

First of all let us consider the two-form

8
X = hiluv;,
j=1
where the two-forms 7; are given by Eq. (5.25). 4, are smooth
functions. Let Z be the symmetry generator given by Eq.
(3.4) and let J be the ideal given by Eq. (5.19).
If Z 1dyeJ, then taking into account

(5.25)

L,(J\CT (5.26)
and the identity
Loy=Zldy +d(Zy) (5.27)

it follows that the one-form Z 1y is conserved current since
d (Z y)eJ. Now we have to determine the unknown func-
tions A,(u,v) with the help of the equation Z_IdyeJ. This con-
dition gives the solution

h,(u,v) =u, hz(u,u) = U,,

gl = e 0 7 (5.28)
hS(u’U) ="y, h(,(u,l}) =U,,

hi{u) = — v, hgluv) = — v,

Consequently, we find y = 6, where Ois given by Eq. (5.24).
A comment about the different approaches is in order.
For obtaining conservation laws due to Noether’s general-
ized theorem'' we use the whole contact ideal, including all
differential consequences of the given field equation. If the
field equation admits a Lagrangian formulation there exists
a well-defined correspondence between symmetries and con-
servation laws.'' Therefore Noether’s generalized theorem
is superior to other approaches for finding conservation laws
of field equation in Lagrangian form. The approach due to
Estabrook and Wahlquist'? only uses a subideal J of the con-
tact ideal J. Therefore this method requires fewer variables.
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The reason for this is that this approach tends to determine
the conservation w = f; dx, + f, dx, from the condition
dweJ. This condition leads to a differential equation for the
quantities f, and f,. This differential equation which is highly
overdetermined looks similar to the determining equations
for the symmetries. The same holds true for our third ap-
proach which is also based upon the condition dweJ. Howev-
er, we take into account known symmetries of the field equa-
tion under consideration.

The merit of the second and third approach is that they
are applicable to the case where the field equation under
consideration admits no Lagrangian formulation. To see this
let us consider an example. For the diffusion equation

U, =U, +u
there is no Lagrangian density. Now we determine conserva-
tion laws. First of all we put u; = u, ¥, =u,, x, =x, and
x, = t. Let us express the diffusion equation by two-forms
7, =du, Ndx, — udx, Ndx,,
7, =du; Ndx, + du, Ndx, + udx, \Ndx,.
We make the ansatz
@ =[x, X0 1,15) Ay + X 1, %04 ,,4) dX;
which is an extension of the ansatz given by Eq. (5.14). We
obtain with the technique described above that
® = ( — a sinx, + B cosx,)u, dx, + ((@ cosx, + B sinx, )u,
+ { — a sinx, + B cosx,)u,) dx,
isa conservation law of u, = u,, + u, where @ and B are two

arbitrary constants. Taking into account the invariance of
the diffusion equation under the infinitesimal generator

d d
-2 — + XU, —,
2axI llaul

we obtain by the third approach that
@ = X, exp( — x,)u, dx, + (x, exp( — x,) — u, dx,

is a conservation law.

VI. FOUR-DIMENSIONAL SPACE-TIME

In this section we show in four-dimensional space-time
how solutions can be obtained using continuous symmetry.
We consider a particular case, demonstrating how cylindri-
cally symmetric solutions can be derived. Such solutions
have been considered by Takahashi.* Now we study the non-
linear Dirac equation with scalar coupling, namely

L. 4
A
2o

k=1

red) — id % (rad) + ¥{1 + €A F) = .
(6.1)

Again we put ¥, (x) = u,(x) + iv;(x), where «,(x) and v,(x) are
real fields. In the same manner as in Sec. 2, we cast the sys-
tem of partial differential equations into an equivalent sys-
tem of differential forms. To investigate the continuous sym-
metries we study the Lie derivative of the differential forms
with respect to infinitesimal generators.

Let us consider now cylindrically symmetric solutions
whose axis lies along the x, direction. We recall that the
rotation group on the plane {x,x,) has the form
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— x,3/3x, + x,0/3x,. Now we consider the infinitesimal
generator

d a d d

R= —x, pe + X, o, + u, 2, v, 6u,' (6.2)
We calculate the once—extended infinitesimal generator and
require that the zero-forms F,,...,F; are invariant under this
once-extended infinitesimal generator. This requirement
leads to the condition that u;(x) = v;{x) = 0. Consequently,
the derivatives of these fields with respect to x,,...,x, also
vanish. Then the zero-forms F,...,.Fy take the form

Fi=A(—ps—quz—Pra) + 0,(1 +4°€K) =0,
Fy=A (p43 — P2a) + 2ol + 27K} =0,
Fy=A(p3— P2 +92)=0,

Fy=A B\, — qi2 — P23 + Pas) + 041 + A °eK ) =0,
Fs=A(q1s— g4, + Par) — uy(1 + 4 €K ) =0,
Fo=A(quy — g24) — 2(1 + A €K} =0,

Fi=4(q21 — P22 +913) =0,

Fe=A(q,, + P12 — G235+ qaa) — u4(1 + 1°€K) =0,
(6.3)
where
K=u} +v} +u? +0} —ul -0l (6.4)

Let R denote the once-extended infinitesimal generator of R.
We find

LiF,= —F,, LgF,=0, LgF,= —F,
LgF, =0, (6.5)
LgFs=F, LgF,=0,

LgF, =F,LgF,=0. (6.6)

Since we study cylindrically symmetric solutions whose axis
lies along the x; direction the fields do not depend on x;.
Thus in Eq. (6.3) the terms p;; and g,; can be omitted. More-
over, we assume that u,{x) = 0 and v,(x) = 0. This means we
require that the differential forms are invariant under d/du,.
Then the zero-forms given by Eq. (6.3) take the form

Fi=A(—psi — 442 — Pra) + 0)(1 + L e(ui + v} —ui —v}))

=0,

F=Ap —qi2+pa)+ofl+4 35(“% + U% —uy — U%))
=0,

Fs=A(—qis— g4+ pas) — uy(1 + A %e(ul + v} — uf —1}))
=0,

Fy=A(q, + P12+ qaa) —usl + 4 36(“% +vi —ui — vf))
=0. (6.7)

The conditions (j = 1,4)
s*(Rda;) =0,
s*RJ1B;) =0, (6.8)

lead to the following linear partial differential equations
[x = (xy,x5x4)]:

o dulx) | dux)

U!(x) = 0’
Ix5 ax,
v, (x) v, (x)
_ =0,
X ax, X, o, + u,(x)
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5 Q) dur) _

’

Ix, Ix,
x, ) S (6.9)
l axz 2 5x, ‘

The solution to the linear partial differential equations is
given by

U\(X (X Xe) = Uy pxgX + Ui prXa)Xa,

UilxpXaXs) = Ui p.xalx, — &,( poxa)xs,

Ug(x,X2,X4) = iy p,X4),

V(X 1,X0X4) = Uy( p,X4), (6.10)

wherep’=x} + x? is the similarity variable. When we insert
the Eq. {6.10) into the nonlinear Dirac equation we obtain a
nonlinear system of differential equations with two indepen-
dent variables, namely p and x,. The dependent variables are
u,( p,x4), ) p,x4), and so on.

Let us now further reduce the nonlinear Dirac equa-
tion. We use the fact that the Dirac equation is invariant
unaer the transformation group which is associated with the
infinitesimal generator

d d d e} d
Z=a, ax, “ av, o du, e o, i du,
(6.11)
where a, is a constant which has the dimension of a length
(a4 #0). The conditions s*(Z 1a;) = 0 and s*(Z153,) = 0
(je{1,4}) lead to the following linear system partial differen-
tial equations:

a, du,(x)

4

—v,{x) =0,
o, 2 =0,
ox,

a, M — v x) =0,
ax,

a, 9ulx) + uyx)=0.
Ox,

The solution to the partial differential equations is given by

(6.12)

Uy(X1,X00%X4) = (X ,X,)C08(X4/a4) + DX ,X,)sin(x4/ay),
V1, X25X4) = U (X1,X,)C08(Xa/ay) — #\(X,X,)sin(x,/ay),
Ul 1, X0 4) = Uy(X1,X2)CO8(X,/@4) + Dylx )%, )sin(x4/ay),

ValX 1, X2,X4) = U4(X1,X2)C08(X4/@4) — U4l 1, X,)sIn(x4/a,).
(6.13)

Now Eq. (6.10) and Eq. (6.13) can be combined. We find
that

U (x X5 %4) = il y{ p)(x cos(x,/a,) — x, sin(x,/a,)

+ 0y p)x, cos(x,/a,) + x, sin(x,/a,),
vylx ), X20,) = Uy p)ix, COs(x4/a,) — X, sin(x,/a,)

— i\{ p)x; cos(x,/a,) + X, sinfx,/a,),
Uylx 1, X2,X4) = ity ( p) COS(x4/a4) + Uyl p) sin(x,/ay),
ValX 1, X2,X,) = Uyl p) cO8(x,/a,4) — @4 p) sin(x,/a,). (6.14)

Thus, the similarity form of the solution can be written
as a sum of products, where in each term the time coordinate
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is separated from the space variables. Thus with group theo-
retical methods we have derived the separation ansatz {6.14).
Inserting Eq. (6.14) into the nonlinear Dirac equation [com-
pare Eq. (6.3)] we obtain a nonlinear system of ordinary dif-
ferential equations where the independent variable is the
quantity p. By a straightforward calculation we find

1(,,‘2&“1:, +&)+a4[1 + AT + T - 7 — 53]
p a4

A (fiﬂ—ﬁﬁl) +pi [1 4+ A (@ + 5] — i — )]
dp a,
=0,

dp, _ i - o e
AT 420, - B 1+ A + 7 — 7 - )
L a4

s

,1<‘i'fg+£gl) — o0 [1+ %@ + 5 — @ — )]
dp a,
0. (6.15)

If we put it,( p) = v4( p) = 0 or 1y( p) = i1,{ p) = 0, then we
obtain a system of two coupled differential equations (com-
pare also Takahashi®).

Finally we mention that we can derive conserved cur-
rents with the help of the symmetry generators given by Egs.
(6.2) and (6.11). In the present case we have

L=A(—uyg +v4p\ — g4+ Pay
—ULP — VG T U Py T UGy
— U114+ VU Drs — UsGas T Vs Pag)
— (Ui + v} —up — i)l 4+ A elut + o] —ug —vl).
(6.16)
Consequently, the Hamilton-Cartan form is given by

O = —(uf +vf —ui — )1 + A eu] + vt —ui — i)
XdxyNdx, Ndx,
+Awsdu, +v, duy —usdv, —u, dv) Ndx, Ndx,
+Aluydu, —u,duy +vsdv, — v, dv) Adx, Ndx,
+ A, du, +v,du, —u,dv, —u, dv,)\Ndx, Ndx,.

(6.17)
We find
L,6=0
and
L,6=0. (6.18)

We notice that the infinitesimal generators R and Z form a
basis of an abelian Lie algebra.

VIl. CONCLUSION

We have demonstrated for a nonlinear Dirac equation
how the knowledge of infinitesimal symmetry generators
can be used for deriving similarity solutions and conserved
currents. With the help of infinitesimal symmetry generators
we are able to reduce the system of nonlinear partial differen-
tial equations to a nonlinear system of ordinary differential
equations. For particular cases we are able to find solutions
which can be given explicitly. Moreover, we have described
three different approaches for obtaining conserved currents.
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In the first one the infinitesimal symmetry generator and the
Hamilton—Cartan form has been taken into account. In the
second, the starting point was only those differential forms
which are equivalent to the nonlinear Dirac equation. In this
approach the Hamilton—Cartan form (which in the present
modern formulation plays the role of the Lagrangian densi-
ty) and the infinitesimal symmetry generators are not taken
into account. Finally, in the third approach, we have used
the infinitesimal symmetry generators and the differential
forms which are equivalent to the nonlinear Dirac equation.
The Hamilton-Cartan form is not used in this approach
either.
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T matrix for Coulomb-nuclear admixtures
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Department of Physics, Visva-Bharati University, Santiniketan-731235, West Bengal, India

(Received 6 August 1980; accepted for publication 24 October 1980)

A model is proposed for calculating the T matrix for Coulomb-distorted separable nuclear
potentials without the use of the Gell-Mann-Goldberger two-potential theorem. Analytical
expressions for the Jost function and T matrix are presented for the Yamaguchi plus screened
Coulomb potential treated in the Ecker-Weizel approximation.

PACS numbers: 21.30. +y

The Gell-Mann—-Goldberger (GG) two-potential theo-
rem' has been extensively used to construct expressions for
Coulomb-distorted nuclear 7" matrices. Such studies are of-
ten tailored to be appropriate for their possible usuage in
nuclear few-body problems, as, for example, in the work of
van Haeringen and van Wageningen® and references therein.
Applicability of the two-potential formula is directly related
to the existence and/or completeness of wave operators for
the scattering system.’ The presence of long-range forces in
addition to the nuclear potential tends to pose serious prob-
lems with respect to this.* With this in mind, we present a
coordinate-space approach to the Coulomb-nuclear prob-
lem, which does not make explicit use of the GG theorem. In
general, the method proposed will work for Coulomb plus
separable potentials of arbitrary rank. However, for a model
calculation we choose to work with the following
interaction.

(i) The Yamaguchi potential® is used to represent the
basic nuclear interaction.

{ii) The pure Coulomb field is replaced by a screened
potential, which we treat in the Ecker-Weizel
approximation.®

Consider the s-wave Schrédinger equation

d2 2 e M _ —ar
[F +k*+ ¥, . ,ur]f(k,r)_d(k)e R (1)
where
dk) =/1fwe“’ff(k,s) ds. (2)

Here V; and p are related to the coupling constant and
screening parameter for the Coulomb field, and 4 and a to
the strength and range of the nuclear interaction. To solve
Eq. (1) with Jost boundary conditions’ we employ the stan-
dard substitutions

flky)=e*3(r) and pur= —Iny (3)

and arrive at a nonhomogeneous hypergeometric differen-
tial equation

d% dd
— — &Y _ab
yi—y 37 + [c—{a+ b+ 1] 2 aby
d:;‘) o' —y°] (4)

studied by Babister.® The parameters q, b, ¢, and o are given
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by
a= —(i/plk — (k* —yu?)'],
= —(i/p)lk + (k7 — yp*)'],
c=1—2ik/u and o={a+ik)/u. (5)
In writing Egs. (4) and (5) we have treated
—y = Vo(l —y)/Iny (6)

as a constant in the spirit of the Ecker—Weizel approxima-
tion, certain features of which have been discussed by Lam
and Varshni.®

The Jost solution associated with the complementary
function of Eq. (4) has been obtained by one of us.'®'" Fol-
lowing a suggestion given elsewhere'>'* we regard d (k ) as a
constant and obtain a particular integral in the form®

dik) 1o o~
a2+k2b _7f0+1(a!b,cxy)]‘ (7)
The relation between f,, and generalized hypergeometric
function is given in Eq. {6.18) of Ref. 8. The complete primi-
tive of Eq. (1) is
flky) =y~ “"[1 — yflabicy)]
d ( k )y — itk /g . )

+ W [y _yfo+l(a’b’ciy)]’ (8)
where the first term stands for the screened Coulomb Jost
solution.'®!" Interestingly f(k,y) in Eq. (8) satisfies the Jost
boundary condition since £, (a,b;c;y)—0 as y—0 (r— o) for
Re o> 0,% which is true in our case.

Our immediate concern is to determine the value of
d (k). To that end we combine Eqgs. (2) and (8). This gives

37y =

d) = [ L - —L
Dkl a—ik cla—ik+u)
1 14a 146 140" )]
X“F3( 2 1te 2404 Y] ®l
with
A
Dk)=1— —L——
(k) 2a(a’ + k3
vAu?
(2a + p)a + ik + p)la + ik + cu)la® + k?)
1 14a+0 1+b+o0 l4+o0+0* )
. 1). (10
4F3( 240 l+c+a 24+0+0* (10)

The results in Eqgs. (9) and (10) have been obtained by em-
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ploying an integral used in Ref. 11. The ,F, hypergeometric
function occuring here is absolutely convergent.'*
The Jost function’ obtained from Eq. (8) is given by
d(k)

Sflk)=[1—¢fila.bic;1)] + m [1 - labicl)]
(11)

The function fin Eq. (11) can be written in terms of gamma
functions employing Eq. (6.185) of Ref. 8 and a genereliza-
tion of the Dixon’s theorem of Ref. 14. A useful check on the
fairly complicated formula (11) is that it yields the well-
known Yamaguchi-Jost function when the Coulomb field is
turned off. In possession of the Jost function f(k ) the on-shell
T matrix can be determined from
T(k)=(f(k)—f(—k)inf(k). (12)
We conclude by noting that Fuda and Whiting'® have shown
how to write the half-off-shell 7" matrix in terms of the off-
shell Jost function. The off-shell Jost solutions for the
screened Coulomb field are now available.!! Thus in princi-
ple the half-off-shell 7" matrix can also be obtained by the
method presented here. However, the fully off-shell case
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will need some further consideration. The treatment of the
unscreened Coulomb field within the framework of this ap-
proach is an interesting problem with which to deal.
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Four Euclidean conformal group approach to the multiphoton processes in

the H-atom
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A compact analytical form, suitable for any analytic continuation, is obtained for the following

bound-bound N-photon transition matrix element,

Loy ="’ m’ nimy),

N 'gi k.7
I [f,.g }e"* GI(E))

i=1

where G (£ ) is the Coulomb Green’s function. Weshowthat/,, ... isa “linear superposition”
of matrix elements .7 '(g),,.;-—.um Of Some irreducible representation .7 of a semigroup G [

contained in the four Euclidean conformal group G = SU*{4) = SO(1,5). This “linear
superposition” is understood in the general framework of the theory of the distributions on a Lie
group. The final result is a linear combination of special functions known as “‘generalized Euler

functions.”

PACS numbers: 32.80.Kf, 31.15. 4+ g, 03.65.Fd

INTRODUCTION

It has become possible over the past two decades to
observe, with sufficiently large intensity of the light source,
interaction processes with atoms in which each electronic
transition involves the net absorption, emission, or scatter-
ing of more than one photon.!

But, the evaluation of transition probabilities for multi-
photon processes requires tedious calculations of matrix ele-
ments issued from the time-dependent perturbation theory.
In the specific case of interaction of light with the H-atom,
the latter arise in the general form (for a N-photon process)

Lotmeentme = A0 UM\ T Inlm) = 1., O Y Jry
(1)
Vi >¥wi-m are H-bound state wave functions, and & is the
operator

N i
[14:€“"G(E,),
i=1
where G (E ) is the Coulomb resolvent ( 1-;2/ 2m —E —g/r)"
and 4, = g€, or A&, with &+k, = 0.
1t should be noted that the last factor G (Ey}in & canbe
removed from (1) by using the evident equality

GExWuim = (En — En)" Y- (2)
However, we prefer to keep it for writing convenience.

Exact analytic expressions for the matrix element (1)
have been known for a long time in the two-photon case, in
the dipole approximation or with retardation effects, be-
tween bound or continuum states.'® In more recent works,
Coulomb Green’s function® or Sturmian technigues® have
been used to obtain analytical expressions for transition am-
plitudes of multiphoton processes for N> 3 in the dipole
approximation.

