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A classification of all the Clifford algebras is given in terms of Kronecker products of the 
quaternion and dihedral groups. The relationship to spinors in n dimensions is explicitly 
determined. We show that the real Clifford algebra in Minkowski spacetime is distinct from both 
the algebra of Dirac matrices and the algebra of Majorana matrices, and cannot be realized by the 
spinor framework. The matrix representations of Clifford algebras are discussed, and are utilized 
to give a classification of the real forms of Lie algebras. Weare thus able to relate Clifford, Lie, and 
spinor algebras in an intrinsic geometrical setting. 

PACS numbers: 02.lO.Tq 

I. INTRODUCTION 

The apparatus of theoretical physics consists in large 
part of certain algebraic structures which arise naturally in 
the description of physical phenomena. The Clifford alge­
bras 1-4 appear to offer a framework for a unified setting of 
many of these algebras. (For various applications of Clifford 
algebras to physics, see references in Ref. 5.) 

In the past, we have recast the Clifford algebras in a 
form suitable for calculations and manipulations in physics, 
by using the basis of differential forms in a Riemannian 
space.s The advantage is that we were able to utilize the 
entire apparatus from the theory of differential forms (exteri­
or product, duality, and the geometrical interpretation) in 
addition to the useful manipulatory properties of the Clif­
ford algebras. Our classification of all Clifford algebras in­
cluded many of the algebras that have appeared in physics, 
and placed them in a useful geometrical setting.5 

The purpose of the present paper is to further the task 
begun in Ref. 5 towards providing a simple and unified alge­
braic framework for use in physics. First, we show how the 
Clifford algebras can be related in a very simple manner to 
Kronecker (tensor) products of the quaternion and dihedral 
groups. This provides a means of directly constructing the 
larger Clifford algebras, and obtaining relations between 
them. The Classification theorem (Theorem 5) gives the 
structure of all the Clifford algebras. The content of this 
theorem is given in an easily accessible manner in Tables I 
and II, which include, in particular, the relationship of Clif­
ford algebras to Riemannian spaces. 

Second, we relate some of the Clifford algebras to spin­
ors in n dimensions.6-8 What is important is that many Clif­
ford algebras cannot be related to the spinor framework 
(Theorem 6). An example is the quaternion algebra H. An­
other physically important example is the real Clifford alge­
bra in Minkowski spacetime A 1.3;::::; N4 [elsewhere called H (2) 
or M2(H)]. This algebra is distinct from both the algebra of 
Dirac matrices and the algebra of Majorana matrices (which 
we demonstrate here) and cannot be realized by the spinor 
framework. This point has not been discussed previously. 

Next, we determine the Lie algebra which corresponds 
to each Clifford algebra, in two distinct ways. First, we give 

the orthogonal Lie algebras SO(r,s) realized by the Clifford 
algebras via the Lie bracket (Table III). These algebras are in 
fact larger than the spin (n) algebras which are obtained from 
the usual spinor construction, and include spin (n) as a subal­
gebra. 

Second, we give the matrix representation space of each 
Clifford algebra, which in turn enables us to obtain the full 
matrix Lie algebra corresponding to each Clifford algebra 
(Theorem 9). The previously determined relationship to the 
orthogonal Lie algebras, along with this result, gives us a 
useful list of Lie algebra isomorphisms (Table IV). In addi­
tion, Theorem 9 combined with the Classification theorem 
(Theorem 5) determines the real forms SL(k;H) and SL(2k;lR) 
of the complex Lie algebra SL(2k;C). These last results, while 
not new, demonstrate the usefulness of the construction by 
the simplicity and ease with which they are obtained. 

. A novel feature of our discussion is the utilization of the 
abelian algebra n (elsewhere denoted lR GllR) in a key manner 
in the classification of Clifford algebras. The algebra n has 
properties akin to the complex field C, yet n is not a conven­
tional field. The properties of n were discussed in detail in 
Ref. 9. 

II. THE DIFFERENTIAL FORM REALIZATION OF 
CLIFFORD ALGEBRAS 

A Clifford algebra 1-4 is defined via the anticommuting 
bases, 

(1 ) 

We have previously joined the theory of Clifford alge­
bras to the theory of differential forms by identifying the 
basis ei with the basis one-forms dx i = a' of a fiat n-dimen­
sional Riemannian space.5 The metric of this space is gij 

= (d,ai ) and has diagonal entries either + lor - 1 (all off­
diagonal entries are zero). We can realize the product (1) in 
terms of the basis one-forms, the metric, and the Grass­
mann-Cartan exterior product 1\. (For the apparatus of dif­
ferential forms, see Ref. lO.) This realization is discussed at 
length in Ref. 5. The product was called the "vee product," 
and was denoted by v. For the basis one-forms the vee prod-
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uct obeys the following rules: 

a'va} = a i Aa}, i=/-j, 

a'va i = g'i (no sum). (2) 

By repeated application of the vee product, we can gen­
erate all the basis p forms. In particular, we single out the 
volume element 0)" = a l A ... A ~ = a l V··· V~, which is 
important in the following section. In each n-dimensional 
space there are 2" basis forms, all of which can be manipulat­
ed with the vee product. The vee product between a basis r 
form and a basis s form is given in two steps, as follows: (i) 
Identify the k indices that the two basis forms have in com­
mon, and permute them into canonical form (below), (ii) con­
tract between identical indices. 

This prescription gives the general definition of the vee 
product between two specific basis forms. 

Definition I: 

(ai, A .. , A ai')v(a)' A ... A a j
,) 

= ( - 1 r'( - 1 r'(a"" A .. , A a"" 'A a'" A ... A a"'), 

v(a'" A··· Aa
v

, Ad"' A .. , Ad"' ') 
= ( - 1r'( - 1 rg",V' ... gV'"'a''' , A .. · A a"" 'A el" A .. , Ad"' k 

(3) 

Here the factors of ( - 1) 1T, and ( - 1) 1T. arise, respective­
ly, from the permutations 

ik + l ... i r ) 

VI'''Vk ' 
(4a) 

jk+I"1, ). 

/11"'/1, -- k 

(4b) 

The crucial difference between the vee product and the 
well-known exterior product is that the vee product of two 
forms is always another form, whereas the exterior product 
of two forms is zero if the sum of their ranks exceeds the 
dimension of the space. Another important property is the 
existence of a unique inverse in vee: every basis form has an 
inverse equal to the form itself up to a sign. 

These properties demonstrate that the set of all basis 
forms define a finite group under the vee-product, called the 
"vee group" of that particular Riemannian space.s We have 
shown that the group algebra over JR of each "vee" group is 
isomorphic (modulo Z2) to the real Clifford algebra corre­
sponding to that space:' 

The Z2 grading is due to the following observation. In 
the finite vee group, one must consider positive and negative 
basis forms as distinct elements, while in the corresponding 
group algebra over JR, the distinction between positive and 
negative bases is not made. The group algebra must therefore 
be divided by the group of two elements [1, - 1] ::::;Z2' 

The elements of the Clifford algebra in this realization 
are anti symmetric tensor fields expanded on the basis p 
forms, or equivalently, linear combinations of the p forms. 
These possess algebraic properties above and beyond those 
expected from the usual exterior algebra, in particular the 
possibility of division, since the basis is endowed with the vee 
product. The vee product between the basis (2,3) gives a set of 
rules for the product of the field components. This product 
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has been previously discussed in Ref. S and is not needed in 
the present analysis. 

Ill. THE VEE·GROUP STRUCTURE 

In this section, we give a construction of the vee group 
of differential forms G" in each n-dimensional Riemannian 
space by using group-theoretical methods. 

We first recall some results from Refs. 1,4, and S. 
In the vee multiplication, the volume element 0)" anti­

commutes with all the forms in G " when n = even, and com­
mutes when n = odd. Hence, the center of each group will 
contain the elements [ 1, - 1] for n = even, and [ I, - 1,0)", 
- 0)" 1 when n = odd. The actual groups defined by the cor-

responding centers depend upon whether (O)"f = + 1 or 
- I, which is in turn determined by the signature and di­

mension of the metric in each case. The center of each group 
of forms is given by the following theorem. 5 Here, Z2 is the 
cyclic group of order 2; Z4 is the cyclic group of order 4, 
isomorphic to the complex group; and D2 is the dihedral 
group of order 4, isomorphic to the Gauss-Klein Veer­
gruppe Z2 ® Z2' 

Theorem 1: The center of the vee group G" is isomor­
phic to the finite group Z2' when n = even; Z4' when 
n = odd and (0),,)2 = - 1; and Z2 ®Z2 = D2 when n = odd 
and (O)'f = + 1. 

Using Theorem 1, we gave in Ref. S a key result of the 
group structure as the following theorem: 

Theorem 2: The factor group G" modulo the center of 
G ", is the abelian group (Z2t = Z2 ® .. , ® Z2 (n times); and is 
given by the three distinct cases: 

n = even, G "/Z2 = (Z2)" = (D2)"12, (Sa) 

n = odd, (0),,)2 = - I: G "/Z4 = (Z2)" - I = (D2)1" 1)/2 

(Sb) 

(Sc) 

We proceed to apply some general group-theoretical 
results to the construction of the vee groups. First, since the 
vee group G " is of order 2" + I, it is referred to as a "2-group" 
in the mathematical literature. II Second, Theorem 2 demon­
strates that the vee groups G" are "extra-special 2-groups," 
defined as follows 11 : 

Definition 2: G is an "extra-special 2-group" iff 
G /center (G) = abelian, and center (G) is a 2-group. 

We now recall a general theorem from the theory of 
group representations II: 

Theorem 3: Every extra-special p-group G is the Kron­
ecker product of nonabelian p groups of order p\ and so has 
order p2m + I for some m. 

In the special case of interest, p = 2 for the vee groups 
G ". There are only two nonisomorphic nonabelian vee 
groups of order 23 = 8, and they are the quaternion group Q4 
and the dihedral group of order 8, D4.5 

In Ref. S, Table IV, we gave the following result (as 
NI ®NI = N2 ®N2 )· 

(6) 

Hence, all mixed Kronecker products ofm copies of the 
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groups Q4 and D 4 will reduce to either (D 4t or Q4 ® (D 4t - I. 