This work generalizes to an arbitrary N a group theo-
retical technique already used to obtain a compact form for

a)Pm'manent address: Laboratoire de Chimie Physigue, 11 rue Pierre
et Marie Curie, 76005 Paris, France.
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the two-photon matrix element, with retardation effect.® We
show that I, ;. is a “linear superposition” of matrix
elements 7 '(g), ./ u w1 Of SOme irreducible representation
5! of a semigroup, denoted by G ', contained in the four

Euclidean conformal group G = SU*(4)= SO(1,5)

Lo ot = f dS(8) T &) toms mims
G !

where [ .. dS(g) symbolizes a product of differential/inte-
gral operators involving the g variable of the special function
T M8t wemims - 1t should be underlined that by its use of the
SU*(4) group and the “‘distribution theory on Lie groups™
outfit, our method differs from the SO{4,2) techniques used
in the past by Fronsdal,” Huff," or Barut® for treating the
one- or two-photon problems. Rather, the claim of the pre-
sent paper is to illustrate some of the practical aspects of a
very general and meaningful group theoretical structure of
the quantum mechanics which has been displayed in a recent
work. '? Also, we should like to point out that somewhat
esoteric mathematics can sometimes play a nonnegligible
part in some practical computations of Physics.

In the first section, we define the Fock transformation
which permits to introduce the Hilbert space L {(SU(2)), and
we describe it with the aid of quaternionic conformal
actions.

In Sec. II, we present the group G = SU*(4), the sub-
groupG . = Sp(1,1)= SO(1,4), and asemigroupG, DG _.
Then, we define the representation 7' of G '

In Sec. 111, the tempered vector distribution on G, with
support in the semigroup G [ ', are introduced. Useful and
concrete examples of such distributions are given in Sec. IV,
as also in Sec. V their connection with physical operators of
interest.

Finally, in Sec. VI, the matrix element 1., _.;-, 15 €x-
plicated in terms of *“generalized Euler integrals,” extending
the familiar hypergeometric functions occurring in the two-
photon case.
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1. FOCK TRANSFORMATION012

Let p, be a real momentumlike parameter. In the mo-
mentum representation, a one-particle wavefunction ¢, the
Fourier transform of ¢, will be viewed as a function of the
4-vector x = (py,B).

Wedenoteby F, , , the space of the complex functions
square integrable with respect to the scalar product

WHood o, « =[5 900 (165 + 7223 1000
(3)
F, . isaHilbert space. There exists an isomorphism F s

called Fock transformation, mapping £, ., onto
E=L%(S?=SU(2)), provided with the scalar product:

6.6 ')E_Efsumdmg) BHEIB(E),

where du(£ ) is the O(4)-invariant measure on S > or equiv-
alently the Haar measure on SU(2).

F ,, is defined in the following way:

F o (WPNE ) = 4p5"%|1 + & |~ *¥slpo)-€ ) (4)
where 1 = (1,6), |x| is the Euclidean norm in R *, and
(PosB) = S(po)-€ is the stereographic projection of &€ S*. This
“Fock stereographic projection” is conveniently described
by identifying the four Euclidean space with the quaternion
field H. Any quaternion x will be written x = (x,¥) where x,
is the scalar part and X the vector part, or yet:

x = xol + x,8, + x,8, + x,38;,
with && = &,, (i, j,k ) being an even permutation of (1,2,3).
The conjugate X is defined by X = (x,, — X). Any scalar
A will be confounded with the quaternion 4 = (4,0).

Let g = (°5) be a 2X 2 quaternionic matrix. Its confor-
mal action on H is given by

gx=(ax+blex+d) " (5)
The projection s( p,) is the special singular conformal action
1 2p, O
s(po) = —= ( 0 T)‘ (6)
\/ 2py - -

It establishes a one-to-one correspondence between
$?=SU(2) and the compactified hyperplane of the quater-
nions having the same scalar part p,,.

Our purpose is to compute (1) by using the transforma-
tion.# , with different values of p, and a certain representa-
tion of the conformal action (5) which will now be explicated.

2. A SEMIGROUP REPRESENTATION

G =SU*{4) is the simple, simply connected, Lie group
of the 2 X 2 quaternionic matrices which are elements of
SL(4,C),"* precisely:

G=
b
[g = (a ),a,b,c,deIHI,]cHd lac™' —bd ~'| = 1}.
¢c d
(7
SU*{4) is also the universal covering of SO,(1,5). A semi-

group, denoted by G_, is defined as the maximal subset of G
preserving the unit ball in H under its conformal action:
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G = {geG, |x|<1=>|gx|<1}. (8a)
It can be shown that

b -
G, = [g= ((CI d)eG, |bd — aci<|d |> — |c|* — 1].

(8b)
The simple, simply connected, subgroup
G . =Sp(1,1)= SO,(1,4)'*is contained in G_:
b
6. ={r=(" 2)e6, ms=n-1}, (98)
c d

where

=G ) =G %)
b a) T -
G _ can be defined equivalently by
G, ={heG_,|x| = 1=|hx| = 1}. (9b)

Thus G _ preserve the interior of the unit ball and sepa-
rately its frontier S * under its conformal action.

The above characterizations can be understood along
the following partition of G in three sheets:

G=N<uN>uy=
with. /"> = = {g = (?%);|c| <,>, = |d |}. Forallge 4=,
we have the factorization:
g =tn(K)dn(¢)h (10)
h is an element of G _, dn(t ) is the conformal dilatation,
e1/20
dn(t)=((‘) ;_,/z), (11)

and tn(K ) acts conformally on H as a simple translation:

tn(K ) = ((1) 11() K = (bd — ad)e'. (12)

It is apparent that G _ CG_ C.#"<. It should be noted that
the stereographic projection s( p,) is an element of ¥ =.

An irreducible bounded representation .7 7,7€C, of G _
is given by

¢c E=L2%(SUQ2)), heG_,

TG €)= [algh)] 7 h "), (13)
where a(x,g), xeH, geG, is a multiplier defined by

. b
alxg)=|cx+d| ifg™'= (a ) (14a)
c d
and verifying
a(x,g.8;) = alx,g )alg; 'x.g,). (14b)

We extend .7 " to G _ ' by means of the “harmonic exten-
sion” of ¢

geE, geG ', TR (€) = [altg)] ¥P(g~"£), (15)
where

1 1 — |x|?
PDx)= — ) —1 I, 1, (16
=) 27 sU(z)d‘u(g ) |€" —x|* S8 IxI<1, (16)
and
D (pE)—¢(£) almost everywhere.
p—1_
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(1727%)(1 — |x|*)/|€’ — x|*is the Poisson kernel in R*."> We
recall that its integral on SU(2) is equal to 1. In the following,
we are interested exclusively in the 7 = 1 or 2 case.

3. TEMPERED VECTOR DISTRIBUTION ON G
A. Schwartz space .~ (U £)

The Lie algebra SU*{4) of G is the set of 2 X 2 quater-
nionic matrices X with (TrX ), = 0. It will be denoted by g.
The Killing form on g is given by

(X,Y)egxg—B(X,Y) = 8[Tr(XY )],

The Cartan involution is defined by
o
X—>—X*.

Weput |[X || = — B(X,6X).

Let g = k (g) expX (g), the Cartan decomposition of G;
k (g) € Spin(5) and expX (g) = [gTg]"/%

We introduce with Harish-Chandra, '®

ofg)=|X (g)|- (17)
The ‘“‘seminorm” o takes into account these elements which
do not belong to any compact subgroup of G:olg) = O for
g<Spin(5).

For instance o(dn(t )) = 2|t |, where it is whorthwhile to
note that dn(z ), given by (11), is an element of the Cartan

subgroup 4of G.'* We have also o{/ (t)) = 2|t |, where
( )_(cosht /2 sinht /2) 18
" \sinhz/2 cosht /2 (18)

A _ is the Cartan subgroup of G
ties should also be noted:
olg)=olg")=olg™"),
0(8,8:)<0(81) + 0ig2), (19)
for all g,,g,€G.

Now, any element X of g is identified with the left invar-
iant (resp. right invariant) vector field X (resp. X jonG "’

. .'* The following proper-

feC=(G), geq,
(X/)(g) = (df (glexptX ))/dt)|, _ (20)

[resp. (Xf)(g) = (df ((exptX )g)/dt )|, _o)-

We extend in the usual manner (Birkhoff-Witt) the iso-
morphism X—X X (resp. anti-isomorphism XX )toanhomo-
morphism z-Z (resp. antihomomorphism Z—Z )of the en-
veloping algebra & of g into the algebra of the differential
operatorson G. That extension is unique and it is clear that Z
and Z’ commute for all Z,Z " in ©.

Let U be an open subset of G. The *“Schwartz space”
F(U,C)C C =(U,C) is the Hausdorff complete locally con-
vex space of the function /:U—C, provided with the semi-
norms (r>0):

Voz \f) = supl(ZZ f)e)|[1 + o))" 2y

In the same way, we define % (U,E), the space of the
functions f: U—E, satisfying (¢, f)z€.(U,C) for all 4€E,
provided with a “weak” topology induced by that of
F(UC):
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f,-_——>+ 0 in F(UE) fi)y — 0 in(U,Q),
for all geE.

B. Tempered E-distribution on G

By “tempered E-distribution 7 on G ” we shall under-
stand an element of . (% (G,E),E), 1.e., a continuous linear
map from .’(G,E ) to E, where the continuity is defined in a
weak sense:

JeS(GE (T, f)= f dT(g)f1g)

and T is such that the map f—~{¢ (7, f)) is continuous for
all ¢ in E.
We denote the convolution product by

(S¥T.f)= L ds(g,) J dT(8:)/(8.85)

We designate by .’ the space of the tempered E-distri-
bution. [Also T will eventually denote an element of
ZL(.L(G,C),QC), i.e., a scalar distribution. Thus, we shall not
distinguish between (6,(T, f)); and {7,(d, f)z )]

It is important for the following to note that there exists
a natural isomorphism'’: Ze@—T,e.%|,, between & and
the algebra of the scalar distributions with support {e},
where e is the unit element of G, such that

Ty =T2%T,, Tiz7\=Tz%kTz — Tz %7,
=[7,T, ], (I..f)=(Zf)e)=(Zf)e) (207)
Now, . (*) designates the space of the tempered E-distri-
bution on G, with supportin G ', provided with the convo-
lution * (not defined everywhere),
Let us define the subspace E, CE:

E = {¢,g—>(¢' T (@) )T e SULC)
x for all open UCG ' and for all ¢ 'eE }.

Lemma: E, is dense in E.

Proof: Indeed, the S * harmonics Yn/m (Appendix A)are
elements of E,. This fact can be proved by considering some
properties of these basis elements in the Hilbert space E.

~First, it is easy to check that for all Z,Z ' in &, there
exists a constant C,, ;. such that

(2Z'4)6.8)|<Cz2 A (Eg) 21)
for all £eSU(2) and geG, with 4 (£,g)=[a(.8)] .
—There exists Z,,;,,, € such that
Ym€)=(Tg, AE)), (22)

where 4 (5 )g)=A4 (£.8)-
—Afterwards, we have the equalities
T @Y umE) =T @)NTz, A )
= (T, 7@ D
=(Z,mA4(5))g)- (23)
—Consider now .7 '(g)Y,,;.(£ ) as a function of g. Then,
from (21) and (23)

(22T Y €)@) = (Z timZ 'A (€ )8)<C,, 7.4 (£,
(24)
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where Z},. =22Z,,..
—For all ek, the Schwartz inequality entails

(BAZZ ' T Y1) | <Cor, 114 @)l |15

where 4 (g)(5) = 4 (£.8).
—||4 (g)||z can be easily evaluated from properties of

the Poisson kernel; for g~ ! = (*5)eG_,

(25)

Al = [ dutgnes +al
R W N S
e T T
= A2 g2
a7 i
29

The last inequality results from the Definition (8b) of
the semigroup G .. . _
—Finally, if we defined (g ') by 8 7' = (251 )

V22 6.7 Vo) = SUPI(BZZ TV 1, e | 1 + o))"
<Cpry 1611527 Psupl 11+ olg)ld (8™ ) ~'1.

Now, it can be shown easily that [1 + o{g)]"|d (g~ ") ~"is
bounded for any g in G _ '; it is sufficient (and trivial) to
check that boundedness for g = dn(¢ ),  <0,and g = /(¢ for
all . Q.E.D.

The above lemma is important since it permits one to
associate to any tempered E-distribution 7 on G with sup-
portin G ~ ', alinear operator denoted by .7 '(T'), construct-
ed with the aid of a suitable smoothing. Let g be an element of
G 7 '.FromEq. (10),g " = tn(K )dn(z }4, heSp(1,1), t<0. We
define:

elexp—(1—1¢%)7"), O<t<l1
sig) =10, t>1, (27)
1, t<0.
Then, for all geE, and Te.7"’ (x),
TNTg=(T,.7"'9)
= [ar1g15917 s
G
=[ dri e (28)
G 1
We have the fundamental property
T SxT)=7'8)7(T). (29)

4. MINIMAL GLOSSARY FOR PRACTICAL
COMPUTATIONS

(a) Particularly important are the following three ele-
ments of g, the Lie algebra of G:

AT v A )
D=—|~ =), L=—7 =) 2= - = ).
2\0 1 2\1 O 2\ =1 —1

Notethat D =L*=11,02*=0.
These three matrices generate a Lie algebra isomorphic
to sl{2,R ):
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(p21=L, [LN]=2, [DL]=02—-D. (31)
By exponentiating we obtain

exptD =dn(t), exptL=1(t),

1+1/2 t/2
ot -(BE2 12 )

spl=o)=\"_1n 1=in (32)

Now, we introduce £2, =022, for defining w(X):
> (1,%/2) (0,2/2) )
)= = . 33
expXni} =o(X) ((o, —3/2) (1, —%/2) (33)

The matrices! (¢ }and w(¥) occurin the Iwasawa—Cartan
decomposition'* of G_ =Sp(1,1)=K_A4_N_:

heG_, h=kl(t)w®), keSpin4)=K_. (34)

(b) Distribution T, and Coulomb-Sturmian operator
R, ": It should be noted that 7 '(T,) = 3,7 '(dn(t))],_,-
in our framework, since dn(z )G _ ' for £>0. The generator D
has a special importance with regard to its connection with
the restriction of the four-dimensional Laplace operator to
S3. We define the operator %, ! by

R, $6)= 5 f LENE-ETEL 0

N, ' is a compact self-adjoint operator on L % (SU(2)), with
eigenvalues 1/n, n = 1,2,.... Its link with the Coulomb-Stur-

mian operator®'? is well known since Fock. '8
Then 7 (T,) = — R, (on E)). The k-inverse of T, is
defined by
+ o
(T50f)=— [ aeriann),
0
Then ' (T5')= — R,y ' (on E). Explicitly,

Ry 6 (€)= —L " a7 dn(e ) (€)

_ _fmdte*'qb(e*'g). (36)

The operator %, is interwinning for the representation .7 '
and its “‘contragradient”, namely,

0,77 8) = .7 g TNy, (37a)
We have also,

Ro78) = (14 |* — [¢]})7 (8N (37b)
forallg™' = (¢5)eG. . On the other hand, it can be shown
that

TR = T k) (37¢)
for all heG _ .

Thus, 7 Ty%8(h %T 5 ') = T H8(h)), (37d)

where & (g) is the Dirac distribution on G.

From the above it should be noted that the representa-
tions 7' and .77 of G are equivalent to one complementary
series unitary irreducible representation.?'

(c) Distribution T, and T, . 2 is also very useful because
we have

T TakT 5 W (€)= (1 + £ E) =41 + £ 26 (€).
(38)
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More generally,

T ([To:To, 1%T 5 'Y () =E:81(£). (39a)
It may be possible to simplify the above relation by using Eq.
(31}

[TD’T.O,] = T[D,!),] = TL,’

where L,=L2,.
But the matrix

i (cos(t/2) sin(t/2)é’,) /
P = i /28, coses) )W)

is not an element of G = ' for all ¢.
Nevertheless,

T T, 4T 5 €)= — 3, _o f "L 1 dn(e ) (€

makes sense, because at ¢ > Ofixed, /(¢ ')dn(¢)isin G ~ ' for¢’
satisfying (1 + sinz’)/cost '<e".
Thus

YI(TL,*TE l) =¢; (on E)). (39b)

(d) Operator 7 '(Ty), Xeg: More generally, let
t—g(t) = exptX be a one parameter subgroup of G such that
g(t)eG _ ' for 0<r < €. We put

b
=en-or=(%) 40)
or
_(40) 5(0)
—X= (é(O) d(O))’

with b (0) = ¢(0) = 0, a(0) = d (0) = 1. Then
T Tx)BE)=0,_0o T '(exptX ) (£)
= [ —2(d (0))o + &0)x)(1 + x-3,)
+ (d(O)x + xd (0) + b (0)
+ |x]%€(0))-0, ] X)] - & (40)
where x-x' = (xX')y = xox, + ¥X',and 4, = (8,‘“,62).
Let u be a quaternion. We define the operators C (u),
C'(u), L(u), £ (u), acting on L % (SU(2)), by

Cu)p (€ )=(u)p (£), (41a)
C'(u)p (€ )=(u-0,)P (x)| _ ¢, (41b)
L (u)p (€ )=xu-d )P (x)|, _ ¢ (41c)
Zlu)p (€ )=(ux-0 )P (x)|, - (41d)
Then,
TN Tx)= —2A(d O)od + CEONI + L)
+ Z(d(0) + L(d(0) + C'(b(0) + é(O))(-42)

It should be noted that 7 + .%/(1) = R, (on E)).

(e) Basis in L %(SU(2)) and matrix elements: We choose
as basisin L 2 (SU(2)) the set of the S * harmonics Y,,,,, eigen-
vectors of the operator R ':

5RO_ 1}’rllm = (l/n)Ynlm‘ (43)

Recall that these functions are given in Appendix A.
In Appendix B we explicit the matrix elements of the
operator 7 '(g), geG _ .
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LC/‘I(g)nlm,n’l'm'
[ e cs + a1 ),

2)
where % ;. is the harmonic polynomial (**solid harmonic”’)

deduced from the surface harmonic by the homogeneity
formula

Y ml®) = 2] Y6/ [x))

Likewise, we give in Appendix C the matrix elements of
the operators C (u), C '(u), £;,-2";;- The latter are defined by

Lou=1[Z2@)+ L))

=Xo0; — X, 0|5 ¢> (45a)
L =4ZLE)~ L@)]
=X,0, — X 9| s (45b)

where (i, j,k ) is an even permutation of (1,2,3).

5. LITTLE LEXICON FOR PHYSICAL OPERATORS

In this section we examine the diverse dynamical varia-
bles A occurring in physical calculations, their respective
F ,, -transform A o =7 p,AF , , and the distribution
T'(4, ) defined formally by

A, =97(T4,) (onE,). (46)

The operator identity (46) displays a sort of completeness
property: any “physically reasonable” dynamical variable 4
has its Fock transform A 5, in thelinear span generated by the
representation operators .7 '(g) for g varying in the semi-
group G = ."°

P

A. Free resolvent

We start with the free particle Hamiltonian resolvent

(Hy—E) '=2mp +7°) "forE= —p?/2m <O0.
Its Fock transform is simply
2mF, 0 +F)\F, =2mil + £ */4p], (47)

and by using the Eq. (38),
2mF, o5 +B) 7' F = (m/po)T (T 5 ). (48)

B. Scalar product
As a direct consequence, it should be noted that the
usual L % (R’) scalar product is # , -transformed in the fol-
lowing way:
(D)L 2mry = (B:(1 + E0ld )e
=67 (To%xT 5 ") )e, (49)
withg =5, ¢, ¢' =5, ¢

C. Yukawa-Coulomb potential

The Fock transform of the Yukawa potential (and its
Coulomb limit zz = 0) is
F e /F !

= — (/AT (Tp%T o ', uti/po)%T 5 ') (50)

The Coulomb-Sturmian operator is (H, — E )~ '(1/7).
This operator is compact although not symmetrical.
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Its Fock transform is compact self-adjoint on E. From
{49) and {50},
2mF, (05 + BT WNF = — mipf)T (T 5 )
= (m/pAN, . (51)

D. Coulomb-Green function
The Coulomb resolvent is defined by
GE)=[/2m —E—g/r] !
= [I —2mg(ps + )~ '(1/n] ™ "2m(p} + )
po=(—2mE)"%
We have for £ <C:
GE)N,
= (m/p3)7 ' ((8le) +vT 5
where v = mg/p 4.
Now, the %-inverse of § (¢) + vT
is given by'®
[8e) +vT 5 ']
with

VT xToxT 5 ),
"existsin . (s). It

- = 6(6) + VTOv’

(Tov,f>EJ T dte” f(dn(t)). (52a)

it is trivially verified that
T '%(6le) +vTo, )= — To,.
Hence,
F W GE)F ;7!
(m/p3)T (ToxTo, % ToxT 5 ).

(52b)

E. Galilean boost ¢*”

For practical purposes, it is possible to extend formally
the representation .7 7 so that the singular conformal trans-
formations s{ p,)} and s~ '{ p,,) and the Fock transformation
are included in our formalism;

IZ . l¢ \/Po m(s(Po)W
b=F, b= 2T poli (53)

\/Po

The action of the operator e
function ¢{ B) can be written

TP B) = ¢ B — #ik )

*7 6n a momentum wave-

= (7t (04K )d) ). (54)
tn is defined in Eq. (12). From Eqgs. (53), (54}, and {37d} we
obtain

F € F 2V = Tk /py)
= T\ (Tp#Sl(#k /p)%T 5 ) (55)
where

wlfik /po) = s~ 'po)tn({0,7k )s(po)
is defined by Eq. (33).

F. Scalar boost or “tilt"22

The expression . , .5 o ' does not mean anything. On

161 J. Math, Phys., Vol. 23, No. 1, January 1982

theother hand, %, 7 *(tndgg )% ' makes sense, where
Aoy =po— Do and
T 2(tnldgo W) PosB) = ¥lpo B)-

By using (53) and (37d), we obtain
F 57 tnldgg ) F ;!
= (P5/Pa)">T I Aoy ))
= {p5/po)' 2T (T %8l (Ao )T 5 '),
(56)

where

HAoo ) =57 ( poltnidgy )s( p5)

_ 1 (po+pa po~p6)
2(popt) ' *\Po =D po+ph

= expl{OO'Ly /100' = Log( pO/p(‘))' (57)

G. Operator 7
From 7= — i Ve
immediately,

F B F = —ilhip)T (TpkT5%T 5 ). (58)

i — and from (55), we obtain

H. Operator g

From the relation £ =2p, B/ 3 + B if
£ = (£f ) = ™' po)| PoP) and from Eq. (40), we can write

F B 5 =pe? TokT 5 '%Ti%T 5 ). (59)

1. Coulomb bound siates

Finally, we recall the well-known relation between the
Coulomb bound states 1,,,, and the S harmonics

p(, ¢n1m = nlm’ (60’

with py, =/ — 2mE, = mg/fin.
E, is the nth level energy.

6. N-PHOTON TRANSITION MATRIX ELEMENT

We return now to our initial motivation: the calculation
of the matrix element (1). By using the scalar product trans-
formation (49) and the Eq. (60) that expression becomes

(%wm' 7ﬁ¢m'm }L 4R

=(YormsT TokTp V7, OF ', Yuuler (61)
where
F i OF 15_ ! =, W(tn(An;_, N p:“

x[H aAiF o NF, F VF | GIE,)

XF = F o T VF 2 F ) (62)
with

4, =Pon —Por» Aiiy =Poi — Pois

Pon + 1=Pon> Poi =(— szr)l/z‘

The operators .7 (tn{d ; . )} ensure the connection be-
tween the /th and (/ + 1)th processes.
We introduce
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-1 . _
T(4,) = lPoﬂjn *T.; for A, =&.p, (63a)
- (lﬁ/Po.‘)TE,..ﬁ for 4, =¢&.7, (63b)
then, from (52), (55), and (56), we obtain
Inlm— sa'l'm' = ‘C/vl(S )n'!’m',nlm
= [ 4SBT G (64

S is the distribution

S = [( — m)”/(iljlpéi)](pm /Pow )" {T o %8 (A, )

X ﬁ (*)TA,*a(w(ﬁ];i/pOi))* TOV,]

=1
*xT, *5(1(4114r N&T 5 5
with
Ay = 108( po, /Do)

(64b)

Aiiv 1 = 10g(po; /Poi 41 )s
v, = mg/pq;.
Commutation rules and simplifications

Each distribution with punctual support T, Xeg in-
volved in Eq. (64b) can be brought to the left (or to the right)
of the expression of S by using the following property:

T 8(g)% Ty k8(g2)) = 8, o T '(g,(exptX )g,)
=0d,_o 7 '((exptg, Xg, '18.18,)
=TT, y, 1 %6(8:8>))- (65)

On the other hand, we have a specific and very useful com-
mutation rule

Tok8(l(A)%T ' =e'8(1 (1)) (66)
This rule permits one to eliminate systematically the

cumbersome presence of the factor 7' ; ' in expression (63).
We have also

oo Wolfik /o) (o) = Aoy Jo (K /)
= w(#k /pol (Aoo ) (67)
Finally, from [é.3,e™"] = 0 when 2k = 0, we deduce

[T "% Tez.8l@fik /py)] = 0. (68)

Let us consider now the (usual) situations where we have
A; = & pfor all i (“situation P) or 4, = &7 for all ; (“situa-
tion R 7).

o [( - m)”/ilfllpoi [(on 50n1, (P)

¢ = it/ Y105 ] o /o) R)

i=1

Then, by using (52a), (65), and (66), we obtain

+ + o N
S= Cf dtl---f dtN[ II (*)e“""S,»]
0 0 ;

ELIEMEY G Y e (69)
where
Szrk’ X, =gé-Lg ", (P)
‘ Tg,!lg,-' '*TX,- X, =g, €-02g~ L (R)
with
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g =14,
81 :giw(ﬁ]gi/pm)dn(ti)l (/i'ii+ 1
gn = gN+ L

The explicit form of the matrix element 7 (S ),/ pur i 15
evidently intricate

‘(/“ (S )n'[ ‘'m’,nlm

C + o + N
= = dtl---J dtNexp( > V,.t,-)
0

nJo
i )
. S
XnN,%mN/ (:EII(*) ! n'l'm',nglymy

X ‘71(5(gn )* T!) )anNmN,nlm . (70)

Let us remark that the matrix element

71w,

f=1 )n'l’m',anNmN

N
= E H j-l(‘si)n, diom o andm;
nalom, i=1

l<i<N —1
(nolgmo=n'l'm’)

=1

is equal to O except if [ny — n'|, |Iy — 1’|, |my — m'|<{3x.
This fact is easily understood from Eq. (42) and the expres-
sions of the matrix elements given in Appendix C.

On the other hand, the last integral in ¢, can be carried
out since the relation (2) implies

- (m/P(z)N)y‘l(TOVN*Tn *( (Ana )Y i
= — (m/PonPon )yl(TOVN * 0 (An. Nk T2) Yosrm
=(E, — Ey)"'\T (1 Ay )Y,

Finally, we make the change of variables

(71)

im*

Then, from the general structure of the matrix element

T "8) nimmi-m given in Appendix B, it is apparent that the
final expression of I, ., i$ afinite linear combination of
“generalized Euler integrals”?*:

1 1 s
9, oaire)= | de | [ 'a-zy]
(0] 0

i=1

[ d(g(zl""’z2)Al)| 72rr (72)

where g 7' = (25, 1)€G_, r>1. In our specific case,
s=N—1,r<n+n"+ N, and

[N*‘u \ (ﬁ E)d (t)]l(/l ) (h ’2”)
— R . —— anif. N_1nl@ s
g ,'1:-[1 ( l—]la) p0i i Po,,

(73)

with Ay, = 4,,,.

In the two photon case we recover well-known formulas
with hypergeometric or Appell functions.'~ It should be not-
ed that all these expressions can be analytically continued to
positive energies E; = p5, > 0 or equivalently to purely
imaginary values of v,.

CONCLUSION

As a final comment, let us emphasize that the above
result can be thought of as illustrating particularly a phe-
nomenon which we conjecture to be a general feature of the
interacting one- (and surely multi-) particle quantum me-
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chanics. As we have already asserted', the completeness of
the operatores .7 '(g) in the sense that

F AT 51 = §g_1dT*(g)7" (g) for any physically “rea-
sonable” operator 4, makes it strongly tempting to claim
that any matrix element of a dynamical variable 4 between
two arbitrary square integrable physical state ¢, always
has the form

Aty = f dsig)ldig~")| 2
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APPENDIX A

—Coulomb bound states in configuration space.

2 1+ 372
'/)nlm (7) = an( po" ) ’Je P /A
#i
2
L ( o r)Y,m (?) (A1)

with
N,=(=1"""Yn—=1-12nn+ 1"

T @ittt = f Ul )Y 2 (ENCE +d |~y (g £)
SU(2)

R S 1)(’ ! l)g-l(g).
m,_ —my, m/ \mi —m; m iz, jmimy

- [(21+ 12! + 1)”7'] V2

m,m,

mi,m3

is a 3j-coefficient.?*

7l
4 (g)/""n'"hl“’"f’"i

— VP Joaf
(amzami/am Um ) Z Todi+Js I4I +4

Jami,my
I<ice

X8, ;4,6

Hlv LB mim, 4+ my,

Mymy + my,

.4 :
Xam m2+m‘2(_ l)zj‘Hav

Mym; + my,

X D8 ) m, /1d 4"”(0,"“,", i (B2)
with
gi=a, g =05b g =c¢ g4=5,
= [l — m)j + m)~""2,
O, = O O

the D@f(x)ml,,,z are the homogeneous harmonic polynomials
on H extending the usual matrix elements of the unitary irre-
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pon = J - sz" .
—Coulomb bound states in momentum space.

7 — (i/RBP,
Bin B) = (zpﬁ)s/zjdf'e Yo

= {4932 /08, + BV} ml£n),
=5~ "(Po,)-(PonP)
_ (P(Z)n ~B  2po.B )
Pon + B P + 5/
—S*-Harmonics.
Y iml€)=
§=(a0p)
M, =(—ifIn'+ 1( (n—1— 1)!”)1/2_
(n+1)27
Our present definition differs from that given in Ref. 6:
we have included the phase factor ( — /). The Y,,,’s are the

normalized S >-harmonics defined in Edmonds.?* The C ¢ are
the Gegenbauer polynomials defined in Magnus et al.%

(A2)

(A3)

CH =1 (cosa)(sma)'Y,m 6.)

APPENDIX B

Representation matrix elements .7 '(g), ;. v are de-
fined forg=' = (¢5)e4"<, i.e., for |c| < |d |:

(B1)
|
ducible representations of SU(2):
DX 1s,m,
_ (=ymm (xo +ix,f =™ xg—ix, YT !
Oy T U—my—t)l (+m—1)
% (x5 + X)) (= X5 4 i) T (B3)
r! t+my—m,)
= Xy + l:X1 — X3 + zxz)eR+ XSU(2)~
s +ix,  Xxg—ix

For geSL(2,R)n#"<, the matrix element 7 '(g),,/,n. 1 m' 1S TE-
duced to a hypergeometric polynomial.

yl(g)nlm,n'l'm‘ =611’6mm’ (n’/n)l/Z [(n> -1~ 1)!(n>
fng —1—1Wn_ +1)]d "=+
an<~1—l{[y(b,c)]n>—-n(
X/(n> n<)!}2Fl(l+1_n<'n>
+1+1Ln, —n_ + Libc/ad),

b ifn, =n

—c ifn, =n

+1)!

ny =Lf(mn’), vbe) = {
oy fa b)
with g —(c d)
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APPENDIX C

—Operator C (u).
For ucH we write

Clu)=u,C(1) + Yu,C@)

Uy=u,, uy=1u,, u=u,,

C (l)nlm,n'l'm'

= 61['5mm' [6n,n' - Ia(n,’l) + 6n.n' + la(n!l )]’ (Cl)
with

alnl)=4[(n+1)n—1—1)/nn—1)]"3
C (gl)nlm,n’l'm'

= i { = B — 1 [B1y_ 10’ 1) (1)

¥ 8, aaln’, =1 — )b (" + 1,m")]
+ 8,041 [8 raln' + 1, =1")b(I"\m)
+ 8, qan’ + LI+ )b (1" + Lm')]}, (C2)

with
alm,d) = (n + 1)n + 1 — 1)/nln — 1],
b(m) = [ + m)(l — m)/(20 + 121 — 11",
C(gZ)nIm.n'l'm' = %i(am,m' —1 V:r'}:n'l' - 5m,m' +1 Vn_l,r:,'1l" )

(C3a)
C(éii)nlm,n'l'm' = - %(6m.m' —1 nmI:n'l' + 6m,m' +1 Vril,r?l" )('C3b)
We have introduced here,
nml:n'l' = 6n.n' -1 [51.1’ - la(n’,l,)c(l ,:’n')
=6, aaln’, = 1" = el + 1,1 — m')]
=6 i1 [81 _valn + 1, — )e(l’,m’)
— 8 qaln’ + 11"+ Lc(!" + 1,1 —m')], (C3c)

with
cllm)=[(l + m){l +m — 1)/(21 + 1)2] — 1)]'/%.
—Operator C'(u).
We have the relation
C ,(u)nlm,n'l’m' = 2n’5n,n' —1 C (u)nlm,n'l'm' . (C4)
—Operators £ .
(cKOI)nlm.n'l'm‘ = - iann' 5mm' [61,1’ — lb (1 ,’m')d {nl’l ,)

+ 8 b1+ Lm)d (] + 1)], (C5)
where d (n,0) = [(n + [)(n — 1)]"/.
(KOZ)nlm,n'l'.m'

= - %i(snn’ (6m,m’ — IA m:n'l' - 5m,m’ + IA n?,;Tl" y (C6a)
($03)n1m,n'1'm’ = %6nn’(6m.m’ - IA nml:n’l' + 6m,m' + IA nil‘r:tll" )

(C6b)
We have introduced here,
At = =8, e’ m')d (n'l)
+ 6 el + 1,1 —mMd (n',l' + 1), (Céc)
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—Operators ..
(‘f23)n[m,n'1'm' = imlann'éll'amm' H (C7)

(‘ff%l}nlm,n‘[’m'
=18,y Sy AB e — (1" + MW" — m" + 1)]'72

F S L+ m" + 1)1 —m')]' 2}, (C8)
(‘fll’)nlm,n'l’m'
= - %(Snn'(sll'{ém,m'—l [(l’ + m')(I, - m, + 1)]”2
— S 1 [+ m + 1" —m)]'2}, (C9)
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A method of generalizing a class of invariants for a time-dependent linear oscillator is developed
for the motion of a mass point in one dimension with a general time-dependent nonlinear
potential. Formulas are derived for the allowable time-dependent potentials and for the
corresponding invariants. The method by which these conclusions are reached is interesting

theoretically and is explained in detail.

PACS numbers: 46.10. + z

I. INTRODUCTION

The question of the existence of invariants (constants of
the motion or first integrals) is one of central importance in
the study of any dynamical system, be it classical or quan-
tum. If a sufficient number of invariants be known, the mo-
tion may be describable without actually integrating the
equations of motion. For many systems the Hamiltonian
provides a first integral; but there are systems of practical
importance for which the Hamiltonian is time-dependent
and, therefore, is not an invariant. Such a Hamiltonian oc-
curs in the description of the motion of a charged particlein a
time-dependent electromagnetic field.'

Various methods have been used to obtain approximate
solutions for such time-dependent problems. The usual
methods are the adiabatic approximation, the sudden ap-
proximation and time-dependent perturbation techniques.
A simple time-dependent problem of interest has the Hamil-
tonian

H=ip"+ }02%(t)q. (L.1)

An adiabatic invariant for (1.1) was given at the first Solvay
Congress in 1911 when (1.1) was used as an approximate
Hamiltonian for the slowly lengthening pendulum.? An ex-
act invariant was used by Courant and Snyder in discussing
particle accelerators.' That invariant was obtained indepen-
dently by Lewis® by applying Kruskal’s asymptotic method*
to (1.1) in closed form. By a systematic application of Krus-
kal's method, Sarlet® generalized the work of Lewis by elabo-
rating classes of Hamiltonians which are susceptible to a
particular closed-form treatment. Leach® showed that time-
dependent linear canonical transformations could be applied
fruitfully to (1.1) and, indeed, to the whole class of time-
dependent quadratic Hamiltonians. Recently, the formal de-
velopment of nonlinear time-dependent canonical transfor-
mations in series form has been undertaken,’ but it appears
that they will not be of practical use.* Two other methods,
the method of the Lie theory of extended groups and
Noether’s theorem, provide an indirect approach via the de-
termination of the generators of symmetry transformations.
To each generator there corresponds a constant of the mo-
tion. These methods have been applied to one-dimensional
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linear systems,’ to n-dimensional linear systems'® and to
some nonlinear systems.'' The systematic development of
the study of Ermakov systems'*'? is also providing useful
results.

It appears that the series method and Kruskal’s method
may have reached the limits of their ability to provide exact
solutions for time-dependent problems. The Lie and
Noether approaches have been criticized on the grounds that
they are indirect methods and involve considerable calcula-
tion."* Although Ermakov systems, which are coupled sec-
ond-order equations, provide a direct method, it is necessary
to guess what is often called the auxiliary equation.'® Be-
cause there are important practical problems for which exact
solutions would be desirable, it is appropriate to seek a new
method. In this article we return to the starting point of the
discussion of canonical transformations. In particular, we
consider the Hamiltonian for the motion of a mass point in
an arbitrary, time-dependent, one-dimensional potential
and examine canonical transformations which are a general-
ization of that found by Lewis® for the quadratic Hamilton-
ian (1.1). Our basic result is that this generalization extends
considerably the class of Hamiltonians for which an exact
invariant can be found. The Ermakov systems treated by
Ray and Reid'? are included in the class. Apart from any
practical value of our result, the method of obtaining it is of
interest for the theory of canonical transformations. It may
also be possible to find invariants for an even wider class of
Hamiltonians by generalizing the method. Our result has
been used in plasma physics to derive a class of exact, nonlin-
ear, time-dependent solutions of the Vlasov—Poisson
equations. '®

We consider the problem of transforming the Hamil-
tonian

H=1p"+V(qt) (1.2)
to a new Hamiltonian

K=K(P,p), (1.3)
by means of a canonical transformation of the form

Q=0(q,p.p,p)

P=Plq.p,p,p), (14)
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where p = p(t ) is a function of t which is to be determined. A
dot over a symbol denotes differentiation with respect to .
The functions Q and P are not to depend on ¢ except implicit-
ly through dependence on p and g. Equations {1.3) and (1.4)
are of the form found by Lewis> for the case in which V' ( g,t ) is
quadraticing: V{ ¢,t) = (1/2)02 *(t }g*. Inthat case, p(¢ )isany
particular solution of a certain differential equation and each
such p(t) gives a specific function P which is an invariant.

It might seen that the choice (1.2} is unnecessarily re-
strictive in that, for example, it excludes the so-called Kanai
Hamiltonian'” for the damped harmonic oscillator. Consid-
er, however, the class of Hamiltonians represented by

H{g,p,t)=1f(t)p" +8lq,1), (1.5)

which includes the Kanai Hamiltonian. Hamilton’s equa-
tions are

dg
—= = f{t s
L fle)p
(1.6)
dp _ _ dglgt)
dt dq
The change of time variable from ¢ to a variable 7,
Tsz(t’)dt’, (17)
renders (1.6) as
dg _
dr =b
(1.8)
dp _ V(g
dr g
where
Vig.t)=glq, t)/ f(z). (1.9)

The system (1.8} is of the form {1.2).