Putting these results together, we obtain the corollary 
to the Frobenius-Schur theorem. 11.12 

Theorem 4: For any extra-special 2-group G of order 
22k + 1, 

G::::;(D4)k or G::::;Q4 ® (D4)k-l. 

Theorem 4 can be rewritten as a corollary after identify­
ing the extra-special 2-groups with the vee groups. From 
Theorems 1 and 2, Definition 1, and recalling the order of G n 

as 2n + I, we have the 
Corollary to Theorem 4: For any vee group G Z\ 
G Zk ::::;(D4)k or G Zk ::::;Q4®(D4t- I. (7) 

This corollary will be utilized in the next section to con-
struct all the Clifford algebra A p.q as the groups algebras of 
the vee groups. Previously we derived some relations be­
tween the vee groups which were listed in Table IV, Ref. 5. 
They in fact provided explicit proofs of special cases ofTheo­
rem 4 and its corollary. 

IV. CLASSIFICATION OF CLIFFORD ALGEBRAS 

The Ref. 5, we identified the Clifford algebras A p.q, cor­
responding to each Riemannian space M p.q, by direct con­
struction. [The notation used in the following: the metric of 
the space M p.q contains p plus ones and q minus ones on the 
diagonal, zeros elsewhere, and it is used in the definition of 
the vee product (2,3). The dimension of the space is 
n = p + q.] 

The most remarkable result of the construction is the 
demonstration that certain algebras of the same dimension 
but distinct signature are in fact isomorphic. These isomor­
phisms prompted the notation for the Clifford algebras in­
troduced in Ref. 5, and which is discussed below. In this 
section, we show how these isomorphisms are a direct conse­
quence of the Frobenius-Schur theorem. '2 This appears to 
be the first simple explanation of this fundamental property 
of the Clifford algebras. 

A novel feature of our discussion is the utilization of the 
abelian algebra n in a key manner. n is isomorphic to the 
Clifford algebra A '.0 which is generated by a basis one-form 
w with the property that wvw = + l. Every element aEn is 
of the form a = x + wy; X,YEJR. It is easy to see the similarity 
to complex algebra C, which is itself isomorphic to the Clif­
ford algebra A 0,'. A detailed discussion of the properties of 
n, as well as the reason why n is not a conventional field, 
was given in Ref. 9. 

We present below as Theorem 5, the construction and 
classification of all the Clifford algebras. The notation is as 
follows: N2 = H is the familiar quaternion algebra and N, is 
an algebra with three anticommuting elements whose 
squares are + 1, + 1, - 1, respectively. '3 N, [elsewhere 
denoted JR(2) or Mz(JR)] is isomorphic to the group algebra 
(Zz-graded) of the dihedral group D 4.

5 Finally note that the 
definition of the algebras Ns and Nn given in Ref. 5 has been 
interchanged. 

Theorem 5: 
(a) The Clifford algebras are constructed from the real 

algebras with three anticommuting elements NI and N z = H 
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(which are of dimension 4), and from the abelian algebras n 
and C (which are of dimension 2). 

(b) There are only two nonisomorphic algebras of di­
mension 22k. They are labelled as N m' m = odd or even, and 
they are obtained as Kronecker products of the algebras NI 
and N z = H as follows: 

(8a) 

and 

(8b) 

(c) There are only three non isomorphic algebras of di­
mension 2Zk 

+ I. They are labelled as Sk' k = integer, and 
flm' m = odd or even, and are given by the Kroenecker 
product of the N algebras with nand c. 

Sk =NZk ®C::::;N2k _ 1 ®C, 

fl2k _ I = NZk _ 1 ® n, 
(9a) 

(9b) 

flZk = N2k ® n. (9c) 

(d) The identification of the Clifford algebras with each 
Riemannian space is given by their position in Table I. The 
table can be indefinitely extended downwards for the Sk al­
gebras with k = integer, and for the N m and flm algebras, 
with m = odd or even. 

(e) The periodicity of the Clifford algebras is generated 
by N 4 , the Clifford algebra in Minkowski spacetime. 

The proof of Theorem 5 will be indicated here: part (b) 
follows from translating the corollary to Theorem 4 [Eq. (7)] 
froin the vee groups to the Clifford algebras; part (c) com­
bines results first obtained in Refs. 9 and 14, which essential­
ly follow from Theorem 1 of this paper; part (d) is an exten­
sion of the results of Ref. 5; part (e) is intrinsically related to 
the Bott periodicity,3 and can be graphically deduced from 
Table I. 

There is a large amount of information contained in this 
theorem, which we proceed to discuss in stages. First, we 
indicate which of the Clifford algebras are otherwise known 
in physics. 

Of the N algebras, N, is related to the elementary (real) 
spinors, 13 while N2 is isomorphic to the quaternion algebra 
B.S

.
13 N3 was first realized by the 4X4 real matrices ofMa­

jorana. 5.14 N4 is isomorphic to the Clifford algebra in Min­
kowski spacetime, which has been discussed in Ref. 5 and 
14-16. 

Of the S algebras, SI is isomorphic to the algebra of 
Pauli matrices,5.13 while Sz is isomorphic to the algebra of 
Dirac matrices. 5.14 These two algebras are related to the 
complex spinors of dimension 2 and 4, respectively, as is well 
known (see Sec. 5). 

Of the fl algebras, only one has been given an explicit 
realization: flz (elsewhere denoted He H) is isomorphic to 
the "biquaternions" of Clifford. 9 

We note that the N, S, and fl algebras are frequently 
referred to in terms of their matrix representation space. 
This is discussed in Sec. 7 of this paper. Theorem 8 [Eq. (19)] 
can be used to relate the matrix notation of the Clifford alge­
bras to the one discussed here. 

The Clifford algebra corresponding to a Riemannian 
space can be found from its position on the triangular grid of 
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TABLE l. Classification of Clifford algebras in each Riemannian space. 

Dimension of Algebra 

16 

32 

64 

128 

256 

512 

1024 

Table I. The coordinates of the grid (p,q) correspond to the 
metric of the Riemannian space M M; each row has the same 
dimension n = p + q, and the entries are ordered from left to 
right as (p = n, q = 0), (p = n - 1, q = 1), ... , (p = 0, q = n). 

To give a specific example, the algebra A 2.2 is defined by 
the anticommutation relation [0" ,(Tv 1 = 2?!,", /-L, v = 1, ... ,4, 
with the metric?!'I' = diagonal ( + 1, + 1, - 1, - 1). A 2.2 is 
related to a Riemannian space of dimension n = 4, and is an 
algebra of dimension 24 = 16. The entries on the n = 4 line 
of Table I correspond to the algebrasA 4.0,A J·t,A 2.2,A I·J,and 
A 0,4, respectively. Hence, the Clifford algebra A 2.2 corre­
sponds to N3, which happens to be isomorphic to the algebra 
of the Majorana matrices.5 

As an example of the isomorphism between algebras of 
the same dimension but distinct metric, the Clifford algebras 
of dimension 32 are given in Table I, row n = 5, as 

A ~.0::::;114' A 4.\ ::::;S2' A 3.2::::;113, 

A 2.3::::;S2' A \.4::::;114' A O.5::::;S2' (10) 

From (10) we have the result that the Clifford algebras 
A 4.1, A 2.3, and A 0.5 are all isomorphic to the Dirac algebra 
S2=D. 

A remark is necessary on the nature of the Clifford alge­
bra isomorphisms. In the differential form realization, the 
elements of each Clifford algebra are antisymmetric tensor 
fields, or linear combinations thereof. A sharp distinction is 
made between tensor fields of distinct rank, because of the 
geometry. Hence each Clifford algebra A P.q is geometrically 
distinct, for each distinct space MM. However, when one 
ignores the geometrical construction (i.e., when one has an 
abstract or matrix representation), one can distinguish alge­
bras only if their underlying vee-groups are distinct. The 
Clifford algebras that are algebraically distinct are in fact 
those given by Theorem 5. One should therefore always keep 
in mind that the concept of an isomorphism is an algebraic 
one and not a geometrical one. 

Theorem 5 gives relations which have direct physical 
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Dimension of Riemann Space 

10 

relevance. For example, it clears up the old question con­
cerning the relationship of the Dirac algebra to the spaces 
with metric ( + 1, + 1, + 1, - 1) and ( - 1, - 1, - 1, + 1). 
From Table I, row n = 4, we identify the algebras corre­
sponding to these two metrics as A 3.\ ::::; N3 and A 1.3::::; N4 , re­
spectively. Hence the different metrics give rise to two dis­
tinct algebras. N3 is isomorphic to algebra of the Majorana 
matrices, while N4 is isomorphic to the Clifford algebra in 
Minkowski spacetime. The Dirac algebra D = S2 appears 
only on the row n = 5 of Table I, and therefore corresponds 
to a Clifford algebra in five dimensions. This surprising re­
sult can be explained by Theorem 5. Equation (9a) for k = 2 
gives the relation S2 = N4 ® C ::::;N3 ® C. Hence, the Dirac al­
gebra is isomorphic to the complexification of the real Clif­
ford algebra in Minkowski spacetime N 4 , or equivalently, to 
the complexification of the algebra of the real Majorana ma­
trices N 3. \4 Since field theory usually involves complex 
quantities, the above distinction is not noticed in actual prac­
tice. When one deals with real spinor fields, however, the 
difference is crucial (see also the following section). 

The structural properties of the Clifford algebras are 
summarized in Table II, where we have listed the distinct 

TABLE II. Structure of the Clifford algebras in terms of finite groups. 

Dimension of 
Dimension of Corresponding corresponding 
algebra Algebra vee group Riemann space 

I lit Z, 0 
2 n D,=Z,®Z, 

c Z. 
22k N'k I (D.)k 2k 
(k = 1,2,3 ... ) N'k Q.®(D.)k-1 
22k I I Sk Z. ® (D,), 2k + I 

il" I Z2®(D.)k 

il2k Z, ® Q. ® (D.)k - I 
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Clifford algebras in each dimension, along with the corre­
sponding vee groups. Once an algebra has been identified 
from Table I, one can obtain its underlying group structure 
from Table II. 