It turns out that a crucial feature of our analysis is solv-
ing a partial differential equation which can be obtained by
requiring that the time rate of change of Q be consistent with
H, K, and the transformation (1.4). From (1.3) and (1.4) we
have

40 _ oK

dt apP
and (1.10}
g .49  .9Q . dQ | .dQ0
it qaq +p a +p R +p Fr
requiring the equality of these two expressions for dQ /dt and
using Hamilton’s equations for ¢ and p, we have

,90 Va0 a0 0 _ K

dq dq dp dp dp apP
The solution of our problem is intimately connected with the
integration of the linear first-order partial differential equa-
tion (1.11).

In Sec. II, we discuss canonical transformations for
which the generating function is only a function of the old

coordinate, the old momentum and time and in which the
new canonical variables are given from the outset as func-

(1.11)
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tions of the old canonical variables and time. Results of the
discussion are applied in Sec. III to transformations whose
explicit time dependence is of the form (1.4). General condi-
tions, which are necessary in order that such transforma-
tions be canonical, are derived and satisfied. In Sec. IV, we
examine the determination of @ (g, p, p, pjand Pg, p, p, p}in
more detail and find the conditions which govern the class of
allowable potentials. Although the class of allowable poten-
tials does not consist of all functions of the independent var-
iables g and ¢, it is described by an arbitrary function of a
single argument and includes time-dependent potentials
which can be arbitrarily nonlinear in ¢. In Sec. V we obtain
formulas for Q (g, p, p, p) and P (g, p, p, £) and in Sec. VI we
discuss our results with some illustrations.

1. CANONICAL TRANSFORMATIONS WITH
GENERATING FUNCTIONS F(g, p, 1)

A canonical transformation between two sets of canoni-
cal variables is usually discussed'® in terms of a generating
function which is a function of a mixture of the old and new
variables. This is not always satisfactory. For example, when
it is desired to obtain one set of variables as explicit functions
of the other set, there can be difficulty in inverting the func-
tions.'? Here we discuss the transformation in terms of a
generating function which is a function only of the original
variables.?

Consider a canonical transformation

Q=Q(4,P,t), P=P(q’p’t)' (21)
In order that the transformation be canonical, the Poisson
bracket between Q and P must be unity
aQ apP aQ ar
{Q,P],,,,,E—f 9P 9k _ (2.2)
The Lagrangian of the system expressed in terms of (¢, p, ¢)
can differ from the Lagrangian expressed in terms of (G, P, t)
by at most a total time derivative calculated along a phase

trajectory.?' Therefore,
dq dgQ dF
Y4 _g-p2 g & 2.3
P dt di 23]

where X is the transformed Hamiltonian and F (g, p, ¢ ) is the

CI

Pof — — —

o - — — — 4

Fig. 1. Paths C | and C; in the (g, p)plane which define the paths C, and C,
in the (Q, P) plane. C, and C, are the images of C{ and C}, respectively.
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generating function of the transformation. Notice that @, P,
and F are functions only of the old variables and time. By
writing this equation explicitly in terms of (g, p, ¢ ) and setting
to zero the coefficients of dg/dt, dp/dt and the part not in-
volving either, we obtain the conditions which must be satis-
fied in order that Hamilton’s principle give the correct equa-
tions of motion in terms of the new canonical variables:

p—Pf_Q-—ff-=o, (2.4)
c?q dq
po2
ol _o 2.5
ap + ap (2.5)
Hip% g, 9% _, (2.6)
at ot

Provided Q and F are sufficiently well-behaved to permit the
interchange of the order of differentiation (an assumption
which is maintained for all functions in this work), the ca-
nonical requirement (2.2} follows directly from
(0/3 q)(2.5) + (8/3 p)(2.4).

Using (2.4) and (2.5) we can obtain an expression for
F(g, p, t)in terms of Q and P. From (2.4),

24— 20) fP 9Q iy v vip ) @)

wherey,( p, ¢ )isanarbitrary functlon ofpandt,andg = gt )
is an arbitrary function of ¢. Substituting (2.7) into (2.5) and
making use of the Poisson bracket requirement on Q and P,
we see that ¢,(p, ¢ ) satisfies

Flg,p ¢

G _ _ pgg (2.8)
dap dp!a=aq
Weintegrate (2.8) and substitute the result into (2.7) to obtain
Flg,p,t)
g , v a .
Aa—al-| PS =2 ~[PL] ap,
Po ap 9=qu
(2.9)

in which p, = p,(t) is an arbitrary function of ¢. Alternative-
ly, we could integrate (2.5) first, and substitute the result into
(2.4). In this way we find the following different, but equally
valid, expression for the generating function,

Q

d !
dq’ 9

q
F(q’P»t)zpo(q—‘IO)-f P
Go

J anp,

The equivalence of these two expressions for F(g, p, £ ) canbe
verified by manipulating (2.9) to obtain (2.10}, or vice versa.
The basic reason why the two expressions for F (g, p, ¢ ) given
by (2.9) and (2.10) are equivalent is that the area in the phase
plane bounded by a closed curve is invariant under a canoni-
cal transformation. This can be seen as follows. Equations
{2.9) and (2.10) may be written as

P=ro

(2.10)

F(q,p,t)=p(q—qo>+fc PdQ (2.11)

and
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F(a.pt)=pd 4 — 4 —fc PdQ, (2.1

wherethe integrals are line integrals along paths C, and C, in
the (Q, P) plane, and where C, and C, are the images in the
(@, P)plane of the paths C | and C} in the( ¢,p) plane which
are shown in Fig. 1. Subtracting (2.12) from (2.11), we have

(p=pilg—ai= - [

C +C,

PdQ. 2.13)

In order to show that this equation is an identity, we trans-
form the right-hand side. Let § and p be unit vectors in the
directions of increasing ¢ and p, respectively. Define Z by

Z = g X pand a gradient operator by V = §{d /dg) + pld/3p).
Using Stokes’ theorem, the line integral in (2.13) can be
transformed to a surface integral

Jo.ree= L @ )
[ ame
~ | dedorvxivon

= f dgdp[VP X VQ ]2
.

[ aaap( 2 22 _ 30 20)
' dg dp  dp Jq

fl

= —(p—Pol(qd—qo (2.14)

where d1is a differential line element along the path
C 1 + C;.Thus, (2.13) is an identity based on the area-pres-
ervation property of canonical transformations.

I1. APPLICATION TO THE TRANSFORMATION
Q=Q@,ppp)P=Pqpp p

We now consider the particular problem which is of
interest to us. We take the old Hamiltonian to be

H:%p2+ Vig,t), {3.1)

with ¥/ ( ¢,t )arbitrary,and we consider canonical transforma-
tions of the form @ = Q(g, p, p, p), P = P (g, p, p, p) which
produce a transformed Hamiltonian

K=K(Pp) (3.2)

The explicit time dependence of @, P, and K is given in terms
of the as yet unknown function p(t ) and its first derivative
plt)-

Equations (2.4) and (2.5) have been satisfied by solving
for F (g, p, t ). Theremaining equation to be solved is (2.6). We
can postpone dealing with the term dF /3¢ in (2.6) by using
{2.4)—2.6) to derive two conditions which do not involve F.
One condition is obtained by differentiating (2.6) with re-
spect to ¢ and using the time derivative of (2.4) to eliminate
0 *F /3¢dt; the other is obtained by combining the derivative
of (2.6) with respect to p with the time derivative of (2.5). The
two conditions are

H. R. Lewis and P. G. L. Leach 167



oK op

oP dq
_v [ a0
o Flog % o o
[P 80 9P 3Q
Lp| P9 _ ok ] 33)
P13 % ~ ¥ 9
9K P
JdP dp
~”@,£@]
_—p+p[3p o o
[aP 30 oP 30
+p| 2B 92 _ 9P 0 34)
p[ap % P op

Wedo not consider the case p(f ) equal to alinear function of #;
that would be equivalent to considering the most general
time-dependent canonical transformation. Furthermore, in
the domain of r over which the equations of motion are to be
solved, we assume that g cannot be expressed as a function of
p, and that p and p cannot be inverted to give ¢ as a function
of p and p. All quantities in (3.4) except ¢ manifestly involve ¢
only through p and g. Therefore, either the coefficient of p
must vanish, or g must be expressible completely in terms of
p and p, or both. If 5 were expressed completely in terms of p
and g, then (3.3) would require that the time dependence of
dV /dq be expressed completely in terms of p and p. This
possibility will be treated in a subsequent publication. In the
present paper, we consider that at least part of the time de-
pendence of 3V /dq is not expressed in terms of p and g, but is
given explicitly in terms of ¢. Furthermore, we shall assume
that the time dependence of 3V /dq does not involve p. Be-
cause explicit dependence of 3V /dq on t is allowed, the coef-
ficient of ¢ in (3.4) must vanish,

o ae _opie _, o
dp dp dp dp
In terms of the gradient operator V in ( p, g} space, (3.5) is
(VP)x(VQ)=0. (3.6)
The general solution of (3.6) is
P=Tr(Q q.p), (3.7)

where I is an arbitrary differentiable function.
In (3.3), the first and third terms involve ¢ only through
g, p, p and p. For this to be true, we must have
av n JP aQ P 40
dq dg dp dp Jdq
where fis arbitrary. Substituting for P from (3.7) into (3.8),
we obtain

av .o d
L
dq dqg dp
that is, p satisfies the second order differential equation

i=(r- 5% %)
dq dp
Clearly, the right-hand side of (3.10) must be independent of

g and p. This is a condition of £, I', and Q, the implications of
which we now develop.

(3.9)

(3.10)
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Substituting (3.7) into (3.3) and (3.4), we have

3K<3F8Q )=f+.(8_1“§2_£iQ_)
aQ dq a dg dp dp dq
(3.11)
and
ok o 9 _,_;9r iQ— (3.12)
dP JQ dp dp dp

Substituting (3.7) into the Poisson bracket requirement for
the canonical variables Q and P, we obtain

9@ o = — L. {3.13)
dp 9q

Using (3.13) in (3.12) we have _
dK ar ar ar
— = —p— —p—. (3.14)
P 4Q dq dp

Since the left-hand side of (3.14) is manifestly a function of Q,
¢, and p only, the right-hand side must also be a function of
0, g, and p only. Therefore, the (p, p) dependence of the
right-hand side is only the result of the dependence of @ on p
and p. This is equivalent to

r .
(VQ)X[V(pi— +p 8_[‘_)} =0,
dq dp
where again V is the gradient operator in ( p,p} space. This
simplifies to

9 o 39 or _

(3.15)

Equations (3.14) and (3.15) are a pair of equations linear in
aI' /dq and dI" /8 p whose solution is

ar _ [k M0 a0\
£y 3P ap ( » TP )] a0 10
%= ?91; gg ( a;Q7 P Q)]aQ 3-17)
Combining (3.13) with (3.16) and (3.17) we have
ar _ /aQ (3.18)
dg ap
ar _(,90 30\ [[9K QY
30 ""(p ap +pap)/[ap(ap>]’ (3.19)
ar _ 90 f(oQy
ke : ( . ) (3.20)

The left-hand sides of (3.18)—(3.20) are functions of 0, g,
and p only. Hence their right-hand sides depend on p and p
only through dependence on Q. Applying this to (3.18) yields

o FQ a0 Po

dp dpdp’
which is equivalent to

%(g% %%): _ aip(g% %E):o. (3.21)

From the second relation in (3.21} it follows that the denomi-
nator of (3.10) is independent of p and hence fis independent
of p. Requiring that the right-hand side of (3.20) be a function
only of Q, g, and p and using (3.21), we obtain
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_3_(‘9_9 32)=_i<‘9_9‘_9£)=0. (3.22)

ap\dps dp dp \ dp g

Thus the denominator of (3.10) is also independent of g. Ma-
nipulation of (3.19) does not produce any additional infor-
mation; the requirement that the right-hand side of (3.19) be
only a function of Q, ¢, and p can be combined with (3.21)
and (3.22) to give (3.21) again.

Equations (3.21) and (3.22) are equivalent to the first-
order partial differential equation

aQ aQ
% _higp) == =0,
ap dp

where 4 is an arbitrary function. The general solution is

(3.23)

Q(q,P,P>P)=R(§’ ‘I:P)’ (324)
where £ is defined by

§=p+higpp. (3.25)
By using (3.24), we can rewrite (3.18)—(3.20) as

£=_1/£, (3.26)

dq &

o _. /(a_K &), (3.27)

JdR oP J&

or (3.28)

JdR
8p - —h(‘],P)/gg‘-

Because I' is only a function of R, ¢, and p, the right-hand
sides of (3.26)—(3.28) must be expressible in terms of £, g, and
p only.

We now write the condition (1.11) in terms of the inde-
pendent variables (g, &, p, p) instead of (g, p, p, p).

. .. dR 0h JdR vV dR
—hp) &= — o g
plE—hp) % 20 + € )5 3 OE
., IR dh . IR .., IR dK
4P = P el pt) = =,
p % 3p pap glpp )ag P
(3.29)
where we have taken p to satisfy the equation
p=gpp.th (3.30)

in which, at present, g is an arbitrary function. We now as-
sume that 4 (¢, p) R /3¢ does not vanish identically. In this
case, because we have assumed that ¥V /dg does not involve
P, wesee immediately from (3.29) that g(p, 9, t ) can be written
as

glppt)=8lp t)+&ilp i +8&lp t)p*.  (3.31)
Now (3.29) is a quadratic function of p and the coefficient of

each power of ¢ must vanish separately. These three condi-
tions are

h— — — =gh, 3.32
ey p g2 { )
h ) GR , 3R 4R

Oh g )R _ R IR _,, 3.33

(5 s 8 ) "t (3-33)
IR ( 3V) oR K

s (oh— VYR _ K 3.34

d dg o dq /) 9& oP 3-34)

From (3.32) and (3.33) it is apparent that g, and g, must be
functions of p only; they cannot depend on .
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V. THE CLASS OF ADMISSIBLE POTENTIALS

Equation {3.32) may be solved by the method of charac-
teristics. The solution is given by

F (g0 ho) =0, (4.1)
where F, is an arbitrary function of its arguments,
9o =q + ahy, ho=h/ia', (4.2)
dp
and @ = a(p) is such that
d’a [Jda
= — _— 4.3
g p) 7/ B (4.3)

It is more convenient to work in terms of a(p) rather than p.
From {3.30} and (3.31), a is seen to satisfy the second-order
ordinary differential equation

d = fola, ) + df\(a) (4.4)
where - denotes differentiation with respect to ¢ and

fla, 1) =g (pla) 1)§ . fl@=glpla).  (45)
o

It is implied in (4.3) that da/dp #0; therefore, about any
given value of p there exists a neighborhood in which a{p)
may be uniquely inverted to give p(a). In terms of a and A,
instead of p and 4, Eqgs. (3.32), (3.33), and (3.34) become

20 _ P g (4.6)
dg da
oh, ) AR, AR, . IR,
T 4 £h —h =0, (47
(§aq+f.oa§ e @.7)
AR, ( aV) AR, JK
+{fh,— L2 ) L0 . B 4.8
§ dq oo dg | o€ aP 4.8
where
R, (&, 9,a) =R (£, ¢, pla)) (4.9)

and now A is taken as expressed in terms of g and a instead of
gandp.

Inlight of the characteristics of (3.32) given by setting ¢,
and A, equal to constants in (4.2), we rewrite (4.7) in terms of
the variables £, u and @ where

u = Fy( go, ho), (4.10)

F, being any arbitrary function of ¢, and 4, which is func-
tionally independent of F,, i.e.,
Fy go, hol #G [ Fi( go, ho)}- (4.11)

In the discussion which follows it is assumed that Eqs. {4.1)
and (4.10) are at least locally invertible so that g, and 4, may
be expressed as functions of «. The condition for this is that

9F, OF,  OF, F,

- — — — — #0. 4.12
oh, dq, dq, oh, > ( )
Writing
Ro(g, 4, a) = Eo(é" u, a): (413)
(4.7) becomes
3h, ) 3R, IR,
— +fih 2 + —2 =0, 4.14
(§ 3 Siho 3 + » { )

in which it is understood that 4, and Jh,/Jq are written in
terms of u and a from inversion of (4.1) and (4.10) in some
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appropriate domain of the variables. From (4.14) it is evident
that u = const defines one family of characteristics. The

equation for the other family of characteristics is
dé h,
—= — &= = fih,.
da § aq fl 0

The solution may be written in terms of the variable v given
by

v=§exp[—f da’i)iq"]

—~ hy Jada'fl(a')exp[_ f da ,,c;iq ]

in which A, is to be expressed as a function of # alone. That is,
the general solution of (4.15) is obtained by holding v con-
stant in (4.16). Hence the solution of (3.33) is

R ¢, p)=R (4.17)

where R is an arbitrary function of # and v, which are de-
fined by (4.10) and (4.16), respectively. Defining

X(u,a):exp[—f a’a’%}h} ,
q

i a) = ho| dalfia)X u, ),
in which again 7, is to be expressed as a function of u alone,
we have

v=_(X— Yol =+ Y)/X. (4.20)

Rewriting (4.8) in terms of R (1, v) and the variables « and v,
we have

(4.15)

(4.16)

((u, V),

(4.18)

(4.19)

v+ Y du IR,
X 8q E
v+ Y dv ( 8V)8v] R, dK
—_— hy— — | — = —.(421
[Xa+f‘”’ | o ap ! )
From (3. 27)
_§ 6‘1" 8R (4.22)
8R 3§
Combmmg (3.26) and (3.28), we find
8_1" _or _ =0 (4.23)
dq dp
— h(,ﬂ _ 9 =0, (4.24)
dq da
where
'R, q,a)=T(R,q,p) (4.25)
The solution is
T'R,q,p)=T (R, u). (4.26)
Using (4.20) and (4.26), (4.22) becomes
dK v+Y
5 - 2 J®Y (4.27)
where
alr', JR, )
Sl v (8R Ey (4.28)
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Thus (4.21) may be rewritten as

v+ Y _ du 8R
X—
X? dq (9u
PeE(erar_oryeo
X- X Ou du dqg
av JdR v+ Y
+{foh ——)X] L = , V). 4.29
(fo 0 dq N bE Sflu, v) ( )

For (4.29) to be self-consistent, it must be equivalent to an
equation expressed solely in terms of « and v; i.e., it may
contain the function a explicitly only through a common
multiplicative factor. Hence we may write

Ju

X—=M(uv) (4.30)
dg
and
EY(LE¥ B DY (VY
X~ X  Jdu du dq
y (4.31)
= Eu,v),
Xh
where M (u, v) and E (u, v) are arbitrary functions of their
arguments.