We note that in previous treatments, the abelian algebra 
n was not utilized in the same capacity as the complex field 
C. Instead, the vector space isomorphism n = R EB R was 
employed to give the n algebras as Nk EB Nk instead of Nk 
® n = Nk EB wNk •

9 While the identification Nk EB Nk is cor­
rect in the matrix representation space,3.4 it should not be 
used in the present discussion, as it conceals the vee-group 
structure of the algebra n (see discussion in Ref. 9). 

The connection to other work3.4 is made by noting that 
Theorem 5 implies the following recursion relations ob­
tained by iterating Eq. (8), and using Eq. (6). 

N 2k _ 1 ®N2'ZN2k ®N1'ZN2k +2, (lIa) 
(k>I) 

N2k_I®NI'ZN2k®N2'ZN2k+I' (Ub) 

Specific cases of these relations were derived in Ref. 5 
(Table IV), by direct calculation. 

WiththeidentificationA 2.°'ZN,andA 0.2'ZNz = H(Ta­
ble I), and the application oft lla) and (11 b) and (9a), (9b), and 
(9c) to the edges of Table I, we can verify the following rela­
tions for compact spaces. 

A O.n ®A 2'0'ZA n + 2.0, 

A n.O ® A 0.2 'ZA O.N + 2. 

(12a) 

(12b) 

These relations were used as a starting point for the 
construction of Clifford algebras in Ref. 3. 

V. SPINORS AND SPIN ALGEBRAS 

In this section, we show how spinors in n dimensions 
are related to some of the Clifford algebras. The main result 
is the demonstration that there exist Clifford algebras which 
cannot be directly related to the spinor formalism; among 
them is the real Clifford algebra in Minkowski spacetimeN4. 

A second result is that even in those cases where Clif­
ford algebras are related to spinors, we can realize a related 
Lie algebra that is in fact larger than that obtained by the 
usual spinor methods. This has the practical consequence 
that we can derive isomorphisms between Lie algebras useful 
in physics in a very simple manner (Table IV). 

We have explicitly shown the relationship between the 
elementary (real two-component) spinors t/J and the Clifford 
algebra N, in Ref. 13. This relationship can be written as 

(13) 

Spinors are objects in matrix representation space. The 
demonstration of relation (13) in Ref. 13. was given in the 
representation space of N

" 
which is R(2) (2X2 real matri­

ces). We can, however, utilize the group theoretical results of 
this paper in order to discuss spinors in n dimensions with­
out having to enter the representation space of the Clifford 
algebras. (This will be done in turn in the following section 
after we have given the representation space of the Clifford 
algebras.) 

Spinors in n dimensions are constructed from Kron­
ecker products of the elementary spinors t/J as follows2,6-8: 

t/J1=t/J; t/JN = (t/J)n= t/J® .•. ®t/J, n times. (14) 
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The complex spinors are obtained by complexifying the 
spinor field. In order to distinguish between real and com­
plex spinors in n dimensions, we will occasionally specify the 
field, as t/Jn(R) or t/Jn(C). 

Definition 3: t/Jn(C) = t/Jn(R) ® C. (15) 
The relationship of the Clifford algebras to spinors in n 

dimensions is given by the following theorem. 
Theorem 6: 
(a) The real spinors in 2k dimensions are related to the 

odd N algebras as 

t/Jk(R)+-+N2k _ l • (16a) 

(b) The complex spinors in 2k dimensions are related to 
the S algebras as 

t/Jk (C)+-+Sk' (16b) 

The proof of Theorem 6 is obtained from Theorem 5 
and relationships (13)-(15). A few comments are in order. 

Most important is the fact that the algebras Neven and n 
cannot be related to the spinor formalism. This includes the 
Clifford algebra in Minkowski spacetime, A 1.3'ZN4 • 

The dimension of the spin or space corresponds to the 
dimension of the corresponding Riemann space in the real 
case (Table II); in the complex case the spinors are consid­
ered over the field C, hence the dimension is one less than the 
corresponding Riemann space. 

Our result differs in a significant way from other work 
in that we were able to maintain a clear distinction between 
the real and complex algebras and spinors. This is not always 
possible using the traditional spinor methods. Consider for 
example the construction of the Dirac spinors t/J2(C) (related 
to the Dirac algebra D = Sz) as the Kronecker product of 
two copies of the Pauli spinors t/JI(C) (related to the Pauli 
algebra SI by Theorem 6). From Eq. (14) the relation is 

t/JI(C) ® t/JI(C) = t/JZ(C). (17) 

. It is clear that the analogous construction for real spin­
ors gives the Majorana spinors t/JZ(R) (which are related to the 
Majorana algebra N3 by Theorem 6). The relation for the real 
case is 

(18) 

It is therefore impossible to obtain spinors correspond­
ing to the real Clifford algebra in Minkowski spacetime N~; 
we can only obtain their complexification, which by Eq. (9~~) 
and (15) are the Dirac spinors. Furthermore, the algebras N,\ 
and N4 do not have the same properties; for instance, we 
show below that the corresponding Lie algebras are distinct 
(Table III) (see also the discussion in Ref. 14). 

We can now discuss the relation between spinors in n 
dimensions and Clifford algebras by constructing the associ­
ated Lie algebras. From the spinors, we construct the "spin" 
Lie algebras spin (n), which are locally isomorphic to SO(n). 
Globally, spin (n) provides the double covering ofSO(n). The 
relationship to the Clifford algebras is given by the following 
theorem. 

Theorem 7: 
(a) The two-forms of the Clifford algebra A p.q corre­

sponding to the Riemann space M p.q provide a representa-
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tion of the Lie algebra spin (p,q)~SO(p,q), via the Lie 
bracket. 

(b) The (inner) automorphism group of the tensor fields 
in the Riemannian space M p.q is the Lie group correspond­
ing to the Lie algebra SO(p,q). This is known as the "Clifford 
group of automorphisms." 

Parts (a) and (b) are separately well known. 17,18 

We have previously drawn attention to the fact that one 
can include all the differential form basis of a Clifford alge­
bra A p,q in realizing a Lie algebra via the Lie bracket, and not 
just the two-forms. This was done in Ref. 5, where we deter­
mined the Lie algebras corresponding to each Clifford alge­
bra. It is obvious that the Lie algebra obtained by including 
all the basis forms must necessarily be larger than the Lie 
algebra given by Theorem 7, and must include the Lie alge­
bra of Theorem 7 as a subalgebra. 

These have been directly constructed in Ref. 5 by com­
puting the Killing-Cartan form of the enveloped rotation 
group, The results for the first few algebras, which are of 
interest in physics, are listed in Table III. For comparison, 
we have also listed the Lie algebras given by Theorem 7. 

Because the Lie algebras corresponding to the Clifford 
algebras are topological, they are better described in terms of 
the matrix representation space. This has been done in the 
following section [Theorem 9, Eq. (23)]. 

We remark moreover on why the full rotation algebras 
of Table III have not been singled out previously. The reason 
for this is that in the usual spinor construction, one is natu­
rally led to the group of automorphisms, hence to Theorem 
7. Second, the matrix representations of the automorphism 
algebras in fact exhaust the representation space and one 
cannot represent the larger full algebras in the same space. 
We have been able to construct the full algebras in Table III 
only by utilizing the differential forms basis (see Ref. 5). 

VI. MATRIX REPRESENTATIONS AND LIE ALGEBRAS 

In this section we give the matrix representation space 
of each Clifford algebra. This makes possible an alternative 
discussion on the relationship between spinors in n dimen­
sions and Clifford algebras. We next determine the Lie alge­
bra associated with each Clifford algebra, and derive some 

TABLE III. Rotation algebras represented by Clifford algebras. 

Lie algebra from full Lie algebra from 
Riemann space Clifford algebra two-forms only 

MO,o SOI2,1) SOI2) 
M'" SOII,2) SOII,I) 
MO.o SOI0,3) SOI0,2) 

M 3,o SO(3,I) SOI3) 
M'" SOI2,2) SOI2,1) 
M"o SOIl,3) SOII,2) 
MO.' SOIO,4) SOIO,3) 

M 4 ,o SOI5,1) SOI4) 
M'" S013,3) SOI3,1) 
M O,' S013,3) SOI2,2) 
M'" SOil,S) SOl 1.3) 
M°,4 SOil,S) SOIO,4) 
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useful isomorphisms. In particular, we show how the results 
of this paper can be utilized to give the real forms of certain 
Lie algebras. 

The matrix representation space of the Clifford alge­
bras has been determined in the classic paper of Atiyah, Bott, 
and Shapiro,3 which we recall here. Let IF(k) [also denoted as 
Mk (IF)], be the k X k matrix with entries from the field IF. IF is 
either JR, C, fl, or H. Since fl is not a conventional field, we 
employ the vector space isomorphism fl ~ JR EB JR (see Ref. 9). 
The matrix representation space of the Clifford algebras is 
obtained by combining the results of Sec. IV with those of 
Ref. 3, and is given as follows. 

Theorem 8: The matrix representation space of each 
Clifford algebra is 

N2k _ I ~ JR(2k ), 

N2k ~H(k), 

Sk ~C(2k), 

{}2k _ I ~fl(2k )~JR(2k) EB JR(2k), 

{}2k ~(fl ®H)(k )~H(k) EBH(k). 

(19a) 

(19b) 

(19c) 

(19d) 

(Ige) 

These are the irreducible representations. For calcula­
tional purposes, we can obtain reducible representations in 
terms of the familiar real and complex matrix algebras JR(n) 
andC(n),forthecasesH (k ),fl(k ),andfl ®H(k), by recalling 
the well-known inclusion relations 

H(k)CC(2k) (20a) 

and 

fl(k) ~JR(k) EB JR(k) C JR(2k). (20b) 

Hence, for cases (19b), (19d), and (1ge) we have from identi­
ties (20a), and (20b) reducible representations for the 
following: 

N2k CC(2k), 

{}2k _ I CJR(4k), 

{}2k CC(4k). 