In terms of the definition of « in (4.10), {4.30) may be
written as

NUTEAN
aq, dq

From the definition of X (u, @) in (4.18) we find

dX (u, a) _ _x Jhy

da dq

which shows that dh,/dq is expressible completely in terms
of u and a. The functions dF,/dq, and dF,/3h, can be ex-
pressed as functions of ¥ alone because g, and A, can be
expressed as functions of u alone. Therefore, the left-hand
side of (4.32) is manifestly independent of v, which means
that M (u, v)is only a function of u: M (u, v)—M (u). (4.32)can
now be written as

O (g 2L )_ 9 X

dqq 5(1 6hy da
Since the right-hand side of (4.34) depends upon u only and
both dF,/dq, and dF,/dh, can be expressed in terms of u
alone, the coefficients of dF,/dq, and JF,/3h, must be func-
tions of u alone, i.e.,

X—a-al=A() QX_=B(u),
da a

OF, 3h,
oh, dq

] =Mu,v). (432

, (4.33)

= M(u). (4.34)

(4.35)

where 4 (1) and B (1) are arbitrary functions of u, not both of
which are zero. Thus X (u, @) can be expressed as

X(u,a)=A(u)+ aB(u). (4.36)
Substituting (4.36) into (4.33), we find
Ko _ _ iln[A () + aB (u)], (4.37)
dq oa

which checks with (4.18). By using (4.36) in (4.19) we can
write Y (u, a) as
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Y (u, a) = Ah, J-afl(a’)da’ + Bh, fafl(a’) da'. (4.38)

The functions A (1) and B (u) can be expressed in terms of
the function F\(q,, h) that was introduced in (4.1). By differ-
entiating (4.1) with respect to ¢ and using (4.2) we obtain

o _ _ (a_FA il +a). (4.39)
dq r, ! 3q,
By comparing this with (4.37) we then find
A=l I o (4.40)
0
B (u) = C(u) a—‘, (4.41)

V]
where C is an arbitrary nonzero function. These equations
express the derivatives of F,( g,, /o) in terms of
u = Fy( g, hy) through the functions 4 and B. The consisten-
cy condition for the existence of a solution of (4.40) and (4.41)
is

Aok, _ ﬂ‘—)]' o - (4.42)
Clu)l g Clu)
By using (4.35) we can write (4.34) as
AWl BT = mw (4.43)
9q, h()

Before continuing with the analysis of (4.42) and (4.43),
we begin to examine condition (4.31). It will turn out that
information derived from examining (4.31) will be important
in our treatment of (4.42) and (4.43). We write {4.31) in the
form

Y dXx ayY 1 dXx

U} —a—M()

[f 0— —:]:E(u,v).

(4.44)

Each coefficient of an expansion of the left-hand side in pow-
ers of v must be independent of @ and ¢. This implies that the
quantities Y, Z,, and Z, must be independent of a, where

Z = i aX (4.45)
X ou’
Z,= Y a_X _ é’K (4.46)
X Ju du
For Z, to be independent of @, we must have
da [A4 (u) + aB (u)]?
the general solution of which is
A (u) + c,B(u) =0, (4.48)

where ¢, and ¢, are constants, not both of which are zero.
Using (4.48) in (4.38) we find
Ah, f da'fl(a')[l - ﬁa'], if ¢, 0
Y(u) a) = a ©
Bh, f da’f,(a')[a’ -4 ] if ¢, 0.
c
' (4.49)
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From this, dY /da = 0 implies

fila)=0, (4.50)
which implies
Y(u,a) = (4.51)

Because Y (i, @) = 0, we also have Z, = 0, which means that
Z, is independent of a as required.

The linear dependence of 4 (1) and B (u) restricts the
form of F,(gy, o). Combining (4.48) with (4.40) and (4.41) we
find

8F JF dF,
+c =0, 4.52
“ 50, ' on, 4.52)
the general solution of which is
F\(go, ho) = F(n), (4.53)
where
N =¢19p — Chy (4.54)

and F; is an arbitrary function. The function A g, a) is de-
fined by (4.1), which now reduces to

Fin)=0. (4.55)
The function F; cannot be identically zero; if it were, (4.55)

would not define A g, a). Therefore, the solution of (4.55)
must be

7 = ¢, = const, (4.56)
which implies
ho( o, @) = (c1g — co)/(c2 — ¢,a). (4.57)

Since dhy/dq depends only on a, we can calculate X (i, a)

directly from (4.18),
Xu,a)=c¢,—ca, (4.58)

where we have made a particular choice of the irrelevant
arbitrary constant in the definition of X. Comparing with
(4.36) we find
Au) =c,, (4.59)
Bu)= —c,. (4.60)
We now make a particular choice of Fy g, h,) which is

functionally independent of 7, and therefore of F,( q,, A,), as
required,

u = Fy(go, ho) = €290 + ¢ b (4.61)
We then have the following relations for u, ¢, and A,
u=[(ct +¢3)g —cole, + ¢2a) /(e — ¢,a), (4.62)
9o = (cau + coc1)/ (€] +¢3), (4.63)
ho = (c\u — coe,)/ (¢} + ). (4.64)

Substitution into (4.42) shows that C (1) must be a constant,
which we choose to be minus one

Clu= -1 (4.65)
Consistent with (4.40), (4.41), and (4.53), we take

Fi(qo, ho) = F5(n7) =1 — ¢, (4.66)
Finally, from (4.43) we find
Mu)=c +c. (4.67)
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Noticethat X (u, a), A4 (u), B {(u), C (u)and M (u)areall constant
functions of u.

We now conclude our examination of (4.44) to deter-
mine the class of potentials which can be treated by the pro-
cedure developed in this paper. Equation (4.44) can now be
written as

(s — 57 |

dq
Because the left-hand side of this equation is independent of

v, it is appropriate to introduce an arbitrary function of «,
W (u), by

=vE(u, v). (4.68)

W'lu)

Eluv)= — (4.69)
v
Then the admissible functions dV /dq are given by
av it — € W'(u)
—=fa,t( ! "2)+ . (470
P e e car 7
and the admissible potentials are given by
Vig,t) = M[iclqz“‘COQ]
(c;—ca)l 2
W) (4.71)

(¢ +edes—ca)’
where we have chosen the irrelevant additive function of £ in
such a way as to simplify the expression. Reiterating, we
point out that ¢, ¢, and ¢, are arbitrary constants such that
¢, and ¢, are not both zero, fya, t)and W (u) are arbitrary
functions, and a(7) is any function satisfying

d=fya,t). (4.72)

The expression for the admissible potentials may be viewed
in two ways. The first is constructive; i.e., given fo{a, t ), (4.72)
may be solved for @ and the potentials compatible with that
choice of f; and a deduced. The second is eliminative; i.e.,
one can ask whether a given potential is in the class of admis-
sible potentials.

V. THE TRANSFORMED HAMILTONIAN AND THE
INVARIANT

We may now proceed to obtain the transformed Hamil-
tonian, the canonical transformation, and the invariant asso-
ciated with the admissible potentials. From the results of the
previous section, (3.34) can be written as

OR, _ W’(u)ﬂz—1 = uf (u, v). (5.1)

Ju ov
Since ¢, and ¢, were introduced as the coefficients in a rela-
tion expressing linear dependence, we may, and do, normal-
ize them according to

(G +c

E4cs=1 (5.2)
Then (5.1) takes the simple form
v IR i) OB pru, ). (5.3)
du dv

The right-hand side of (5.3) is related to the transformed
Hamiltonian by
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9K _ Yy (5.4)
JdP (¢, —c,a)°
We now choose
K(Pp)= ——, (5.5)
fe; —c,a)
so that
of (u,v) = 1. (5.6)

There is no loss of generality with this choice because we
shall be able to find the canonical transformation corre-
sponding to it. The equation for R (1, v) is now

R, AR,

v—— — W'lu) =1, (5.7)
du dv
whose solution is
R\(u,v)= LJ du’ T Lalu, v)),
(i, 0) |v| {2[alu, v) — W(u')]}"? + Tt o)
(5.8)
where
alu, v) = + Wu) (5.9)

and 7 is an arbitrary function.
The invariant may be calculated using (3.26) and (3.27)
which, written in terms of 7"\(R,, ) and R (u, v), are

ar, 1 IR,

Jdu dv

ar, =U/6R,
IR, v’

where v and dR,/dv are to be expressed in terms of # and R,
by solving (5.8) for v = v(u, R|) in terms of ¥ and R . Let

: (5.10)

(5.11)

J(u, v) =T [R\(u, v)u]. (5.12)
From (5.11),
A JR, v
which implies
J(u,v) = + S (u). (5.14)
Combining (5.10) and (5.11) we find
ar, ar,
V— + —— =O) 5.15
du IR, (5:15)

which can be solved as follows. We first derive expressions
for the derivatives of v(u, R,) by considering the identity

R, =R \[u, v(u, R))]. (5.16)
Differentiating the identity with respect to R gives
o 1 R, . (5.17)
JR, dv

Differentiating the identity with respect to « and using (5.7)
to eliminate dR ,/du gives

v 1 fR .
Ju ov

Substituting (5.14) into (5.15), considering v = v(u, R), then
gives

(5.18)

—uW'(u) +vS'(u) =0, (5.19)
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which we can solve by taking

S (u) = Wiu). (5.20)
Therefore, we have
Ju,v)=T(R,, u) = %v2+ W (u). (5.21)

We now summarize our results for the canonical trans-
formation in terms of the variables ¢, p, @, and a. A
Hamiltonian

2 ﬁ)(ay t) 2 W(u)
H=1p 4+ " [l — C + —, 5.22
P €, — c.a) [ 219 ()Q] € — c,a)z { )
where
I coley + ¢a) ’ (5.23)

¢, —ca
o, €1, and c, are arbitrary constants such that ¢ + ¢3 = 1,
fola, tyand W (u) are arbitrary functions, and a(¢ ) is any func-
tion satisfying

a=fyla,t), (5.24)
is transformed to a new Hamiltonian
K(P,a)=P/(c; —c,a) (5.25)
by the canonical transformation
. v (™ du'
ela.pad =Wf (2lalu, v~ W) 7
+ T [a(u, v)], (5.26)
P(q,p, a,d) = i(c, — calp + dle\g — co) 1> + W(u), (5.27)
where
alu, v) =W + W(u), {5.28)
v=(c, —c\alp +dlc,g — ¢, (5.29)

and T'is an arbitrary function. The equations of motion for Q
and P are

4@ 9K _ 1 (5.30)
dt P ey —ca)’

4 _ K _, (5.31)
dt aQ

Therefore, P g, p, a, 4)is an exact, in general explicitly time-
dependent, invariant of the motion induced by H.

V1. DISCUSSION

In the preceding sections we have investigated Hamilto-
nians of the type

H=1p’+ Vg 1) (6.1)

and determined a class for which we could find an exact
invariant. To determine this class we postulated the exis-
tence of a canonical transformation

Q=0(g:p.p.p): P=P(qp,pp) (6.2)

in which time dependence occurs only through the function
pft) and its derivative. It was also assumed that g was not
identicaly zero. The transformed Hamiltonian was to take
the form

K=K(P,p), (6.3)
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so that the invariant would be the transformed momentum,
P. Apart from the postulates above, we worked within the
framework of the theory of canonical transformations in Ha-
miltonian mechanics. Although the particular approach
taken in the use of canonical transformations was unconven-
tional in that the generating function was a function of the
original canonical variables and time only, the possibility of
such an approach is inherent in at least one published
work.”® However, in that work there is no suggestion of ap-
plying such a generating function in a practical context.

Toward the end of our calculations it became apparent
that there was no loss of generality in taking the transformed
Hamiltonian as

K=P/[c,—c,alt))?

where a(t ) is a function of ¢ only and ¢, and ¢, are constants.
Thus the transformation is essentially one to action-angle
variables. Indeed the transformation may be put exactly into
the context of a transformation to action-angle variables if a
generalized canonical transformation (cf. Ref. 22) is used. If
in addition to (6.2) we introduce a new time variable

(6.4)

T=7(t)
= f [c, —cialt’)] e, (6.5)
so that now
K=K({P)=P, (6.6)

then the invariant P is the action.

At this stage it is instructive to see how the results ob-
tained here apply to some simple problems. For the first
problem we consider that well-known paradigm, the time-

dependent linear oscillator with Hamiltonian
H=1p*+ 1o’(t)g*. (6.7)

Comparing this with (5.22) it is obvious that W (u) is at most
quadratic in # and we write it as

W= lau’ +Bu+y, (6.8)
a, 3, and y being constants. Equating coefficients of like
powers of ¢ in {6.7) and (5.22) [with W as given in (6.8)], it is
apparent that /3, ¥, and ¢, are zero. This leaves

—c folat)=golp, 1) = — @t + a/p’, (6.9)
where we have related p and a by
p=c>—cCa. (6.10)
Thus p(t) is a solution of the second-order equation
g+ ot =a/p’. (6.11)

The constant « is open to choice. In view of the form of (6.11)
we set it as one or zero to obtain
g+ &t =1/p? (6.12)
or
g+ &t =0. (6.13)

The solutions to these two equations are related to one an-
other. The solutions of (6.12) can be expressed in terms of
two linearly independent solutions of (6.13) [see the second
work listed under Ref. 3]; however, for our purposes it is
more convenient to take p(f ) as a particular solution of (6.12).
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Then (6.13) has the solution set {p cos 7, p sin 7} where 7 is
given by (6.5). We may use p, p cos 7 and p sin 7 to obtain
three first integrals from (5.27). They are

1, = {llop —pa)* + 4*/p*), (6.14)
I, =i[ppcos T — (p cos T —p~ ' sin 7)g]?, {6.15)
I,=\[ppsinT — (psinT+p~ ' cos 7)g]°. (6.16)

The first of these is the invariant as given directly by (5.27)
with @ = 1 and can be found in Ref. 3. The second and third
are obtained by substituting p cos 7and p sin 7 for p in (5.27)
with @ = 0. It will be observed that

I =5L+1, (6.17)

i.e., these three integrals are not linearly independent. The
existence of three linearly independent quadratic first inte-
grals is known from the work of Lutsky,® which uses
Noether’s theorem, and of Leach (see the first work listed
under Ref. 9), which uses the method of the Lie theory of
extended groups. We may reconstruct their result as follows.
From the expressions for /, and /I, it is apparent that

I,=(g/p)cosT—(pp—pq)sinr (6.18)
and

Is=\(g/p)sinT+ (pp —pg)cos 7 (6.19)
are also first integrals of the motion. Since

U I]=1, (6.20)

I, and I are functionally independent and may be taken as
the two functionally independent integrals of the system. It
is evident that the following are three linearly independent
quadratic first integrals:

Jo=124+1 =1, (6.21)
Jy=LI,=1,L]=[I,1,1, (6.22)
Jy=I12—I*=[J,L,)=I,— 1, (6.23)

The integrals J|, J,, and J; are in the form given in the work

cited.
This type of result is usual for linear systems, but not for

nonlinear systems. It is interesting to observe that the three
linearly independent quadratic first integrals given in (6.14)-
(6.16) are, as it were, on an equal footing in our treatment,
just as they are in the Lie and Noether treatments. Any one
of (6.14)—(6.16) could be taken as the transformed momen-
tum and could be obtained by canonical transformation
from the original Hamiltonian (6.7).

As our prime motivation for this work was to find non-
linear time-dependent systems for which an exact first inte-
gral can be determined, we consider as another example the
system with Hamiltonian

H=1p" +1¢* +1B(t)g’. (6.24)
This has recently been treated using the Lie method applied

to the corresponding Newtonian equation of motion.?* Com-
paring (6.24) with (5.22), W (u) must be a cubic polynomial,

W (u) = lau’ + 18u” + yu + 6, (6.25)

a, B, ¥ and 8 being constants. Clearly, ¢, ¥ and § are zero.
Then

p+p=8/p% (6.26)

174 J. Math. Phys., Vol. 23, No. 1, January 1982

B(ty=a/p’. (6.27)
If we set 5 =0, B (r) takes the form

B(t)=K,cos*(t +¢), (6.28)
and, for 8 =1,

B(t)=K,[C+(C*— 1) cos (27 + €,)] >3, (6.29)

where K, K,, C(> 1), €,, and ¢, are constants. In both cases,
foragiven B (¢ ) of the form (6.28) or (6.29), p(z ) has been found
and can only be used to determine one invariant. The results
given here are in accordance with the results obtained using
the Lie method.

In the two examples considered above we have started
with a given Hamiltonian with a time-dependent potential
and determined whether it fits in with the permissible form
given by (5.22). In the case of the time-dependent linear oscil-
lator, no restriction was placed on w*(t ). For the anharmonic
oscillator, an invariant was found only if B (¢ ) is of a particu-
lar form, viz., that given by (6.28) or (6.29). As we have al-
ready remarked (see the final comments in Sec. IV), the re-
sults obtained in this paper may be viewed in two ways. The
first, as in the two examples, is to test a given potential to
determine whether it is of the permitted form and, if so, then
to construct the invariant. The second viewpoint is to deduce
classes of potentials for which a first integral can be found
from these results. This in effect reduces to a choice of the
function a(z ) and the constants ¢, ¢,, and ¢,. To take a simple
example of this, suppose

e —calt)= — (1412, c,=0. (6.30)
The invariant is then
Hgp 1) =1[(1+1% p— 2 q)" + W( = )(6.31)

and the class of Hamiltonians which admit such an invariant
is given by

1 q
Higpt)=4p+ —1— 4 W( )
Pt =4p 1+:22 0 (1412 1412

(6.32)

Given the formulas presented in this paper, it is a
straightforward exercise to apply them to a particular prob-
lem. This in itself represents an advantage over the Lie and
Noether methods, for both of which it is necessary to solve a
set of partial differential equations to determine the gener-
ators of symmetry transformations for each particular prob-
lem. We have, in effect, been able to include most of the
computationl work within the general theory. Admittedly
we do not obtain the generators of symmetry transforma-
tions and so have no knowledge of any group-theoretic prop-
erties of the problem under consideration. However, as is
well known, one-dimensional linear systems all exhibit SL(3,
R ) symmetry and nonlinear one-dimensional systems pos-
sess at most only one generator of a symmetry transforma-
tion. Thus nothing has really been lost. Indeed the practice
of searching for first integrals of the motion via symmetry
groups, when only the former are of interest, has received
recently some adverse criticism as being unnecessarily
circuitous.'

Another method for the investigation of invariants,
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which has been revived and developed by Ray and Reid, ' is
found in the study of Ermakov systems.'* The results which
they have obtained are contained in the results given in this
paper. Their work is continuing,** and it will be of some
interest to see how it develops.

The application of our results to the corresponding
quantum mechanical problem is immediate. An intermedi-
ate stage in the progress from the original canonical coordi-
nates g, p to the transformed coordinates Q, P may be written
as a time-dependent linear point transformation to coordi-
nates ¢, p’ given by

" q — colci + ¢aa)

q (6.33)
CZ - Cla
P =lc; —c,a) p + dlc,g — ¢y (6.34)
The Hamiltonian H given by (5.22) is transformed to
1 2 + W ’
p=22 7 (Z ) (6.35)
{c; —ca)

and, under the change of time scale given by (6.5), (6.35) is
equivalent to

H=ip?+ W(q). (6.36)

To the extent that a wavefunction for the Schrodinger equa-
tion for (6.36) can be obtained, a wavefunction for the origi-
nal problem may be obtained in the same way as for the time-
dependent oscillator (cf. Ref. 25).

It is appropriate to ask whether it is possible to find
time-dependent potentials of a more general form than those
presented here for which a first integral can also be found. To
obtain the results given here we assumed a transformation of
the form

0=Q(q,p,p.p), P=P(q,p,p,p) (6.37)
and a transformed Hamiltonian of the form
K=KI(P,p) (6.38)

One generalization would be to allow more time-dependent
parameters, assuming

Q = Q( q, P,,Dp,ljl, P2 ,bz,n-),

P=Plq,p,p\, P12 Po-.) (6.39)

We hope to report on this possibility in the future.
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Current responses of first and second order in a collisionless plasma. I.

Stationary plasma
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The current responses of first and second order, due to an electromagnetic perturbation of a
stationary but otherwise arbitrary solution of the relativistic Vlasov-Maxwell equations, are
studied. In particular the symmetries leading to the (approximative, due to wave-particle
interaction) conservation of wave energy for an inhomogeneous plasma are considered. Thereby
we clarify the mathematical structure of certain previously derived formulas for the response
operators and also make these more readily accessible for applications.

PACS numbers: 52.35.Fp, 52.40.Fd

I. INTRODUCTION

In a homogeneous plasma, mathematically described
by the Vlasov-Maxwell equations, we may calculate the lin-
ear and quadratic conductivity tensors'? in the form
(k= (w.k))

7,161 = i a, vk, (L)

O] = i ae v, 12
where we have the symmetries

aglx,v) =a;k,v) for x,+x,=0 (1.3)
and
@ (K K2 V) = Gy (K308, V) = ajki(KZ,Kl’v) = aikj(K‘_”Kl’v)

= Qi (K300, V) = i (K 15K3,V)
for «,+«,+x,=0. (1.4)

Poles of the functions a; and g prevent the symme-
tries (1.3), (1.4) tobe exactly inherited by o; and o, . Howev-
er, in many cases of interest, we have relations like (1.3), (1.4)
approximately valid for the conductivity tensors and this
means a considerable simplification as wave energy and mo-
mentum then are approximately conserved.

It is demonstrated in this paper how (1.1)~(1.4) may be
generalized to the case of inhomogeneous plasmas. This will
be achieved by means of explicit formulas. Our unperturbed
plasma is stationary and may have two directions of homo-
geneity (for example, a homogeneous plasma in the half-
space z > 0), one direction of homogeneity (for example, a cy-
lindrical plasma) or no such directions (e.g., a tokamak plas-
ma). In order to discuss a typical symmetry result of this
paper let us consider the last case.

A perturbation A(rje” of the electromagnetic vector
potential (we here choose the gauge with vanishing scalar
potential, although, in the following sections only gauge in-
variant expressions will appear) induces the linear current
response 8 J, [A](r)e”’. Defining (A, A,) = fA¥(r)-A,(r)dr
we make a suitable space of square integrable functions into
a Hilbert space. Corresponding to (1.1) and (1.3) we obtain

JA,(r)-é J,[A,](r)dr = fa[w,Al,Az](r,v)dr dv, (1.5)
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a[wl’Al’AZ] :a[Q)ZyAmA]]) fOr

Thus if we may neglect pole contributions in (1.5)

o, + w, = 0. (1.6)

(ABY,[A,]) = Ja [w,A*A,] drdv

=fa[ — 0,A,A*] dr dv
= <6Jm [AI ],A2>

and then 8J,, is Hermitian.

The relations (1.2) and (1.4) may be generalized in a
similar way, now involving the second-order current re-
sponse 8 J

(1.7)

Wy

f Ar)83, . [ALA, () dr

= Ja[w|;m2,A]»A2rA3](r’v) dl' dV, (18)

a [wl’QZ’Al!AZ’AJ] =a [(t)a :a)/j ,Aa ,Ag ,Ay ],

where {a,8,7} = {1,2,3} and w, + @, + @, =0.
In order to obtain (1.6) and (1.9) we have the following
sufficient condition on the unperturbed Viasov operator:

(1.9)

fim (( o)+ v-g + gEqr) + vXByr]) j—p)

70 +

— lim (( —io— )+ v 2 4 gEfr) + v XByfr)) %) '

7 0+ or
(1.10)

It is easily demonstrated that {1.10) follows if all unper-
turbed particle orbits are periodic. This result has some in-
terest in the fluid limit but for kinetic applications we cer-
tainly need to treat more general cases.

The two operators in {1.10) may be calculated in terms
of the unperturbed orbits and we notice that the condition
(1.10) means that such an orbit is in some sense symmetric in
time around any of its points. The Poincaré recurrence theo-
rem and the ergodic theorems of Birkhoff give some infor-
mation in this direction.? In this paper, however, we have no
ambition to derive (1.10) from results of general dynamics
since this probably, if possible, would be a most difficult task.
Instead we consider the case when the unperturbed orbits
belong to a most natural and mathematically interesting
class of functions, namely, the almost periodic functions
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(discovered by H. Bohr*). The almost periodic functions
have several attractive features, for example, the definition
of almost periodicity is physically appealing, almost period-
icity is connected with Liapunov stability,> almost periodic
orbits have the necessary recurrence properties and the or-
bits of nearly integrable systems being conditionally period-
ic® are also almost periodic. By this last point it will follow
that the symmetry result in Ref. 6 is contained in this paper.

It is instructive to consider what the poles of
a[w,A,,A,](r,v) in (1.5) look like [the poles in (1.8) may, of
course, be investigated in a similar way). The unperturbed
orbit through (r,v) being almost periodic determines a count-
able set of frequencies {2, (r,v)|n = 1,2...}, we assume this
set is closed under subtraction {otherwise we just include the
necessary frequencies, in spite of the corresponding Fourier
coefficients of the unperturbed orbit are zero). We then ob-
tain the poles in (1.5) from factors {w — £2,,(r,v)) ' and this
seems physically natural.

The notation and coordinate free formalism of Refs. 7
and 8 will be used without repeating the definitions. Thus ail
formulas will be covariant. Another advantage is that we
may write formulas covering at the same time the three dif-
ferent cases with two, one, or zero spatial directions of ho-
mogeneity. In Sec. 2 general formulas for the first- and sec-
ond-order current responses are given and in Sec. 3 these are
specialized to the stationary case with an unspecified dimen-
sion on the space of homogeneity. In Sec. 4 the case of almost
periodic orbits is considered.

2. GENERAL UNPERTURBED STATE

From (3.1}~(3.8) in Ref. 7 and {3.14) in Ref. 8 we obtain
formulas for the linear and bilinear four-current responses
87" [¢]1and 8J * [@,¢ ] due to an electromagnetic perturba-
tion with four-potential ¢. The unperturbed state may be a
quite arbitrary {space-time dependent) solution of the {rela-
tivistic, multicomponent) Vlasov—-Maxwell equations in the
presence of an external four-current. In the notations of
Refs. 7 and 8 we obtain

Result 1: Take gL ¢ (E,V') and ¢ ,,6,€L, (E,V). Then

fm-w“‘w.] ap

=27 | AP sludy) + ullyy

+ 6x(0)-V(u-d,) + Su(0)-¢,] dP du, (2.1)

| sarms,onap= 5

afBy=0
a#ftBAyFa

2-‘ch flPoa,
E x§

[67'6x(0) ® 6x(1) ® 6x(2):V,. © V. @ V. (u-D,)
+ 27 '8x(a) @ 5x(B) ® Suly):,
VeoVee Dy + 27 '6x(a)88x(8):V, © V(ugd,)

+ 6x(a) @ SulB):Vy @ ¢, |dP du. (2.2)
Here 6x(j) and 8u( j) are determined by the equations
Dobx(j) = ul ), (2.3)
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Dobu(j) — gmg 'e 7V APo-bu(j) — gmg e ?
XEX(j)V (Ve A Pyu)
=gmg ‘¢ VAo u (2.4)
with the boundary conditions

8x( j), Su( j)>0 towardsthepastifj=1or2, (2.5)

bx( 0), 5u( 0}—0 towards the future. (2.6)

Remark 1: The results (2.1), (2.2) look perfectly sym-
metric with respect to perturbations of the indecies 0, 1 and
0, 1, 2, respectively. Note, however, that index O plays a
particular role, this is seen from (2.5), {2.6) and ¢eL ° (E,V)
while ¢,,é,€L, (E,V).

Result 2: The function 8x{} defined by {2.3)-{2.6) may
be expressed in terms of D 5~ ! (the inverse of the unperturbed
Vlasov-operator D) as

8x(j)= —gqmg '¢*{VsDy '(u-g)

+ Dy (uDVsD g 'u-d))u}, 2.7
where D ;! is subject to boundary conditions in accordance
with (2.5) and (2.6).

Proof: We introduce the notations @ = gm, ¢~ ? and
6% = —aVsDy @u), 8= —aD\VyDy '(du). (2.8)
Let us in this proof assume that (2.7} and (2.3) defines 6x and
Su and prove that the relation (2.4) then is satisfied. From
(2.8), (2.7), and (2.3) we obtain

5x =8x + Dy 'u-diu, (2.9)

Su = it + Dy(D ;5 '(u-60)u). (2.10)

It is straightforward to demonstrate by means of (2.9),
(2.10), and Dy, = u-V + a(Vz A P-u)-V, that
Dybu — aVe A Pyu — abx-V (V. A Pyu)

= D8 + u-8uu) — aV, A P-bu
— abXV (Ve ADyu) 2.11)
and thus the left-hand side in (2.4) has been expressed in
terms of 5% and §i. The next step is to express the right-hand
side of (2.11) in terms of @, and ¢. From (2.8) we obtain
8 = —aVs(¢u)+a(Vp +u uVe)Dy (du)
— &V APV D 5 (-u)
and from (2.12)
S+ ubii u= —ad+aVy —aVy AN®,Vs)D; '(d-u).
(2.13)
Substitution of (2.13) and {2.8) in the right-hand side of (2.11)
yields after a substantial amount of algebra the result (2.4).

Three identities that have been used in the derivations above
are

2

(2.12)

Vsu=I4+uou, Du=aV AD,u, (2.14)

DoVs =ViD, — (Vy + uuV,) + aV, APV, (2.15)

Lemma 1: For veV denote by T, the translation opera-
tor defined on any function ¢ from E to some vector space by
(T, ¢ )P} =6 (P—v). Nowif T, f, = f; [i.e., folP — v,u)

=f(P,u)]and T,V AP, = V, A P,and if 4 is an operator
(linear or nonlinear) determined only by the unperturbed
state and defined on a space of functions {& |¢:E—V }, then

T (A($)=A(T,¢).
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Remark 2: Lemma 1 is somewhat trivial but it will still
be useful to have it explicitly stated. The content of the
lemma is perhaps most clearly seen if we represent the func-
tions ¢, 7,4, A (¢ ), T, A (¢ ) by their graphs in E X V.

3. STATIONARY UNPERTURBED STATE

We now consider the situation when the unperturbed
state has one or several directions of homogeneity with at
least one of these directions timelike.

An arbitrary event OeE is choosen and then to each
event PeE there corresponds a vector xel such that
P =0 + x. Often in notation we identify x and P=0 + x
and write xeE, etc.

Definition 1: The vector spaces V,, and ¥, are defined by
V, = {all homogenity directions of the unperturbed sta-
te} = {aeV | fy(P + Aa,u)and V. A @(P + Aa)are indepen-
dent of the real parameter A }and ¥, = V', = {aeV |jab =0
for all bV, }.

Lemma 2: V, + V. = V and each ac¥ has a unique
decomposition a = a, + a,, wherea, €V, and q,eV.

Proof: Choose a Lorentz coordinate system (e, ,, €,, €3)
such that (e,,....e,, _ ) span V,(m = 1, 2, 3, 4). This is possi-
ble to do since ¥, contains a timelike vector (just elementary
linear algebra). Then (e,,,,...,e5) span ¥,. The lemma follows
since each element in ¥, V,, or ¥, may be expressed as a
unique linear combination from (e, e,, €, €3), (€g,....€,, _ ;) OT
(€,,5---,€3), TESPECtiVEly.

Definition 2: (a) Subscripts i or 4 on a vector in V'is
defined by a, + a; = a foracV and a, €V, and g€V,
(Lemma 2),

b}V, =V, +V, defines V, and V, in analogy to (a)
above.

(c) ForxeV ;" (the plus sign stands for complexification,
cf. Ref. 8) we define V, =ik + V..

{d) For keV ;" we define

D, =uV, +4+gm;'c ™V ADyu)Vs.

Remark 3:If Imx is timelike (Im = imaginary part of)
then we have a natural definition, including boundary condi-
tions, for the inverse D~ ' of D,.. This is easily seen by inte-
grating along unperturbed orbits using that
DA (x,,u)=e "D, (e"™4 (x,,u)) and assuming that
A (x;,u) and B (x,,u} is bounded on each particle orbit while
solving the equation D, 4 = B for 4. For real x, however, we
must indicate if an infinitesimal imaginary part of k is direct-
ed towards the past or the future. The notation D ! is used
in the former and D ~,' in the latter case. The symmetry
results we want to demonstrate are valid when
D, '=D,}, this follows from explicit expressions below
in this section. In the next section it will be investigated what
sort of conditions on the unperturbed state is needed in order
toimply D,”' =D .

Definition 3: (a) P(V,,V *) is a set of functions
¢:V,—V * such that , |a-¥(x;)|%dx; < o« for all aeV. We
sometimes denote this set of functions with P only.

(b) Let L be a Lorentz coordinate system (eg, €, €3, €3)
then we define P, = P, (V,,V *) by P, = (¢eP |eqyy = 0}.

(c) The bilinear form (,) on P is defined by
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(W, ¥,) = fy,wf"//z dx;.
Remark 4: The bilinear form (,) is positive definite on
P, but not on P. We consider P, to be a Hilbert space with
scalar product {,). When P, instead of P is considered this
only means that we have choosen a particular electromag-
netic gauge, namely, the radiation gauge in the frame L.
Definition 4: (a) For «, , k,€V .- with imaginary parts
directed towards the future, the linear operator
8J.:P(V.,V*)—P(V,,V*)and the bilinear operator
bJ, . P X P—P are defined by

KKz

ST [1(x,) = 878 1(x)exp( — ix-x), (3.1)
8, (¥, 8211x;) = 87 2 [$),6,1(x)
Xexp( — i, + K3)x), (3.2
where
@ (x) = ¥lx; Jexplix-x), (3.3)
?;{x) = ¥;{x,Jexplix; x), j=1lor2. (3.4)

(b) For eV ,* with Imx timelike the linear operators
éx, and du, on P are defined by

D.6x, (Y] = bu,[¢], (3.5)
Dxaux [1//] - qm07 1c—‘ZVE A ¢()'6ux [dj]
—gmg ¢ 0%, [Y1-V (Ve A Pyu)
=gqmgy '¢ YV, Aru. (3.6)
Remark 5: We have to show that the right-hand sides in
(3.1) and (3.2) are independent of x,, i.e., veV, =T, acts as
the identity operator on the right-hand sides of (3.1) and

(3.2). Let us check (3.1). For ve¥V, we have from Lemma 1
T,.67"(¢]=6J"[T,¢ ] Thus

T,(6J (¢ 1(x)expl — ix-x) = T,(67 " [4 1(x)),

T, (expl — ik-x)) = 8J " [T, ¢ J(xjexplix-v)exp( — ix-x)
= 8J V[ pexp( — ik-v)](x)exp(ix-vjexp( — iKk-X)
= 8J "¢ 1(x)exp( — ik-x).
In the same way we may check (3.2) then we use

T,57%0,6 )(x) =86 2[T,¢,T,¢ )x). {Lemma 1).
Remark 6: Since Imk, Imx, and Imx, are directed to-
wards the future in (a) above it follows that ¢, ¢, $,€L, (E, V')
and they may thus be used as arguments of 6J "’ and 6J @ asin
(3.1) and (3.2).
Remark 7: The operators 6x, and du, defined by (3.5),
(3.6) may alternatively be defined by

8x, [#](x;) = 6x'"[# lx)exp( — ix-x), (3.7)
u, [¥}ix;) = 6u'"[4 J(x)exp( — ix-x), (3.8)

where ¢ (x) = ¥(x,)explix-x)andkeV ;* with Im« directed to-
wards the future. For Imx directed towards the past we just
replace the operators 8x'"’ and 8u'" in (3.7) and (3.8) by 6x"'
and &u'' ' defined on L° (E,V) by 8x'' 7' [¢,] = 5x(0) and
8u" 7'[¢,] = 6u(0) with 5x(0) and Su(0) as in (2.3), (2.4), and
(2.6). The right-hand side of (3.7) and (3.8) is independent of
x, and this follows as in remark 5. Now (3.5) and (3.6} is
easily obtained from (2.3}, (2.4), and (3.7), (3.8).

Remark 8: The operator §J, may in a natural way be
defined also for Imx directed towards the past. Define the
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operator 6J ' :L %(E,V }—L °(E,V)so that 57 "~ [# ] is the
linear part of the “current response” due to ¢ and is subject
to the boundary condition that it vanishes towards the
future.

From (2.1) it easily follows that

f¢0-51“’[¢.]dP= L¢l-5J“"[¢O]dP, (3.9)

for ¢,eL ° (E,V)and ¢,€L, (E,V). Alternatively {3.9) may be
used as the definition of 6/ ~. Now define
8J (] = 87" (¢ lexp( — ix-x) (3.10)
for ¢ (x) = ¥(x;)explik-x) with keV ;% and Imx directed to-
wards the past.
It follows from (3.9) that (¢,6J, [¢,])
= (8J .. [¥p),¥,) and thus /T, o(8J, + 6J..)is an Hermitian
operator on P, . Here L = (e, e,, e,, e5) denotes a Lorentz
frame and the operator /7, takes the spatial part of a vector
with respect to this frame, i.e., 1, (v) = v + e,ve,. Thus
,08], =27, 0o8J, +68J.)+2 I o8], —6J.)
(3.11)
expresses /7, ©6J, as the sum of one Hermitian and one anti-
Hermitian operator on P, .
Result 3: (a) Take ¢, ¥,€P(V,,V T)and k, €V ;" such
that x, + «, = 0 and Imx, directed towards the future. Then

f YodJ,, [¥:1dx; =27 'ge JV sfo(xi,u)[5f(1)-V.q,(u-¢o)
+ 8%(0)-V,,, (u-\) + 8a(1)-4, + 82(0)-4f, ] dx; du, (3.12)

where
8%(j) =ox, [¢;], 6al))=éx,[¢] (3.13)
(b) Take ¥, ¥y, ¥,€P (V,,V ¥) and k,, &, k,€V ;7 such
that «, + «, + x, = 0 and Imx,, Imk, are directed towards
the future. Then
| A o S S W
v, By =0 V,x§
a#B #y#a
[67'8%(0)® 8X(1) @ 6%(2): V@V, ® V(u-Dy)
+ 27 18%(a) © 5%(B) ®6u(y): V0V, 8 D,
+ 27 '8x(a) @ 5%(B):
V. ®V, (i) + 6x%(a)®bu(B):V, ®y,}dx; du,(3.14)
where we also use definition (3.13).
{c) Take keV ;- with Imk timelike and y€P, then
Ox (Y] = —gmg '¢ *[VsD " (uy)

+ D, (4D VsD [ uih)uj. (3.15)
Definition 5: For k¥, {note Im« = 0) define
D)= lim Dy, (3.16)
A0 +
D '= lim D',, (3.17)
A0 +
where ecS.

Corollary 1: If the limits in (3.16) and (3.17) exist and are
equal we define for xe¥,

D '=D7) (3.18)
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and then (3.15) together with (3.5) defines dx, and du, also
for « with Imx = 0. Then, for «, «,, x,€¥,, the integrands of
(3.12) and (3.14) are perfectly symmetric with respect to per-
turbation of (0,1) and (0,1,2), respectively.

Proof of Corollary 1: Due to (3.18) the only source of
asymmetry is removed.

Corollary2:1fD ;! = D' and if we may neglect pole
contributions in (3.12) (with « =k, = — «,, x€V,) then
T, °6J, is an Hermitian operator on P, (V,,V *), (cf. remark
8).