This analysis shows two things: 

(21a) 

(2Ib) 

(21c) 

(i) The only Clifford algebras with irreducible represen­
tations over JR and C are in fact those corresponding to spin­
ors in n dimensions, and 

(ii) if one constructs (as is traditionally done) matrix re­
presentations over JR and C, then one cannot distinguish be­
tween the following sets of algebras in representation space. 
(Recall that {}o = fl.) 

lN2k - I ;{}k-1 J, k = 1,2,3, ... 

I Sk ;N2k ;{}k J. 

TABLE IV, Isomorphisms among Lie algebras. 

SOI2,1)::: SLI2;1R) 
SOI3) :::SLII;H) 
SOI3,1):::SLI2;Cj 
SOI2,2)::: SLI2;1R) Ell SLI2;1R) 
SOI4) :::SLII;H)Ell SLII;H) 
SOI5,1):::SLI2;H) 
SOI3,3):::SLI4;1R) 

Nikos Salingaros 
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Since spinors are vectors in representation space, it is 
impossible to construct spinors corresponding to the cases 
(19b), (19d), and (1ge). This provides a demonstration of 
Theorem 6, in representation space. 

From Theorem 8, we can obtain the Lie algebra corre­
sponding to each Clifford algebra. We use the construction 
of the Lie algebra SL(k,lF) defined via the Lie bracket on the 
full matrix algebra IF(k) [or Mk (IF)]. The restriction to matri­
ces of unit determinant results in no loss of generality. The 
Lie algebras corresponding to the Clifford algebras are given 
by the following theorem. 

Theorem 9: The Lie algebra corresponding to every 
Clifford algebra of Table I is given as 

N2k _ 1 - SL(2k;R), 

N2k - SL(k;H), 

Sk -SL(2k;C), 

[J2k _ 1 -SL(2k;O);::::SL(2k;R) $ SL(2k;R), 

[J2k -SL(k;O ®H);::::SL(k;H) $ SL(k;H). (23) 

It is possible to relate the correspondence between Clif-
ford algebras and Lie algebras in representation space to the 
group-theoretical discussion of the previous section. By 
comparing the rotation algebras given separately in Table 
III with the Lie algebras given by Theorem 9, Eq. (23), we 
can give isomorphisms between the Lie algebras of small 
order. For each rotation algebra in Table III, identify the 
corresponding Clifford algebra in Table I, then find the Lie 
algebra from (23) to obtain the following well-known rela­
tions (Table IV). [Recall that SO(p,q);::::SO(q,p).] 

This result is given as an example of the utility and ap­
plication of the methods of this paper. We note that these 
relations (Table IV) cannot be obtained via the usual spinor 
methods. 

The above connection between Clifford and Lie alge­
bras makes possible yet another useful observation. All the 
structural relations for the Clifford algebras, Eq. (9) and (11), 
can be translated to give relations among the Lie algebras. 
For instance, Eq. (9a) with identification (23) gives 

SL(2k;C);:::: SL(k;H) ® C;:::: SL(2k;R) ® C. (24) 

This is precisely the determination of the two real forms 
SL(2k;R) and SL(k;H) of the complex Lie algebra SL(2k;C), 
as is well known. 19.20 

The recursion relations (11) translate into 

SL(2k;R) ® SL( I;H);:::: SL(k;H) ® SL(2;R);:::: SL(k + I;H), 

(25a) 

SL(2k;R) ® SL(2;R);:::: SL(k;H) ® SL( I;H);:::: SL(2k + 2;R). 

(25b) 

These recursion relations (25) can be used to obtain 
many useful structural identities for the Lie algebras. 

This demonstrates the utility of the construction given 
in this paper, since it enables us to obtain nontrivial results in 
a very simple manner. Conversely, our discussion indicates 
that the classic work of Cartan on the classification of com­
plex Lie algebras and their real forms in many ways antici­
pated later results on Clifford algebras. 
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VII. CONCLUSION 
In this paper, we gave a simple classification of all the 

Clifford algebras in terms of their underlying group struc­
ture (Tables I and II). An interesting result is that by con­
structing all the Clifford algebras over the real field R, we 
obtained the complex Clifford algebras in odd-dimensional 
Riemannian spaces. 

We then compared the Clifford algebras to spinors in n 
dimensions, and showed that two classes of Clifford algebras 
cannot be related to spinors. Among these is the real Clifford 
algebra in Minkowski spacetime A 1,3 ;::::N4 , which is distinct 
from both the algebra of Dirac matrices, and the algebra of 
Majorana matrices. This discussion showed how the Clif­
ford algebras provide a broader framework than the tradi­
tional spinor methods in the description of physical tensor 
fields. 

A discussion of the Lie algebras related to the Clifford 
algebras resulted in a very simple derivation of isomor­
phisms between some of the Lie algebras useful in physics 
(Tables III and IV). 

In conclusion, we believe that this paper has clarified 
the relationship between the algebraic frameworks on which 
much of physics is done. We have also provided a direct 
method for the utilization of the unfamiliar Clifford algebras 
in the construction of physical models. 
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The fourth-order indices for Lie algebras have been defined and studied by Patera, Sharp, and 
Winternitz. We show that it may be more convenient to modify the original definition and that the 
modified fourth-order indices are intimately related to eigenvalues of symmetrized fourth-order 
Casimir invariants. Explicit expressions for these quantities are given and we also find a quartic 
trace identity involving the generic element of these Lie algebras. We discuss the triality principle 
for the Lie algebra D 4 in connection with identical vanishing of the modified fourth-order index 
for this algebra. 

PACS numbers: 02.20.Sv 

1. INTRODUCTION AND SUMMARY OF MAIN RESULTS 

Let L be a simple Lie algebra over the complex field or 
more generally over any algebraically closed field of charac­
teristic zero. Let [ pi be a representation of L. The second­
order index of Dynkin I is then defined by 

(1.1) 

where the summation is over all weights M of the representa­
tion [ pi and (M,M) is the standard symmetric bilinear form" 
in the root space of L. The Dynkin index has many nice 
properties. Let [ PA 1 and [ P B I be two irreducible represen­
tations of L and decompose the product [ PA I ® [ P B 1 into a 
direct sum of N irreducible components as 

N 

[ PAl ® [ P B 1 = I $ [ Pi I· (1.2) 
i~1 

Then, 12( p) satisfies 
N 

d(PA )12(PB) + d(PB)12(PA) = II2(Pi)' (1.3) 
i~1 

Here, d ( p) designates the dimension of the irreducible repre­
sentation [ P I. Also, it has been noted in an earlier paper3 
which will hereafter be referred to as (I), that we have a qua­
dratic-sum rule 

where [ Po I hereafter designates the adjoint representation 
of L. 

Patera, Sharp, and Winternitz4 introduced notion of 
higher-order indices. In particular, the fourth-order index 
14( p) is defined by 

14(p) = I(M,Mf (1.5) 
M 

Then for the decomposition Eq. (1.2), they showed the valid­
ityof 

d(PA )14(PB) + d(PB)14(PA) + 2(n + 2) 12(PA )12(PB) 
n 

N 

= I I4(pj), 
n=l 

(1.6) 

where n is the rank of the simple Lie algebra L. Numerical 
values of 12( p) and 14( p) for many low-dimensional irreduci­
ble representations [ pi of any simple Lie algebras with rank 
less than eight have been tabulated by McKay and Patera.' 
Moreover, many interesting properties of these indices have 
recently been found by Patera and his coworkers.o 

We note the following. Defining the modified fourth­
order index ~( p) by 

~(p)=14(p)- (n+2)d(po) [12(P) _ J.. 12(PO)]12(p), 
n[d(po) + 2] d(p) 6 d(po) 

(1.7) 

Eqs. (1.3), (1.4), and (1.6) imply the validity of 
_ _ N _ 

d(PA)14(PB)+d(PB)14(PA) = II4(pj)' (1.8) 
i~1 

which shares the same simpler structure as Eq. (1.3) for 12( pl. 
Moreover, we can show that ~(p) is identically zero, i.e., 

~(p)=O ( 1.9) 

for any irreducible representation [ pi of all exceptional Lie 
algebras G2, F4 , E6 , E 7 , and Ex, as well as for A I' A 2, B 2 , and 
D 4' The validity of Eq. (1.9) for these algebras, except for B2 
and D 4' has been proved in I. As we shall see in Sec. 4, the 
validity for D4 is connected with the so-called triality princi­
ple7 in D4. These facts suggest that ~(p) rather than 14( p) 
may have the more basic properties. One purpose of this note 
is to show first that ~(p) is indeed intimately connected with 
fourth-order Casimir invariants of L and that higher order 
indices may also be defined in terms of suitable higher order 
Casimir invariants. Moreover, we will generalize the quartic 
trace identity found in I to all classical Lie algebras. 

For our purpose, it is convenient to classify all simple 
Lie algebras into the following three categories: 

(i) A I' A 2 , G2 , F4 , Eo, E 7, Ex; 

(ii) An(n;;'3), Bn(n;;.2), Cn(n;;.2), Dn (n;;.5); 

(iii) D 4 . 