Proof: By the assumptions

jy bodT [ 1dx, =f bl [b)dx,  (3.19)
thus
(WordT VL1 =f Yo*67 1 [, 1dx,

- f ST (6] -d,dx, =f61':'[¢01*-¢ldx.-

= (BT[] ). (3.20

Remark 9: The Fourier transform with respect to x,, of
a function G (x) is

G, (x;)= J G (x)exp( — ix-x)dx, (3.21)
Vi
and the inverse transform
Gx)=Q2m " J G, (x;explix-x)dx, (3.22)
Vi

where m is the dimension of ¥, . In (3.21) we take xeV, or
sometimes ke ;% with timelike imaginary part and corre-
spondingly we may have to choose some path of integration
in ¥ ,* in (3.22) [see (2.1), (2.2), and Remark 1-3 in Ref. 8].
Lemma 3: We have the following Fourier transforms

| 716 ctexpt — ieoxix, = 87,19, ox) (3.23)
| 87168 1wexp( — in-xid,

=) " | Wl (B 1R, (3.24
L&x‘”[:ﬁ V(x)exp( — ik-x)dx, = &x, [, ], (3.25)
fy 5u"[$ 1(xjexp( — ix-x)dx, = u, [4,], (3.26)

where ¢, (x,) is the Fourier transform of ¢ {x) with respect to
X,.

Proof: Calculate the inverse transforms of (3.23)(3.26).
The results follows directly from (3.1), (3.2) and (3.7), (3.8).

Proof of result 3: Consider case (a). Take x, and &, as in
this result. Take @,(x) = ¥,(x,)explik,-x) and ¢,eL ° (E, V)
NL, (E, V). Substitution in (2.1) then yields (3.12) by means of
(3.23), (3.25), (3.26), (3.7), and (3.8). In a similar way one
obtains (3.14) from (2.2).
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4. ALMOST PERIODIC MOTION

The purpose of this section is to give, in terms of the
unperturbed particle orbits, a sufficient condition for (3.18)
in Corollary 1. Consider the unperturbed plasma in Sec. 3
and choose a vector e,€SNV,. Let (x(¢), u(t ))eE X S be the
motion of a plasma particle with parameter ¢ as ¢, time, i.e.,
ordinary time for an observer with e, as time axis (i.e.,
e,x(t) = — ct). Denote the projection of this orbit on V; X.§
by I = [x,(0)ule IreR .

Result 4: Let A be a continuous functionon ¥V, X .S and «
avectorin V,. If x,(¢) and u(t ) are almost periodic functions
(in the sence of H. Bohr®) and x,, (¢ ) is the sum of a linear and
an almost periodic function, and

lim (D,

w04 K + ine,
then

(D, A)x;u) = (D ' A)x;,u)

Remark 10: Denote the module of the almost periodic
part of (x(t ),u(t )) by {2, |n interger}. (Each almost periodic
function determines a countable spectrum of Fourier expo-
nents and the module is then the smallest set which contains

this spectrum and is closed under subtraction.) According to
the assumptions in Result 4 we may write

x,(t)=cteg+ tv; +r,(t), (4.3)

A)x;u)| isboundedon I (4.1)

on I, (4.2)

i

where e,v, = ¢e,r,(t) =0andr,(t) is almost periodic. De-
fine w and k by

k=c¢ 'we, + k. (4.4)

It follows from the proof of result 4 below that

(DNt hu(t ) ~iY (0 — kv, —2,)7'a,

Xexp (if2,¢), (4.5)
where a,, is determined from

a(t)~Ya,expi{f2, + kv, — o)t (4.6)

and a(t ) is given by {4.36). The assumption (4.1) is in general
needed to prove (4.5). The reason for this is the small denomi-
nators in (4.5). The module {2, } is indeed dense on R except
when the almost periodic part of the motion is exactly
periodic.

Remark 11: Each point (x,u} in the plasma determines a
set I (x,u) CE X S consisting of all points of the particle orbit
through (x,u). Together with e,€S the point (x,u) determines
a module {42, (x,u)} and a drift velocity v,{x,u) [with
e,-V4(x,u) = 0] if the particle orbit parametrized in e, time
have the properties assumed in Result 4. From the homo-
geneity in the V, directions it follows that v, (x,u) = v, (x;,u)
and (2, (x,u)} = {2, (x;,u)}. Thus from (4.5) and (3.15) we
observe that the poles in (3.12) and (3.14) are due to factors
[ — kv c,,0) — 2, (x,u)] .

Remark 12: If a particle orbit have the properties as-
sumed in result 4 when parametrized in e, time then this is
true also in e-time where e is any element in SnV,. This will
now be demonstrated. Lets = 4 (¢ ) be the relation between e-
time s and e,-time ¢ with respect to the particle orbit x(f ) so
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that x(# ~'(s)) is the particle orbit in e time, that is
hit)= —c 'ex(t). 4.7)

We observe directly that 4 () is the sum of a linear and
analmost periodic functionand that 4 (¢ )isstrictly increasing
[t, > t,=x(t,} — x(¢,) future oriented
=e-(x(t,) — x{£,)) <O=>h (t,) > h (¢,)]. From Lemmas 5 and 6
below it is easy to see that it is now sufficient for us to show
h ~(s) is uniformly continuous. We use the following simple
result: There exist a £ > 0 such that

for all timelike v. (4.8)

[Choose & > 0 such that e — ke, is future oriented. For
u€S we then have
ule — key) < 0= — ku-ey < — u-e=|u-e| > k |u-e)|=(4.8)].
Given €> 0, take & = ke; then
A (t2) — A (2))] < 6= |e-(x(ts) — x(¢,))]
<&k |t — 1| <6|t, — 1| <€ (4.9)

vl > & [y

and thus 4 ~'(s) is uniformly continuous.

Lemma 4: Let gt ), teR ", be a continuous function and
A (s) an almost periodic function with values in R ". Then
glh (s)) is almost periodic and the module of g{# (s)) is con-
tained in the module of 4 (s).

Proof: 1t is sufficient to prove that given an € > 0 there
exists a trigonometric polynomial a(s)

a(s) = Ya,explid,s) (4.10)
such that 4, is an element in the module of 4 (s) and
\g(h (s) — als)| <€, for seR. (4.11)
First define K C R " by {choose any norm on R ")
(4.12)

K= {teR"i|t|<su1? |A(s)] + 1}

then K is a compact set since / (s} is bounded. Being continu-
ous g(t ) is also uniformly continuous on K and thus we may
choose a § with 0 <8 < 1 such that for ¢, £,eK and

lt, — 1] <8,

g(t)) — gl <€/2. (4.13)

By Weierstrass approximation theorem there exists a poly-
nomial p(¢) in n variables teR " such that

lglt) — plt) <€/2, tek. (4.14)

Since 4 (s) is almost periodic there exists a trigonometric
polynomial b (s) = =b,exp(id,s) with A, from the module of
A (s) and

lh(s)—b(s)| <6<1, seR. (4.15)

Now it easily follows from (4.13) and (4.15) that a(s) = p(b (s))
have the required properties.

Lemma 5: Let s = h (1) be a strictly increasing function
from R to R which is the sum of a linear and an almost
periodic function. Then the inverset = 4 ~'(s)is also the sum
of a linear and an almost periodic function if and only if
# ~'(s) is uniformly continuous.

Lemma 6: Let the real valued functions g{s) be the sum
of a linear and an almost periodic function and let 4 (s) be an
almost periodic function. Then # (g(s)) is almost periodic.

Proof of Lemmas 5 and 6: See, Ref. 9
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Lemma 7: Let als) be an almost periodic function and
define

a,ls)=e"” "‘f e”als')ds', n>0, (4.16)

als) = —e™ f e~ "a(s'ds', 5>0. (4.17)
Then a, (s) and a@”(s) are almost periodic with the same Four-
ier exponents as a(s). Furthermore, the functions a,(s) and
a"(s) are majorized* by 7~ 'a(s).

Proof: Let 7 be a translation number of %~ 'a(s) corre-
sponding to € > 0. Then, by definition

I~ 'als + 7) — " 'als)| <€, for seR. (4.18)
We easily obtain

a,ls +7)—a,ls)

—e ™ f e™(als' + 7) — als'))ds’ (4.19)
and then by means of (4.18)

la,ls + 1) —a,(s)| <€ (4.20)

and thus a, (s) is almost periodic and majorized by 7~ 'a(s).
For arbitrary but fixed 7 > 0 we may expand a,,(s) and a(s) in
Fourier series

a(s)~ A, exp (id,s), (4.21)

a,(s)~> B, exp (i1,S), (4.22)

where {4, ] is the set of all Fourier exponents in a(s) and
a,(s). From (4.16)

d

—{a,(s)) = — na,(s) + als) (4.23)
ds

and thus
a, (s}~ S, +n)~'4,exp (id,s) (4.24)

and so a, (s) have the same Fourier exponents as a(s). All

statements about a, (s)is now proved and a”(s) may be treated
in a similar way. The result corresponding to (4.24) is
a’(s)~ Y (i, — n)~'4, explid,s). (4.25)

Lemma 8: Let a(s) be an almost periodic function. Then
(a), (b) and (c) below are equivalent

(a) j a(s'¥ds’ is a bounded function of seR.
[¢]

(b) lim |a,(s)| is abounded function of seR.
70 +

(c) lim a,(s) = lim a”(s) isa bounded function of seR.
70 + n—0 +

Proof: We prove (c)={b)=(a)={c). Here (c)=>(b) is triv-
ial and (b)=(a) easily follows from

J:a (s')ds’'

which we obtain by partial integration. From (a) and (4.21}) it

<lay (5] + [a,0) + 7 la, (5] s’ (4.26
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follows that
d(s)~ Z(i/l,, )74, exp (i, s) (4.27)

is an almost periodic primitive function of a(s). We will show
that

{d(s) — a,(s)|7 >0} (4.28)

is a majorizable set of functions and that
T

lim 7' | |d(s)—a,ls)|’ds—0 whenn—0+. (4.29)
T—x (+)
Then it follows (Ref. 4, Sec. 73) that

a,(s)—>d(s) whenn—0+ (4.30)
and in a similar way,

a’(s)—~>d (s) whenn—0 + (4.31)
and thus (c) is obtained from (a). By the identity

d(s) —a,(s) = nd,(s) (4.32)

and Lemma 7 applied to d (s) we obtain that the set (4.28) is
majorized by d (s). From (4.24), (4.21), and Parseval’s equa-
tion for almost periodic functions we get

T

lim T"J |d (s) — a,(s)|*ds
T rec 0

=3 |4, A, P+ A5 (4.33)
Given € > 0 choose N so large that
|4, A % <€ (4.34)

in| >N
and this is possible to do since the series in (4.34) is conver-
gent [since (4.27) determines an almost periodic function).
Now the right-hand side in (4.33) is smaller than

S 4a AT+ AL e
|n|<N
and (4.29) easily follows.
Proof of Result 4: Define

alt) = [|x'()x'(t)]124 (x;(¢)ult Nexp [in-x(z)]. (4.36)

Thena(t)is almost periodic with Fourier exponents in the set
{22, — o + k-v,;|{2, is an element in the module of the al-
most periodic part of (x( ),u(t ))} [see (4.4) and Lemma 4]. By
integration along the unperturbed orbit (x(¢ ),u(t )) we obtain
(see Remark 13 below)

(D ige, A (0 hu(t)) = a;(t Jexpl — inex(e)], 7 =cm,
(4.37)

(D e, A )x, (2 )u(t)) = @"(t Jexp[ — incx(t)]. (4.38)
The condition (4.1) implies by means of (4.37) that (b) in
Lemma 8 is satisfied by a(¢ ) in (4.36). From this lemma and
{4.37) and (4.38) we obtain (4.2).

Remark 13: Let {x(¢ ),u(t )} be an unperturbed orbit;
where ¢ is e, time and let (%{s),i(s)) be the same orbit parame-

trized by arclength so that s/c is proper time for the particle.

The relation between s and ¢ is
ds ' ' 172

— = ||x{z)x( .

i ({2 )x"(2 )11

(4.35)

(4.39)
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The equation for the orbit is simplest in proper time

#(s) = dils), (4.40)

@'(s) = gng "¢ 7V g A P(E(s))-i(s). (4.41)
Let B (x,u) be a function on £ X S then

(DoB )(x(s),uls)) = % B (x(s),a(s)) (4.42)

and so we may calculate D ; ' by integration along unper-
turbed orbits.

5. SUMMARY

The first- and second-order conductivity tensors of a
homogeneous Vlasov-plasma possess (approximately) cer-
tain well-known symmetry relations, which lead to the (ap-
proximative} conservation of wave energy. The purpose of
this paper is to consider what happens when the plasma is
inhomogeneous. Our starting point is the previously derived
formulas (2.1)—{2.6). It is quite straightforward that (2.1)-
(2.6) leads to the expected symmetries [i.e., (1.1)~(1.4}] when
the plasma is homogeneous. However, in order to find the
symmetries implied by (2.1)—(2.6) for an inhomogeneous
plasma, essential use is made of result 2, which is new and
give the solution of (2.3)—(2.6)—i.e., the Lagrangian pertuba-
tions 8x( /) and Su( j)—in terms of the inverse unperturbed
Vlasov operator. This inverse operator may be calculated by
integration along unperturbed particle orbits which thus
now explicitly enters in the response operator formulas. As-
suming a stationary unperturbed state and by Fourier trans-
formation in time and eventual spatial homogeneity direc-
tions we get in Sec. 3 from (2.1)—(2.7) the condition
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D, ' = D' for the wanted symmetries to be valid. In par-
ticular the fulfillment of this condition leads to an Hermitian
{if we neglect pole contributions) dispersion operator {this
follows from corollary 2} and, as will be seen in part II of this
paper, '° also to the Manley—Rowe relations in three wave
interaction. It is now natural to search for conditions on the
unperturbed particle orbits that leadsto D ~,' =D, '. In
Sec. 4 a class of almost periodic motions is considered and in
result 4 we obtain a result of the wanted form.

Two reasons for the choice of studying almost periodic
motions are (a) it is a sufficiently large class of motions to be
physically interesting and (b) there is a good theory for gener-
alized Fourier series of almost periodic functions. It is (b)
that make the analysis in Sec. 4 possible.
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The three-wave interaction in a possibly strongly inhomogeneous plasma is considered. Coupled
mode equations are derived with coefficients expressed in terms of the response operators treated

in part I of this paper.
PACS numbers: 52.35.Fp, 52.40.Fd

I. INTRODUCTION

The purpose of this part I is to derive the coupled mode
equations for waves in an inhomogeneous plasma. The coef-
ficients will be expressed in terms of the first-and second-
order conductivity operators and thereby illustrate how the
formulas and results in part I' may be used.

There are in general great qualitative differences be-
tween resonant wave interaction in a strongly inhomoge-
neous and a homogeneous plasma.> We will only consider
the situation where a pure resonant three-wave interaction is
possible. The requirements for this is now much stronger
than in the homogeneous case. Still the equations derived
will be valid in situations of considerable physical interest.
For example, the resonant interaction of three surface modes
may be considered.® The symmetries that were discussed in I
are of great importance for the properties of the coupled
mode equations. Actually we have to assume from the outset
that the normal modes, to first order, are determined by Her-

mitian operators.
The class of three-wave interaction processes we are

going to consider is the simplest possible where still the inho-
mogeneity of the plasma may be essential in the calculation
of the coupling coefficients. Note that for a weakly inhomo-
geneous plasma we may use WKB analysis and obtain the
mode coupling equations,* but the coefficients are then cal-
culated for a homogeneous plasma. We take the unperturbed
state of the plasma as in Sec. 3 (I). As in I we decompose the
four-vector space V as ¥V =¥V, + V,, where ¥, contains all
directions of homogeneity of the plasma and ¥, = V. Cor-
respondingly we uniquely write a four-vector x as
x =x, + x,, where x, €V, and x,eV,. Let the plasma have
normal modes of the form

Y(x;) exp (ik-x,) + complex conjugate, (1.1}
for k = k|, k,, and «,, where

K +K,+4,;,=0 {1.2)

and «,ky,k,€V, - [In a Lorentz frame (ey,e,,e,,¢5) we may
write (1.2) as @, + w, + w; =0and k, + k, + k, = 0 if we
define ks, = ¢~ 'w,e, + k;.] We may then consider the inter-
action between three wave packets of the form

¥(x,, x;) exp (ik;-x) +cc, j=1,2,3. (1.3)

Each wave packet in (1.3) is a superposition of normal modes
with « close to «;. The amplitude ¥;(x,, x;} has a slow vari-
ation in x,, in comparison with exp ix;-x

( = exp ix;x,since x;€V), ). In principle one could write
down a self-consistent set of equations describing the devel-
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opment of ¥;(x,, x;},j = 1, 2, 3 including the resonant wave
interaction. However, already the linear evolution of the
wave packets may be very complicated. In general we have
little control of the change in the x; dependence with time
and additional assumptions are thus needed in order to get
resonably simple equations. Two important mechanisms be-
hind the complicated behavior in the general case may be
distinguished. First, there may be several branches of nor-
mal modes represented in each wave packet. [The Hermitian
operator /1, oH, defined in Sec. 2, determines to first order
the branches of normal modes by dispersion relations

A (k) = 0, where A («) is some eigenvalue of /1, °©H, and con-
tinuous in «.] Normal modes with « close to x; and belonging
to one single branch have an approximately common x; de-
pendence while there are in general no simple relation be-
tween normal modes from different branches. This means
that we may have a fast and complicated linear development
of the x; dependence of a wave packet if several branches of
normal modes are present. We now come to the second
mechanism. Let us consider the development of the x;-wave
packet if only normal modes from one single branch are pre-
sent. Let (;(x,) exp ix;-x + c.c.) be a normal mode of this
branch. Then we have

¥;(x,, x;) = 4;(x,, x;) ¥;(x;), (1.4)
where the complex valued function 4, (x,, x,) varies slowly
inx, and x; in comparison with exp (ix;-x) and ¥;(x; ), respec-
tively. When the inhomogeneity also is weak we have the
situation in Ref. 4 and WKB analysis may be used. In the
present paper we will consider a complementary case, in-
volving a possibly strong inhomogeneity, where the typical
wavelengths of the normal modes are of the same order as
the size of the plasma. Then the slow variation of 4;(x,,, x; }in
x; effectively means that it is constant in x;. Another situa-
tion when this may happen is when the normal modes are
localized, take for example surface waves. Then the thick-
ness of the layer close to the surface, where the wave fields
are essentially different from zero, enters instead of the plas-
ma size. In order to obtain the coupled mode equations given
in the result and in Corollary 2 of the next section we thus
need to assume that (A) only one branch of normal modes
exists for « close to x; forj = 1,2, and 3, (b} 4;(x,,, x,) in (1.4)
is independent of x;.