(l.1O) 

Next, let t I' t2, ... ,td" with do=d (Po) be an ordered basis ofthe 
simple (abstract) Lie algebra L with commutation relation 

( 1.11) 

where C~v (/-l,V = 1,2, ... ,do) are the structure constants of L 
with respect to this basis. Also, we adopt hereafter the usual 
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summation convention about repeated Greek indices. unless 
it is otherwise stated. Let x!' (fl, = 1.2 •...• do) be representa­
tion matrices oft!, in an arbitrary but fixed irreducible repre­
sentation ! A J which we call reference representation and set 

I 
h = - "" Tr(x x ···x ) JLIJ..L!"·J.l p , L III J-L2 J.l p , p. p 

(1.12) 

where the summation is over p! permutations P of p indices 
fl,1.fl,2'··fl,p' Clearly. h!',.!', .. !'p is completely symmetric inp 
indicesfl,I.fl,2 •... fl,p. We have h!, = 0 forp = 1. For p = 2. it is 
well known2 that h!,v = tr(x!'xv ) is independent of the choice 
of a particular representation! A J. apart from a multiplica­
tive constant. Hence. we set 

(1.13) 

for a nonzero constant CorA ). where g!'v is the Killing form. 
with its inversegl'v. In Sec. 3 we will choose a special normal­
ization CorA ) = 1 with! A J being the basic (i.e .• lowest-di­
mensional) representation of L. We can now raise and/or 
lower Greek indices as usual by means of gl'v and g!'v and set 

(1.14) 

where the product on the right side refers to that in the uni­
versal enveloping algebraK U (L ) of L. We can readily verify3,9 

that Ip are Casimir invariants of L. Let! P J be hereafter a 
generic irreducible representation of L and let X!, be repre­
sentation matrices oft!, in! P J, We write the common eigen­
value of Ip in ! p J as Iplp) so that 

(1.15) 

where E is the identity matrix in I pI, Since h!', ... !'p depends 
upon the choice of the reference representation! A I. we often 
write Ip( p) as Ip( P;A ) whenever we want to emphasize its 
dependence upon I A 1, Taking the trace of both sides ofEq, 
(1.15). we then find a reciprocity relation 

(1.16) 

In view of Eq, (1,13). the second-order Casimir invar­
iant 12 is essentially unique. apart from a multiplicative nor­
malization constant which depends upon! A 1, Similarly. the 
symmetrized third-order Casimir invariant 13 is again 
uniquelO,11 in this sense. Actually. it is known 10,11 that I} = 0 
identically for all simple Lie algebras except for the algebra 
An (n>2), However. the situation is different for the fourth­
order Casimir invariant 14 , In fact. I 4 ( p;A ) changes in general 
its form when we change IA J, This is related to the fact that 
the square of 12 is also a fourth-order Casimir invariant. 
Hence. if 14 is a fourth-order Casimir invariant. then so is 

I~ =14 + C(I2)2 

for arbitrary constant C. In order to remove this ambiguity. 
we proceed as follows, We call the reference representation 
I A I exceptional. if we can find a constant C such that we 
have an identity 

h!,va(3 = C I hl'v h,,(3 + hila hv(3 + hl'(3hva I 
= CC 6Ig!,vga(3 + gl'agv(3 + g!,(3gva I· (1.17) 

Otherwise. we call I A I nonexceptional. We know3 that any 
irreducible representation IA J of the type (i) algebras ofEq, 
(1.10). e.g .• A I' A 2• G2 • F4 • E 6 • E 7 • and E8 is always exception-
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al. This is related to the fact that any fourth-order Casimir 
invariant 14 of these algebras is simply proportional to (12)2. 
In other words. for type (i) algebras. we have no genuine 
fourth-order Casimir invariant I I so that the problem does 
not arise. For the type (ii) as well as type (iii) Lie algebras. we 
define 

gl'va{3 = [2 +d(po)]h!,va{3 

H(A) {g } 
- I

2
(A) !,vga{3 + g!,agv{3 + g!,{3gva • (1.18) 

where we have set 

H(p) = [I2(pW - il2(Po)I2(p) (1.19) 

for a later purpose. It is simple to see the orthogonality 
relation 

n/"V a(3 - h I'vh a{3 - 0 (1 20) .5 g g!'va{3 - g!,,'a(3 - . . 

Moreover. gl'va{3 is identically zero for all type (i) Lie alge­
bras. At any rate. we now define the modified fourth-order 
Casimir invariant J4 by 

J4 = gI','a(3tl' tvta t(3 (1.21a) 

so that its eigenvalue J4 ( p) is given by 

J4(p) = [2+d(Po)]I4(p)-3 d(po) 2H(A)H(p). 
d (A )[I2(A )] 

(1.21b) 

When we want to emphasize the dependence of J4 ( p) upon 
the reference representation I A J. we write it as J4( p,).. ). 
Then. the reciprocity relation (1.16) leads to 

d (P)J4( p;A ) = d (A )J4(A;p) (1.22) 

when we note Eq. (1.13). For all type (i) algebras. we have 
identically 

(1.23) 

For all types (ii) and (iii) Lie algebras. we choose I A I to be 
nonexceptional. Then J4 is not identically zero. Moreover. 
for the type (ii) cases. J4 is independent of the particular 
choice of nonexceptional representation I A I. except for an 
overall normalization constant. just as 12 and I} are. For the 
type (iii) algebra. i,e,. D4 • the situation is more involved, Ac­
tually. D 4 possesses one more fourth-order Casimir invariant 
i4 • in addition to J4 and (I2f, Discussion of this case will be 
given in Sec. 4, 

We now define modified Dynkin indices D I PI( p) 
(p = 2.3.4) by 

D 121( p) = d (p)I2( p), 

D 131( p) = d (p)I3( p), 

DI41(p) = d(P)J4(P), 

(1.24) 

Then, for the product decomposition Eq, (1,2), we will prove 
in the next section the validity of 

N 

d(PA)DIPI(PB) + d(PB)DIPI(PA) = IDIPI(pj) (1.25) 
j~ I 

for p = 2.3,4, We may note that D 121( p) is essentially equiv­
alent to 12( p) since 

DI21(p) = (D121(A )l/2(A )/2(p) = constx/2(p). (1.26) 
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while D [3 1( p) is nothing but the anomaly coefficient 10, 12 of 
the triangular anomaly in grand unified gauge theory, Since 
Eq, (1.25) for p = 4 has the same form as Eq, (1.8) for ~(p), 
we may guess that they must be related to each other. We 
shall prove in the next section that indeed we have 

~(p) = CD [41(p) (1.27) 

for a constant C, which may depend upon the reference re­
presentation! A I but not on ! P I. However, we can not nec­
essarily express D [41( p) in terms of ~(p) since the constant C 
could be zero for some cases, Indeed, this happens for the 
case of the Lie algebras D4 and E 2 , so that we have ~(p) = 0 
also for this case, though D [41( p) =1= 0 in general. For this rea­
son, we made the distinction between ~(p) and D [4[( pl. Also, 
for the Lie algebra D 4' we can define additional fourth-order 
index jj [41( p) by 

jj 141( p) = d (p)i4 ( p), (1.28) 

which also satisfies Eq. (1,25), C in Eq. (1,27) will be comput­
ed in the Appendix. 

Let t and X be generic elements of L and its representa­
tion in the generic irreducible representation! pI, respec­
tively, Expressing t as 

(1.29) 

for some complex numbers S I' (I-l = 1,2, .. "do), we have, of 
course, 

X=SI'X", 

It is well known that we have 

Tr(X X ) = d(p)12(P) h = D[21(p) h , 
I'" d (A )12(,,1,) 1''' D [21(,,1,) I'" 

Therefore, we find 

TrX2 = C2(t )DI21(p) 

when we set 

C(t)= _l_h ~I"~" 
2 D 121(A) /"'~ ~ . 

(1.30) 

( 1.31) 

(1.32) 

Note that C2(t ) depends upon! A I but not on (p I. Similarly, 
for the Lie algebra An (n >2), we find 

(1.33) 

If I Pil and! P21 are any two irreducible representation of 
L, then these relations imply 

Tr[2IX P ITr(1IX P = D I PI( P2)1 D I PI( P I) (1.34) 

for p = 2 and 3, where TrIll (j = 1,2) refers to the trace with 
respect to the space (Pi J. This relation has been utilized re­
centlyIJ to prove uniqueness of grand-unified groups SU(5) 
and SO(IO). Similarly, we can prove 
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and SO(IO). Similarly, we can prove 

TrX4 -K(p)(TrX2f = C4(t)DI41(p) 

when we set 

K(p) = d(po) {6 _ 12(po)} 
2[2 + d(Po)]d(p) 12 (P) 

(1.35) 

(1.36) 

The relation (1.35) is valid for all simple Lie algebras, except 
for D 4' as well as some special class of irreducible representa­
tions I P 1 for D4 , which will be specified in Sec. 4, For all 
types (i) algebras, we have 

TrX4=K(p)(TrX2f (1.37) 

for these algebras, reproducing the result of (I), Also, some 
class of irreducible representation! P I for D4 satisfy Eg. 
(1.37). For other cases, Eq. (1.35) implies the validity of 

Trl21X 4 _ K (P2) [TrI2IX 2 F = D 141( P2) 

Tr(llX 4 
- K(PI)[TrIIIX 2 j2 D I41(PI) 

(1.38) 

for two irreducible representations! PI land! P2l oftype (ii) 
Lie algebras. Some applications of Eq. (1.38) will be given 
elsewhere. 

In this work, we adopt the lexicographical ordering of 
simple root systems as in Ref. 4 as well as in Ref. 14. Writing 
the corresponding fundamental weight system as 
! .1 1,.1 2, ••• ,A n I, the highest weight A of any irreducible re­
presentation is given by 

(1.39) 

in terms of nonnegative integers mj (j = 1,2, ... ,n), We often 
use the notation! A I for I p I whenever its highest weight A 
is known. 

2. DERIVATION OF MAIN IDENTITY 

First we wiII prove the validity of Eq. (1.25). Let X;: I 

and X )/11 be representation matrices of t, in irreducible re-
I' I 

presentations !p A I and !p B J, respectively, and set 

X" =X;:'®EB +EA ®X;~I, (2.1) 

which defines the representation matrix of tl" in the product 
space ( PAl ® ( P B I· Here, E A and E B are unit matrices in 
the respective spaces. Computing both sides of 

h,'VTr(X/,X,,) =12(PA ®PB)' 

of course this immediately gives the well-known result 
N 

d(PA)d(PB){12(PA)+12(PB)}= Id(pj)12(pj)' (2,2) 
j~1 

since Tr(XI') = O. Similarly, calculating both sides of 

h 1,,,,,(3 Tr(X"X,'x"X,,) = 14( PA ® PB)' 

we find 

(2,3) 
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whereH(A.) is defined by Eq. (1.19). In deriving Eq. (2.3) we 
used 

hjJ.l' = ColA. )gjJ.l" h jJ.l' = ColA. )gill', 

C 2 (A.) = d(A.) I (A.) 
o d(po) 2 , 

as well as a relation 

h jJ.l'o./3hjJ.l'ho./3 = d (A. )H (A. ), 

(2.4a) 

(2.4b) 

(2.5) 

which will be proved shortly. Also, we have3 a quadratic 
relation 

(2.6) 

which is equivalent to Eq. (1.4). Therefore, when we set 

J4(p) = [2 + d(Po)]I4(p) - 3 d(po) 2 H(A. )H(p), 
d (A. )[I2(A. )] 

(2.7) 

Eqs. (2.2), (2.3), and (2.6) lead to 
N 

d(PA)d(PB){J4(PA) +J4(PB)}= Id(pJT4(pJ, (2.8) 
j=1 

which is equivalent to Eq. (1.25) for p = 4. The case for p = 3 
can be proved similarly. The reciprocity relation Eq. (1.22) 
can be proved from Eq. (1.16) and Eq. (2.4). 

Hereafter in this note, I pi always refers to the generic 
irreducible representation of L with XjJ. being the matrix re­
presentations of tjJ. in [ P I. For simplicity, let us set 

1 
HJl.l'o./3(p) = - I Tr(XJl. X l'XaX/3)' (2.9) 

4! p 

which is completely symmetric in indices,u,v,a, andp. Ifwe 
set [ pi = [A. j, this gives 

hjJ.l'a/3 = HJl.l'a/3(A. ). 

When we note a trivial identity 

Tr( [X,\ ,xJl.XvXaX/3]) = 0, 

we find 

C~Jl.HTva/3(P) + C~l'HJl.Ta/3(p) + C~aHJl.VT/3(P) 

(2.10) 

(2.11) 

Let V denote a vector space spaned by all completely sym­
metric quartic forms KJl.l'o./3 satisfying the condition 

C~Jl.KTl'o./3 + C~vKJl.Ta/3 + C~aKJl.l'T/3 + C~/3KJl.l'aT = O. 

Then the validity of Eq. (2.11) implies 

HJl.l'a/3 ( p)E V. 

Similarly, when we set 

K ~~a/3 = H gJl.vga/3 + gJl.agl'/3 + gJl./3gva ], 

we can easily prove 

K~~a/3EV 

when we note that 

11 J. Math. Phys., Vol. 23, No.1, January 1982 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

is completely antisymmetric in the three indicesA.,,u, v. In (I), 
we proved that 

{

I, for type (i) algebras 

DimV = 2, for type (ii) algebras , 

3, for type (iii) algebra D4 
(2.16) 

where Dim means the dimension of V. As we noted in (I), the 
validity of Eq. (2.16) is intimately related to the fact that 
types (i)-(iii) Lie algebras have ll precisely 0, 1, and 2 funda­
mental fourth-order Casimir invariants, respectively, in the 
universal enveloping algebra U (L ). 

Next, let us set 

1 
GJl.va/3(P) = - I Tr(XJl. XvXaX{3) 

4! p 

- ~K(p){(TrXJl.Xv)(TrXaX/3) 
3 

+ (TrXJl.Xa )(TrXvX{3) 

+ {frXjJ.X{3 )(TrX"Xa )}, (2.17) 

whereK (p) is given by Eq. (1.36). We may rewrite Eq. (2.17) 
also as 

1 d(p)H(p) 
GJl.Vo.{3(p)=HJl.l'a/3(P)- 2+d(po) d(A.)I2(A.) 

X {gJl.l'ga/3 + gJl.agl'/3 + gJl./3gl'a}. (2.18) 

It may be stressed that G Jl.l'o./3 ( p) is really independent of the 
choice of the reference representation I A. 1 in view of Eq. 
(2.4). We can readily verify 

(2.19) 

on the basis ofEqs. (2.4), (2.15), and (1.31). This also gives the 
orthogonality condition 

gI,vg"flGJl.va/3(P) = K(O)Jl.vaflGjJ.l'afl(P) = O. (2.20) 

Then Eqs. (2.5) and (1.20) are special cases ofEqs. (2.19) and 
(2.20), respectively, for I pi = I A. I. The modified fourth-or­
der Casimir invariant J4( p) is evidently given by 

D (4)( p) = d (P)J4( p) 

= [2+d(po)]hJl.va{3GJl.va{3(P) 

= gl'va{3HJl.l'afl( pl. (2.21) 

From this, we can derive Eq. (1.22). 
Let us now first consider the type (i) Lie algebras ofEq. 

(1.10). For this case, we have Dim V = 1. Since we have 

~O)Jl.vafl K ~~a{3 = ¥i ( Po) [d (Po) + 2] # 0, 

it follows thatK ~~a{3 #0. Therefore, any KJl.va/3 and especial­
ly GJl.va{3( p) must be proportional to K~~a/3' However, the 
orthogonality condition Eq. (2.20) then requires 

(2.22) 

for all type (i) algebras, so that J4 ( p) = O. For type (ii) cases, 
we have Dim V = 2 and hence GJl.va{3( p) must be a linear 
combination of gJl.vafl and K ~~a/3' when we note that both are 
linearly independent of each other for a choice of I A. I being 
nonexceptional. Again, the orthogonality condition 
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Eq. (2.20) requires then that we have 

G ()_ B(p) 
pvafj P - 2 + d (Po) gpvafj (2.23) 

foraB type (ii) Lie algebras, whereB (p)isaconstant. Wemay 
regard all type (i) Lie algebras also as special cases of Eq. 
(2.23), withB (p) = O. Multiplying both sides ofEq. (2.23) by 
h pvafj and noting Eq. (2.21), we get 

If we have J4 (A ) = 0, then this requires J4 ( p) = 0 for all ge­
neric irreducible representations [ p). This is clearly not 
possible for type (ii) Lie algebras, as we will see from explicit 
computation of J4 ( p) in Sec. 3. Therefore, we conclude 
J4 (A )¥O for any non exceptional reference representation 
[A ) of type (ii) Lie algebras, and hence 

_ d(P)J4(P) _ DI4)(p) 
B(p) - d(A )J4(A) - DI4)(A) 

(2.24) 

for any type (ii) Lie algebras. Then we may rewrite Eq. (2.23) 
as 

[ 2 + d ( Po)] G () = I (2 2 ) 
d(P)J4(P) pvafj P d(A )J4(A) gpvafj' . 5 

In particular, we havegpvafj = [2 + d (Po)] Gpvafj(A ). As we 
already remarked just after Eq. (2.1S), Gpvafj ( p) does not de­
pend upon I A ). Therefore, Eq. (2.25) implies that gpvafj is 
really independent of a particular choice of I A J, apart from a 
multiplicative constant. This, together with Eq. (2.21), 
proves the uniqueness of the modified fourth-order Casimir 
invariant J4 ( p) for type (ii) Lie algebras, apart from an over­
all normalization constant, as long as we choose I A J to be 
nonexceptional. 

Now multiplying both sides ofEq. (2.23) orEq. (2.25) by 
spsvsusf3, we immediately obtain Eq. (1.35). In order to 
derive Eq. (1.27), let hj (j = 1,2, ... ,n) and ea be the standard 
Cartan-Weyl basis. Here, n is the rank of the Lie algebra. Let 
H j (j = 1,2, ... ,n) be representation matrices of hj in ! p). 
Then, 12( p) and 14( p) are evidently expressed as 

12(p) = i glk Tr(HjHk ), 
j,k ~ I 

(2.26) 

14(P) = TrC~ I gikHjHk Y. 
Then the modified fourth-order index ~(p) is given by 

(2.27) 

when we note 
n 

[H,,~] = 0, L gijgjk = Di., 
j~ I 

Tr(H,.Hj) = 12(P) g"j' (i,j,k = 1,2, ... ,n), (2.2S) 
n 

and when we setXp =Hj,Xv =Hj,Xa = Hk,andXfj =H1 

in Eq. (2.17), and note Eq. (1.36). Similarly, when we multi­
ply both sides ofEq. (2.25) by gijgkl, we find the desired 
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formula 

Di4J( ) 
T (p) = -_P- T (A) = const xD 141( pl. 
4 DI41(A) 4 

(2.29) 

This proves the validity of Eq. (1.27) for the type (ii) Lie 
algebras. Similarly, starting with Eq. (2.22), we find ~(p) =' 0 
for type (i) Lie algebras. The mUltiplicative constant in Eq. 
(2.29) is computed in the Appendix. 

The validity of Eq. (2.25) also implies that a necessary 
and sufficient condition for! A ) to be exceptional for type (ii) 
Lie algebras is to have J4 (A ) = O. For example, ! A ) = ! A 2l 
for C4 is exceptional since we have J4(A 2) = 0 for C4 , as will 
be shown in the next section. If I A ) is exceptional, we have 
also 

Trx4 = K (A )(Trx2f 
for x = S"xp of type (ii) Lie algebras. 

Finally for the type (ii) Lie algebras, the uniqueness of 
J4 ( p;A ) except for its normalization, together with the reci­
procity relation Eq. (1.22), implies the validity of 

J ( -A ') = d (A ')J4(A ';A ) J ( 'A) (2.30) 
4 p, d (A )J4(A;A ) 4 P, 

for any two reference representations I A ) and [A '). There­
fore, once we know J4( p;A ) for a given nonexceptional [A l, 
we can calculate J4( p;A ') for any [A ' ). 

For the remaining case of the type (iii) Lie algebra D4· 

we have Dim V = 3, so that the argument presented in this 
section must be modified accordingly. This case will be dis­
cussed in detail in Sec. 4. 