The resonant three-wave interaction is then described
by equations of the same form as in a homogeneous plasma.
The inhomogeneity enters in the calculation of the coeffi-
cients in these equations.
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2. THE COUPLED MODE EQUATIONS

We use the notation from part I and Ref. 5. The electro-
magnetic waves are governed by the wave equation for the
perturbation ¢ of the 4-potential

VilVe Ad) = — (/&) 8T (81 + 8V (6,81). (2.1)

Here V. is the four-dimensional gradient operator on the
event space. The second-order current response is included
in (2.1) since we are considering the three-wave interaction.
We Fourier transform (2.1) with respect to ¥, and obtain

VAV, A + (/€0 8T, [6, ]
= — (/e 2 J Sr v (b Jdi (22)

AsinlwehaveV, =ix + V, ¢, (x,)isthe Fourier trans-
form of ¢ (x) and m is the dimension of V). The linear terms
have been collected on the left-hand side in (2.2) and we re-
write these as

(H, +ih o, . (2.3)
The operators H, and 4, are defined on [see definition 3 (I)]
P(V.. V™). TakexeV, andletk + (k — ) denote that a future

{past) criented infinitesimal imaginary part is present in «.
We define [c.f. remark 8 (I) and definition 5 (I)]
Hop =V (Y, AU+ (uo/en) 2760, + 6], ), (2.4)
h = — (/€)' 27" (80, —8J, ). (2.5)
The resonant particle contributions is contained in 4,
Convention: The * + * sign but never the ** — *’ sign
will be omitted after “'«”’ in most places below. We observe
that “x + ” indicate that we consider the causal (i.e., the
physical) response of the perturbation.
Lemma 1: Take keV, and a Lorentz frame L. Then
I1,°H_and Il oh, are Hermitian operators on P, (V,,V ™).
Proof: The operator I, is defined in remark 8(I) and
takes the spatial part of a 4-vector with respect to L. From
remark 8(I) it follows that only the Hermitian property of
I, (V,.(V,. A¢)) remains to be demonstrated. We make use
of the identity

PV (Vi AN)) + V- (01, A )

= Y2V (Ve AD)* + Vi (8h2(V Athy)*), (2.6)
where ¢, ¥,€P, (V,, V 7). By integrating (2.6) over ¥, we
obtain

(W Ve (Ve Ah)) = (Ve (Vi AW), ¥2) (2.7)
and now the Hermitian property we wanted to show follows
easily and Lemma 1 is proved.

Given kel we associate with each P (V,, ¥V ") the 4-
potential

@ (x) = ¥(x;) exp (ix-x) + c.c. (2.8)

and the corresponding electromagnetic field tensor

— Vg A@. The necessary and sufficient condition for ¢, and
Y, in P(V,, V ™) to represent the same electromagnetic field
is

VK/\¢’1 =VK/\¢2‘

Accordingly we make the following definition.
Definition: A function f(¢) of peP (V,, V *) is gauge in-

(2.9)
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variant with respect to xeV,, if

V. A =V AN b=f () = (). (2.10)

Lemma 2: Take keV), and a Lorentz frame L = (e,, e,,
ey, ;) such that e« #0. For each P (V,,V *) there exist a
unique yeP, (V,, ¥ *)suchthatV Ay =V, Ay.Intermsof
the electric field (E(x,) exp ix-x + c.c.) in the Lorentz frame
L due to ¥ and « we get y(x;,) = — i(c/w)E(x,) with
W= — CeyK.

Proof: The existence of y follows by checking that

— (V. Ax (x,) exp ik-x + c.c.) with y(x,) = — i(c/w)E(x,) is
equal to the electromagnetic field tensor due to x and #. This
is straightforward to do if we use Faraday’s law.

The uniqueness of y follows from
e (Ve ANY) = e (V, ANy) = legky and e,k #0.

Remark 1: In Lemma 1 we consider operators defined
on P (V,, V*)CP(V, V™). This is necessary in order to
obtain Hermitian operators [see Remark 4 (I)]. From
Lemma 2 we may observe that a particular gauge which
uniquely determines the 4-potential as a very simple func-
tion of the electric field then has been chosen.

Result: Let ¢; and k; be given for j = 1, 2, and 3 such
that ¢,€P(V,,V ") and x,€V,, and

H ¢, =0andk, +«, + x,=0.

Assume that:

(i) To first order we may neglect 4, in comparison with
H,. Thus '

¥;(x;) exp (i, x) + c.c.
are normal modes.

(i} Any wave packet of normal modes with « close to k;
will, if an appropriate gauge is chosen, be proportional to
¥;(x;) (see Remark 3 below). Then

éx)= viA,(x,,)z//j(x,) exp (ik;-x) + c.c.

(2.11)

(2.12)

(2.13)

is approximately a solution of (2.1) provided the complex
amplitudes A4,(x, ) satisfy the mode coupling equation

[Vh <w3stw3> ]x: x\'th ? - (ws’hx“l/"z)A ’x’
= 21'(/‘()/@;)”2(1”, 5‘]»«" oKyt [wp %] >A|A: (214)

and the two equations obtained by permutating 1, 2, and 3.
The first V, in (2.14) acts on k¥, and the second on x, €V, .
We note some properties of the coefficients. The 4-vector
[V. (¥, H.4;) ], _ . is gauge invariant with respect to ;. It
is proportional to the group four velocity u eV, nS of wave
J- In a Lorentz frame L = (e ,e,e,,e;) we have the relation

e [ Vs <¢j’Hij>]KTKI :(50‘01)71"‘/jy {2.15)

where ; = — ceqk; is the frequency of wave j and
|4;(x, )| W, is the over V, integrated energy density of wave;.
The quantity (¢;, A, ¥;) is real and gauge invariant with
respect to; . It is proportional to the linear damping. Finally
(Y%, 8J, . [, ¥,]) is gauge invariant with respect to «,,
K,, OT k3 when considered as a function of ¥,, ¥,, or ¥,
respectively.

Proof: See Secs. 3 and 4.

Corollary 1: 1f D 7' = D ' for k = k|, k, and k; and
wave—particle interactions are neglected then [see corollary
1-2 ()] A, = O and (¥%, 8J, . [¥1, ¥,]) is independent of
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permutations of 1, 2, and 3. The Manley-Rowe relations are
then satisfied, i.e.,

(V. (¥, H ) ]x=xl'vh ‘Aj(xh)lz
is independent of j, je{1,2,3}.

Proof: The Manley—Rowe relations follows from (2.14)
and the two other equations obtained by permutations of 1,
2, and 3 if we make use of <¢p h,(l_zﬁj) = 0 and the symmetry
of the coupling coefficient.

Corollary 2: With the assumptions in the result we may
write (2.14) in a Lorentz frame L (eg,e ,e,,¢,) as

(L4 v Lty Blem = S22V (3,124,
: (2.17)

We define cte, + r = x,,, (w/cle, + k=« forj=12,and 3

(2.16)

w, =eoa)j(§5<¢j,ﬂij))m, (2.18)
d a

= — | —(¢. N — (¢, . .19

vy = = (et o) 2t B)) 219

¥, = €0, (¥, hxle)Wj‘ L (2.20)

VEL= — 2 W, D). 221)

Proof: Corollary 2 follows in a straightfoward way from
the result.

Remark 2: By assumption (i) in the result the first-order
linear wave spectrum is determined by an essentially Hermi-
tian operator. This is of course an important simplification
due to the nice properties of such operators. The assumption
is essential for the derivation of (2.14).

Remark 3: Assumption (i1} in the result is easily seen to
be equivalent to (a) and (b) in the end of the Introduction.
Without (a) a pure three-wave interaction process is no long-
er possible since also modes on the other branches would be
excited. In the case of many such modes this may be a fast
randomization mechanism.’

3. ACOROLLARY OF RESULT 1 IN REFERENCE 5

In order to prove the gauge invariance of the coeffi-
cientsin (2.14) we need (for m = 1 and 2) the following corol-
lary of Result 1 in Ref. 4.

Corollary 3: (a) The quantity

quo(x)-aﬂm’ (6116, 1(x)dx, (3.1)

appearing in Ref. 4 in (3.1) and (3.2), is gauge invariant in ¢,
forj=0,1,...m.

(b) 8 [1, ¢s....0,, | is gauge invariant in ¢, for
ji=1..m.

() VpbT " [d),...0,,]=0 (3.2)

Proof: In (a) we need to prove that if Vy Ad, =V, Ad/
for j = 0,...,m then a substitution of ¢ | instead of ¢, in (3.1)
does not change the value of the quantity (3.1). This follows
easily by the use of (4.22), (4.23), and (4.25) (in Ref. §)in (3.1)~
{3.3) (Ref. 5). We directly obtain (b) from (a) so now only (c)
remains. From (a) we have

V. Ady= o:f(po(x)-aﬂm’ [G1 st (x)dx = 0. (3.3)
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Since V A (VB ) = O for any scalar function B (x) we
obtain from (3.3) that

IVEB (x):87 ™ [1,....6,, |(x)dx = O. (3.4)

By partial integration of (3.4) we easily see that (3.2) follows.

4. DERIVATION OF THE RESULT

The derivation of the result is divided in the following
steps:

(a) The gauge invariance of the coefficients in (2.14) is
proved.

{b) We prove that the imaginary parts of the coefficients
on the left hand side vanishes.

(c) Equation {2.14) is then derived. Due to (a} above it is
now sufficient to consider the case when
Y,y ,€P, (V,, V ), where L is some Lorentz frame.

(d) We show that [V, (¢;, H,¥;) ], _, is proportional
to the group four velocity '

(e) We demonstrate that the wave energy density inte-
grated over ¥, and with respect to a Lorentz frame
L = (eg,e,e2.€;) is equal to |4,(x, )|* W, where W, is given by
(2.18]. From this (2.15) follows.

Proof of (a): First we demonstrate the gauge invariance
of (¢, H ¢), i.e, for o, ¢'cP(V,, V ) we want to show the
implication

V. AU =V A= Hop) = (W, HY). (4.1)
From remark 8(I) and (2.7) (which is valid for ¢,,
Y,eP(V,, V' *)) we easily obtain

WnH ) = (H i) (4.2)
It follows from Corollary 3(b) that H, v is gauge invariant
with respect tok. If V, Ay =V, Ay’ we now obtain

(¢vHx ’/’) = (¢’HK 'V) = (Hx I/MP') = (Hx ¢'»¢’>

= (Y H.'). (4.3)
We have now derived (4.1). The formulas (4.1j—(4.3) remains
valid if we replace H with h and now the gauge invariance of
the coefficients on the left-hand side in (2.14) follows. In the
right-hand side we must prove that (%, 8J, , [¥,,¥,]) isa
gauge invariant function of ¢,, ¢,, and ¢, with respect to «,,
K4, and &, respectively. The statement conserning ¥, and ¢,
follows easily from Corollary 3 (b}. In order to prove it for ¢,

it is sufficient to demonstrate that the implication
{WeP(V,, V™))

Ve AN =0=(y* 6, [3.]) = 0. (4.4)

However, V, Ay = Oimplies the existence of a unique com-
plexvalued function 4 (x,) such that

VA (x)=1dx,). (4.5)

(Proof: Write ¥ = ¢, + ¢, in accordance with defini-
tion 2(a) (I). Observe that V,_ Ay = 0 is equivalent the three
relations (1): ik; A, =0, (2): V, Ay, =0 and
(3)iks AN, + YV, Ay, = 0. By means of (1) we have «, paral-
lel to ¥, and we define a complex valued function 4 (x;) by
¥, = idk,. By inserting this expression in (3) we obtain
K3\ (W, — V,4) =0 which implies ¢, = V,4. Then also (2)
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is satisfied and the existence and uniqueness of 4 have been
proved.} By substitution of (4.5) in (4.4), by partial integra-
tion and the use of x; = — (x| + &) we obtain

<(VK\A )*,8-];(,%: [¢'l’¢'2]> = - f Av,(1 + &, '5.],‘.",(3 [wl,Lbz]dxi,

From corollary 3(c) we easily obtain (4.6
V»c, + Ky '5‘,;(, + K, W’M/’z] =0. (47)
Now (4.4) follows from (4.6) and (4.7).

Proofof b ): TakexeV, and ¢eP(V;, V ). According to

Lemma 2 there exist a yeP, (V;, ¥ 7) such that

V. Ay =V, Ay. Dueto (a) above we have

(GH.Y) = (x. Hoy) = (. 1. °H, x). (4.8)

The last term in (4.8) is real since /7, °H, is Hermitian.
The reality of (¢, 4,3} is proved in the same way and (b)
follows easily.

Proofof (c): Take ¢, 1,, and 5 in P, (V;, V' +). We use
the symbol O (€") to denote any quantity of order " or small-
er, where € is a small parameter. We assume that

A4;,=0le), ¢;=0(1), Ak=0(), H =0(l)
h, =O(€)(j=1,2,3), (4.9)
where Ax is the width in & space of the wave packets.

Fourier transformation of (2.13) with respect to V,,
yields ,

¢" = Z(Aj" "',wj + (A/* )K+x,¢j*) + 0(62)’

j=1

(4.10)

where A, , #0only fork — k; = O(€). Fork — 3, = O (¢
we have
(YuH, +ih )b ) = (Y, [H,, + K — &}V, H,),
+ih, +0(€)]8,). (4.11)
Since ¢,eP (V;, V ") and /I, °H, is Hermitian and
(2.11) we obtain (¢, H, (...)) = 0. Thus
(UslH, + i), ) = (U3, [k — k3 (V, H. ), _,
+ ih,, + O(€)]4,).
We now substitute (4.10) in (4.12)
(UslH, + ih)d) = [k — &)}V, (s H Y3)) o,
+ i, B ¥3) M5, + O(€) (4.13)

From (4.13) we then obtain by the inverse Fourier trans-
form [see (3.22) (I)]

(2m) " f o O, + )6, expils — k) xde
= — iV, (¢3»Hx ‘/’3) Je— Py -V, As(x,)
+ iy b ) Asx,) + O(E). (4.14)

Now substitute in (4.14) the right-hand side of (2.2) in
place of (H, + ih, )$,. We get

(4.12)

(2m) - "’f W= b/ o)
K=, + Ole)

XJ; 6JK',K~ I [¢K'J ¢K — K ]dK’>

X exp ik — x3)xdi = — 2uy/€,)'"?

XAy 6 o [UF vE]DATAS. (4.15)
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Now (2.14) follows from (2.2), (2.3), (4.14), and (4.15).
Proofof(d ): Let us consider wave 3. We deal below with
« satisfying « = «, + O (€). According to (a) above we may
assume that ¢,eP; (V,, V). Let A, (x) be continuous in «
and an eigenvalue of the Hermitian operator /7, cH,_ and
satisfying A, (x,} = 0. We denote the corresponding eigen-
vectors Y (k). Then according to assumption (ii) in the result
the plasma have only one branch of normal modes for « close
to ; (see Remark 3). Thus A4, (k) is uniquely determined by
the requirements above. The eigenvector y («;) is proportion-
al to ¢, and we normalize so that y (x;) = ¥,. The dispersion
relation of mode 3 is A, («) = 0. The ordinary group velocity
in frame L is — [[94, (k)/IKk])/[0A,(k)/dw]], . ., where
k = |(w/c)e, + k. Thus the group 4-velocity u, eSnV), is pro-
portional to (V, 4, (k). — ... Now, if
(s, Hothy) = A, ()3, &) + O (€)) (4.16)
then it follows that u,_is proportional to (V,, (5, H, ¥3)), _ .
as we want to show. In order to prove (4.16) observe that
(¢s, HO(1)) = Ole), (4.17)
(O(1), 11, °H, (¢3)) = O e). (4.18)
The relations (4.17) and (4.18) follows from
,€P, (V,, V' ), the Hermitian property of /I, oH, and
H, i, =0.From (4.17), (4.18), and y (x) = ¢, + O (€) we ob-
tain

(y k), H, x(K) = (s, H.tb3) + O(€). (4.19)
We also have
(x (k) H, ylr)) = A, (k) xlx), ()
= A, &), ¥3) + O(€), (4.20)

where A, (k) = O (€} is used. The relations (4.19) and (4.20)
gives (4.16).

Proof of (e): The wave energy in a lossless medium is
equal to the work required from external sources to generate
the wave. In an almost lossless plasma, like the one we con-
sider [assumption (i) in the result], it is reasonable to define
the wave energy as the work required to generate the wave
when dissipation is neglected. We want to calculate the
overV, integrated wave energy density W, of the normal
mode

&a(x) = ¥ exp (ik3-x) + c.c. (4.21)

The wave energy is defined with respect to some Lorentz
frame L. In accordance with the discussion above we calcu-
late W, as follows. Take ¢ (x) so that ¢ (x) approaches ¢(x)
towards the future and vanishes towards the past. Let J,,,, (x)
be the 4-current that linearily produces ¢ (x) if dissipation is
neglected, i.e., [see (2.1) and Remark 8 (I)]

ViV A) + (uo/€)' 2767 (¢ 1+ 87" 1)
= — (/€)' T eu- (4.22)
Let E be the electric field due to ¢ and J,, the external

current in the frame L = (e,,e,,¢,,6,). Take W as the energy
density which is related to ¢ as W is to ¢,. Then we have

Wit)y= — f E(x)dJ,, (x)dx;, (4.23)

v,
where t = — ¢ 'e,-x and the line above the integral denotes
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that variations in ¥, on the scale exp ix;-x have been aver-
aged away. We obtain

Wy=W(w)= — f dt LE(x)-Jex,(x)dxi. (4.24)

Let a(t ) be a slowly growing function with a( — «o) =0and
i

a(t ) (x) = (2m) ™" f [a( — @,)¥ix;) exp (ikyT)
+ alw + o3)P*(x,) exp — (Kkyr)]e  “do.

a{x) = 1. We then take

é (x} = alt )ds(x). (4.25)
The 4-current J,,, is determined by (4.22). Let a(w) denote
the Fourier transform of a{t }. We assume that 2(w)3 0 only
for a sufficiently small w. We have

(4.26)

From (4.22), (4.26}, (2.4), and Remark 8 {I} we obtain (for typographical reasons we write H, [¢] = H [«,¥])

2m)~ 'f{a(w — w;3)H [(w/c)ey + K383 ](x; Jexp ikyx + alw + w,y)H [(@/cleg — Ky, th:*1(x,) exp i{ — kyx)}e™'dw

= - (iufo/é-o)l/z‘]ext'

We may choose ¢,€P, (V;, ¥ *) and then by Lemma 2

E(x) = a(t )ilw/c)(¥5x;) exp (ikyx) — c.c.).

We now substitute (4.27) and (4.28) in (4.24)

(4.27)

(4.28)

W, = ilw/cle/ 1) 2m) ™" J " dt[dw alt)] — (H [(w/cles — ks, ¥3])

— o

Xalw + w,) exp il — @3 — @)t + (¢ H [{w/cle; + ks, ¥3]1)alw — @ylexp dw; — w)t |.

(4.29)

In the first term of the integrand in (4.29) only  close to w; will contribute (for only then a(@ + «,)#0) to the integral and

in the second term only w close to w; will contribute.

We accordingly may approximate the integrand by linear terms in (@ + @5} and (@ — w;}. We also use

(¥*, H [(w/cle, — ks, ¥%]) = (¢35, H [ — (@/c)ey + ks, ¥31)

and then we obtain from (4.29)

(4.30)

W, = wo}[ b%ws,ﬂ [w/cley + Ky %D]w: f _:dr alt 2y~ j dow

| — i@ + ws)al@ + @) exp( — @ + ws)t) — il0 — @s)alew — ;) exp (— flw — wy)t)].

Thew integralin (4.31)is equal to 2a’(¢ ) and for the ¢ -integral
we then obtain

r dta(t2a'(t)dt =a(o) —a( — )P =1.  (4.32)

5. SUMMARY

The main result of this paper are the coupled mode
equations in the form (2.14} or in “standards” form (2.17).
Explicit expressions for the coefficients may be found in part
I of this paper. In corollary 1 we see how the symmetries
considered in part I leads to the Manley—~Rowe relations. As
have been stressed in the Introduction and in the Result
there are, for an inhomogeneous plasma, additional condi-
tions for these coupled mode equations to be valid (see also
remark 2). There are, however no specific restrictions on the
geometry of the plasma and the formulas may still be used
for a great variety of situations. We finally remark that this
part IT has been written in a model independent way only
requiring knowledge of the response operators and the re-
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(4.31)

sults may thus be useful also for fluid and/or collisional
plasmas.

Note added in proof: The Lorentz frames
L = (ey,e,,e,,e;) of interest in this paper have the property
thate,,....e,, _ €V, whilee,,,....e4€V,, where m is the dimen-
sion of V,,. This property of L has implicitly been assumed in
some derivations above.
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