3. EIGENVALUES OF FOURTH-ORDER CASIMIR 
INVARIANTS 

The purpose of this section is to give explicit expres­
sions for J4( p) in terms ofn nonnegative integers mj (I.;;;;j';;;;n) 
specifying the highest weight A of I p I as in Eq. (1.39). Since 
we have J4 ( p) = 0 identically for all type (i) Lie algebras, it 
suffices to consider only classical Lie algebras An' Bn, Cn, 
andDn • 

U sing the lexicographical ordering of simple roots as in 
Ref. 5 and/or Ref. 14, the basic, or defining, representation 
of all type (ii) Lie algebras is given by ! A I), which is nonex­
ceptional. Also, the adjoint representation! Po 1 is found to 
be non exceptional for all type (ii) algebras, although the lat­
ter is exceptional for D4 • Therefore, for our purpose, we 
could use either I A I 1 or! Po J for the choice of the reference 
representation! A l, since J4 ( p;}.. ) must be independent of 
! A I except for overall normalization as in Eq. (2.30), In this 
section, we use! A ) = [A I J to be definite, and normalize 

g,,,. = h,,, = tr(xpx v ); (3.1) 

hence 

d(A I)I2(A I) = d(po), 

I,(p) = n d(p)I2(p). 
- d (Po) 

(3.2) 

(3.2') 

Moreover, all formulas given in this section are also applica­
bleto Lie algebras A I,A 2 , andD4 , which are not of type (ii), as 
well as DJ where D, = A3 • 
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Let us now set 

INS(p)E = b/1,/1''''/1pX X ..• X . 
P III J-l2 J.Lp 

Then I~S( p) is the eigenvalue ofnonsymmetrizedpth order 
Casimir invariant I ~s in the irreducible representation! pl. 
The explicit expressions for I ~S( p) have been given by many 
authors, 15-22 from which we can compute I 4 ( p) and J4 ( pl. 
However, the calculation is very tedious and complicated" 
although it is straightforward. We report results of the calcu­
lation following the notation and method given in Ref. 20. 

A. Algebra An (n;;;.1) 

We embed the Lie algebra An into the Lie algebra of the 
unitary group Urn + 1) whose irreducible representation is 
labeled13 by n + 1 integersJ; (I<;J<;n + 1), satisfying 

(3.3) 

Then the nonnegative integersmj (I<;J<;n) in Eq. (1.39) speci­
fying the generic irreducible representation! pI of the alge­
bra A n are related to the J;'s by 

mj = J; - J;+ 1 (I<;J<;n). (3.4) 

For simplicity, we set hereafter 

N= n + 1, N;;;.2, (3.5) 

so that we are dealing with the Lie algebra AN _ 1 of the 
SU(N) group. Following the notation of Ref. 10, we set 

1 . 1 N 

uj = J; + T(N+ I)-J- N k~tk' 

(I<;J<;N), (3.6) 

which satisfy conditions 

U 1 > U 2 > ... > UN' 

N 

LUj = O. 
j~1 

(3.7a) 

(3.7b) 

The uj are related to the mj (1 <; J<;N - 1) by 

mj=uj-uj + 1 -1 (I<;J<;N-l), (3.8a) 

uj = ~ Lt}N-k)(mk + 1)- :tlk(mk + I)}. 

(3.8b) 

Now, eigenvalues of symmetrized Casimir invariants I 2( p), 
I J( p), and 14 ( p) are calculated24 as 

13 

N 

12(P) = L {(uy - [o)0IY}, 
j~1 

N 

IJ(p) = L (uj)J, 
j~1 

14(P) = f {(uy - [0)01]4}_ 2N2 - 3 / ,( ) 
j~ 1 6 - P 

= f (U
J

)4 - 2N2 - 3 f (uy 
j~1 6 j~1 

+ _1_N(N 2 - I)(llN 2 - 9)), (3.9) 
720 
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where we have set 

0)01 = !(N + 1) - J, 
so that 

f [0)°1]2 = _1_N(N 2 - 1), 
j~ 1 12 

f [0)01]4 = _1_N(N 2 - I)(3N 2 -7), 
j~1 240 

N N 

(3.10) 

Lo)°l= L [o)0IP=O. (3.11) 
j~ 1 j~ 1 

Then J4 ( p) is calculated to be 
N 

J4(p) = (N 2 + 1) L {(Uj )4 - [0)01]4} 
j~ 1 

_ 2N2 - 3 {[ f (uy]2 - [ f (0)01)2]2} 
N J~I J~I 

= (N
2 + 1) jtl(uj )4 - 2N~- 3 [jtl(Uj )2 r 

+ _I_N(N 2 _ I)(N 2 - 4)(N 2 - 9). (3.12) 
720 

We note thatJ4 ( p) contains only quartic polynomials of uj's 
in addition to a constant. We can verify the fact that J4( p) is 
identically zero for N = 2 and N = 3, corresponding to A 1 

and A 2• since we have an identity !(a2 + b-
2 + e2f = a4 + b 4 + e4 for any three numbers a, b, and e sat­
isfying a + b + e = O. 

We note that the fundamental representations [A j I 
(1 <; J<;N - 1) correspond to completely antisymmetric ten­
sor representations, while! kA II for (k;;;.l) are completely 
symmetric representations in the sense of Young's tableau.

13 

For possible applications to particle physics, which will be 
reported elsewhere, we will give below an explicit formula 
for eigenvalues of fourth-order Casimir invariants in these 
representations. 

14(Aj) = N+/ J(N-J){N 2(N 2 +6N+6) 
6N' 

- 6(N 2 + 3N + 3)J(N - J)} (1 <;J<;N - 1). 
(3.13a) 

J
4
(A.) = (N + I)(N + 2)(N + 3) J(N -J') 

J 6N 

X{N(N + I) - 6J(N - J)} (I<;J<;N - 1). 

J
4
(kA.) = (N - I)(N - 2)(N - 3) kiN + k) 

6N 

X{N(N-l)+6k(N+k)} (k;;;'I). 
Also, we note that 

12(A j )= N; 1 J(N-J), (l<;J<;N-I), 

(3.13b) 

(3.13c) 

IJ(A j ) = (N + ;~~ + 2) J(N - J)(N - 2J) (l<;J<;N - 1), 

12(po) = 2N, 
1 

J4(A I) = 6N(N
2 

- I)(N 2 - 4)(N 2 - 9), 

J4(po) = +N(N
2 

- 4)(N 2 
- 9). (3.14) 
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Since J4 ( po) =1=0, for An (n>3), the adjoint representation 
( Po 1 for A n (n > 3) is not exceptional. However, for N = 8, we 
find J4(A 2 ) = 0 so that (A21 for A7 is exceptional. Therefore, 
we must have a special identity 

(1.37') 

for any generic element X of the Lie aigebraA7 [SU(8) group] 
in the irreducible representation (A 21. But this fact is not 
accidental for the following reason. The 56-dimensional re­
presentation (A61 of the exceptional algebra E7 decom­
poses5 into a direct sum (A 2 } $\A61 of its subalgebraA7' 
Noting that (A61 is contragradientto (A21 for A 7 , the valid­
ity of the quartic identity (1.37') for (A21 of A7 follows from 
the corresponding relation Eq. (1.37) for E7• Similarly, re­
stricting ourselves to SO(8) and/or Sp(8) subgroups ofSU(8), 
we expect to have the validity of the same relation (1.37') for 
the irreducible representation \All of these subalgebras by 
similar reasoning. This fact will be verified shortly for both 
C4 and D4 • 

Corresponding to the decomposition 

\AIl ® (Ad = (A21 Ell \2A I ]. 

we must have a sum rule 

2[d (A I)fJ4(A d = d (A 2)14(A 2) + d (2A 1)14(2A I) 

by Eq. (2.8). The validity of this identity can be verified easily 
by the numerical results ofEq. (3.13) together with 

dIAl) = N(N - l)····(N - j + 1), (I <;;;j<;;;N _ I). 
j1 

d(kAd= N(N+ 1) .... (N+k-l), (k>I). 
k! 

Note that the general dimensional formula for d (p) is given 
by 

d _ nf<do) - 0-.) _ N O'j - O'k 

(p) - 1!2!·.·(N - I)! -}X djOI_ d~I' 
It may be interesting to note that I 2(jA I)' I3(jA I)' 

J4(jA I)' and d (jA I) for the completely symmetric represen­
tation (jAil are identical in form to I 2(A j ), 13(A j ), J4(A j ), 

and d (A 1 ) for the completely antisymmetric one \A j 1 ' ex­
cept possibly for signs, when we formally change the dimen­
sion Nto - N. 

B. Algebra Bn (n>2) 

We use again the Weyl's symbol./; (1 <;;;j<;;;n) so that 

./; =mj +mj +, +···+mn_ 1 +~mn' (3.15) 

All./; 's are simultaneously integers or half-integers, corre­
sponding to tensor or spinor representations of Bn. We set 

Il=J;+n-}+~ (1 <;;;}<;;;n), 
(3.16) 

l)0l=n-j+~ (I <;;;j<;;;n). 

Then we find 

2l2(P) = i [(/j)l - (ljolf] 
j~ I 

(3.17a) 
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814(p) = i [(lY - (ljOI)4] 
j~1 

I 
- -(2n - 1)(4n + I) 

6 

X i WY - (/ jOI)2] 
j~1 

'I I 
= L (/Y - -(2n - 1)(4n + I) 

l~' 6 

X i (1/ + n(4n
2 

- I) (44n2 - 20n + 11), (3.17b) 
j~ I 720 

SJ4( p) = (2nl + n + 2) i [(lY - (/ jOI)4] 
l~1 

- (4n + 1){LtYj)2r - Lt, (ljOI)ln 

= (2n2 + n + 2) jtyy - (4n + 1)[ jtYjf r 
+ _1_ n(nl _ 1)(4n2 - 1)(2n + 3)(2n - 7). (3.17c) 

360 

We observe that J4(p), in contrast to I 4( pI, contains only 
quartic polynomials of Ij . The same property is also shared 
by other Lie algebras Cn and D n , as we will see. 

We also give expressions for J4(A j) and J4(kA I) below. 

24J4(A j ) = (n + 1)(2n + 3)j(2n + 1 - j) 

x!(n + 1)(2n + I) - 3j(2n + I - jll (1 <;;;}<;;;n - 1), (3.1Sa) 

2414 (A 'I ) = - An(n2 - 1)(4n2 
- 1)(2n + 3) (j = n), (3.1Sb) 

24J4(kA I) = (n - 1)(2n - I)k (2n - 1 + k) 

X!(2n2-n+3)+3k(2n-l+k)1 (k>I), (3.1Sc) 

for A = Aj (I <;;;j<;;;n) and A = kA 1 (k> 1). Again we can ver­
ify the validity of 

2[d(Ad]2J4(A,) = d(A2)14(A l ) + d(2Il 1)14(2Ad, (3.19) 

corresponding to 

(3.20) 

for Bn (n> 3), where (01 refers to the trivial representation. 
Also, we note 

12(po) = 12(A 2 ) = 2n - I, (n>3), 

12(A d = n, 

12J4(po) = (n 2 
- 1)(2n + 3)(2n - 1)(2n - 7)=1=0. 

We remark that, forn = 13 and) = 6, wefindJ4(A 6 ) = o and 
hence that (A61 for Bl3 is exceptional. Finally, the dimen­
sion formula is 

d (p) = 1!3! ... (~: _ 1)1 CV/;) j~ [{Ij)l - (lk)l], 

so that 

d(A.) = (2n + I)! (l,},n _ 1), 
1 ;1(2n + I _ j)! 

d(kA.l = 2n + 2k - I (2n + k - 2)! (k;>I). 
k! (2n-I)! 

dIAn) = 2" (j= n). 
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C. Lie algebra Cn (n;;.2) 

We set 

1;=mj +mj + 1 +···+mn , 

Ij =1; + n - j + 1, 

1)°1 = n - j + 1, 

for j = 1,2, ... ,n. Then we calculate 

212( p) = i [(Ij f - (/ jOI)2] 
j= I 

n 1 
= "iJlj)2 - - n(n + 1)(2n + 1), 

j= I 6 

814( p) = i WY - (/ jOI)4] 
j= 1 

- ~(n + 1)(4n + 1) 
3 

xi [(/j)2 - (ljOlf] 
j=1 

n 1 n 
= I (/Y - -In + I)(4n + I)I (/j)2 

j=1 3 J~I 

(3.21a) 

(3.21b) 

(3.21c) 

(3.22a) 

The dimensional formula for Cn is 

dip) = I ( IlJi) 
1!3! .. ·(2n - I)! i= 1 

X IT [(lY - (/kf]· 
j< k 

In particular, we have 

d(A.) = 2(n + I-j) (2n + I)! (1') <]<n, 
J j1 (2n + 2 _ j)! 

d(kA1) = (2n + k - I)! (k;;'l). 
k !(2n - I)! 

D. Lie algebra On (n;;.3) 

We define 

1; =mj +mj + 1 + .. ·+mn- 2 +!(mn_ 1 +mn)' 

I<j<n-2, 

in _ 1 = ~(mn - 1 + mn), In = ~( - mn - I + mn ), 

and set 

Ij =1; + n - j, 

(3.25) 

(3.26) 

+ _1_ n(n + I)(2n + 1)[29n2 + 64n + 32], I JOI = n - j, 
90 

(3.22b\ for l<j<n. We then calculate 

as well as 

8J4(p) = (2n2 + n + 2) i ((/j)4 - (ljOI)4] 
j= I 

= (2n2 + n + 2) jtyj)4 - (4n + 1)[ jtYj)2 r 
+ _1_n(n2 _ 1)(4n2 

- I)(2n + 3)(n + 4). (3.23) 
180 

We calculate also 

24J4(Aj) = (n + 1)(2n + 3)j(2n + 2 - j) 

X ! (2n2 + 3n + 4) - 3j(2n + 2 - j) I, (3.24a) 

2414(kA 1) = (n - 1)(2n - l)k (2n + k) 

X ! n(2n - 1) + 3k (2n + k ) I (3.24b) 

for the completely antisymmetric representation [Aj I 
(1 < j<n) and for the completely symmetric representation 
[kA 11 (k;;.I). We can check the validity of Eq. (3.19) corre­
sponding to Eq. (3.20) for this case, using Eq. (3.24). We note 
also 

12(po) = 12(2..1 1) = 2(n + 1), 

/2(..1 1) = ~(2n + 1), 

J4 ( Po) = J4(2A tl = Mn2 - 1)(2n - I)(2n + 3) 

x(n + 4)#0. 

In particular, the adjoint representation [ Po I is nonexcep­
tional. We have, however, J4(A 2 ) = 0 for n = 4 so that 
[A. I = [A 21 for C4 is exceptional. Therefore, for 
[pI = [All ofC4 , we have the validity ofEq. (1.37). 

15 J. Math. Phys., Vol. 23, No.1, January 1982 

212(p) = iWl-(/jO))2] 
j=1 

n 1 
= I (/j)2 - - n(n - 1)(2n - 1), (3.27a) 

j= I 6 

814(p) = i [(/j )4 _ (/jOI)4] 
j= I 

- ~(n - 1)(4n - 1) i [(Ijf - (/jOI)2] 
3 j=l 

n 4 1 
= I (/j) - -In - 1)(4n - 1) 

j=l 3 

n 1 
X I (/jf + -n(n - 1)(2n - 1) 

j= I 90 

X [lln2 
- 16n + 8], 

as well as 

8J4 ( p) = (2n2 - n + 2) i [(IJ)4 - (l jOI)4] 
j=l 

-(4n-I){LtYj)2r - [)tYfl)2f} 

(3.27b) 

= (2n2 - n + 2) ;tl(/j )4 - (4n - I) [jtl(/jf]2 

+ _1_n(n2 _ 1)(4n2 
- I)(n - 4)(2n - 3). (3.28) 

180 

For the special case A = Aj (I<i<n) and A = kA 1 (k;;.l), we 
find 

2414(Aj) = (n + 1)(2n + 1)j(2n - j) 

X! n(2n + 1) - 3j(2n - jll (1 <j<n - 2), 
(3.29a) 
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24J4(A,,) = 24J4(A" ,) = - J...n(n 2 
- 1)(4n 2 

- 1) - 8 

x(2n - 3), (j = n - I and n) 

(3.29b) 

24J4(kAd = (n - 1)(2n - 3)k (2n - 2 + k 1 

X{(2n 2 
- 3n + 4) + 3k (2n - 2 + k )}, 

(3.29c) 

from which we again verify the validity ofEq. (3.19). Setting 
i = 2 in Eq. (3.29a), we find 

/2(PO) = 2(n - 1), /2(A ,) = !(2n - I), 

J4 (po) = i(n2 - 1)(2n + 1)(2n - 3)(n - 4), (3.30) 

J4(Ad = ~(n2 - 1)(4n2 - 1)(2n - 3), 

so that J4 ( Po) =1= 0 for n;;;. 5, but J4 ( Po) = 0 for D 4' The dimen­
sional formula for D" is given by 

2" -- , " 

d (p) = 2!4! ... (2n _ 4)! j~ [(lY - (/d] 

" (lj )2-(ld 

= j~ (/jOr - (/rl)2' 

In particular, we have 

d(A)= (2n)! (l<i<n-2), 
j j1(2n - i)! 

d(kAd= 2(n+k-l) (2n+k-3)!, k;;;.l, 
k! (2n - 2)! 

d (A,,) = d (A" _,) = 2" - '. 

Again, we find that /2(A j ), J4 (A j ), and d (Aj) of C" (D,,) will 
transform into/2(iA I), J4(iA I)' and d (jA ,) of D" (C,,), apart 
from signs when we make a formal change n_ - n, pro­
vided that we restrict ourselves to 1 <i<n - 2. 

E. Equivalences 82 = C2 and 03 = A3 

It is well known that we have equivalences B2 = C2 and 
A3 = D3 • Here we will discuss the effects of these equiva­
lences on Casimir invariants. 

First consider B2 and C2 • We label all relevant quanti­
ties, such as Ij in B2, as ~ by adding bars, while unbarred 
quantities refer to those of the algebra C2 • The correspon­
dence B2 = C2 implies 

(3.31) 

which is effected by interchange of two simple roots a, and 
a 2 in Dynkin diagrams of these algebras. Then we find 

~ = W, + 12), J; = W, - 12), (3.32) 

and can verify that 

[2( p) = ~/2( p), 

(3.33) 

J4(p) = - !J4(p) 

from expressions for these quantities given in this section. 
The differences between normalization factors for /2 and /4 
in Eq. (3.33) are due to the fact that I A J = I Al J of B2 trans­
forms to IA 2 J but not IA d ofC2 by Eq. (3.31). 

16 J. Math. Phys., Vol. 23, No.1, January 1982 

Similarly, we use the barred symbols such as mj for the 
algebra A3 , while unbarred ones refer to the algebra D3 • 

Then, an inspection of Dynkin diagrams of A 3 and D] re­
quires identification of 

so that we find 

(1, = W, + 12 - I]), 

(12=!(i, +1]-/2), 

(1] = !U2 + 13 -I,), 

(14 = - W, + 12 + [3)' 

(3.34) 

(3.35) 

for (1j (I <i<4) of the Lie algebraA]. We can verify the valid­
ity of the identities 

~ +~ +~ +~ =n +n +1;, (3.36a) 

4 4 4 4 3 (/2 12 [2 )2 
(1, + (12 + (1, + (14 = - ,+ 2 + , . 4 . 

so that we have 

[2(P) = 2/2(p), 

- J...(li + Ii + Ii), 2 . 

4. LIE ALGEBRA 0 4 AND TRIALITY 

(3.36b) 

(3.37) 

We have to discuss the case of D4 separately in view of 
Dim V = 3. It is convenient for our purpose to write the Lie 
algebra D 4 in a non-Cartan form 

[Xab,Xcd ] = 0adXbc + 0bcXad - OacXbd - ObdXac (4.1) 

(4.2) 

where latin indices a,b,c,d assume eight values 1,2, ... ,8. Cor­
respondingly, we often write 

X'i = X ab , f.l = (a,b). (4.3) 

Choosing 1 A J = lA, J again, which is the eight-dimensional 
defining (or basic) representation, the matrix element of X,i is 
given by 

(4.4) 

while the Killing metric tensor g,iv also has the same form 

g(abI.(cd I = 2 [OadObc - 0acObd]' (4.5) 

for our normalization Eq. (3.1). We define g,1va(3 and J4 by 
Eqs. (1.18) and (1.21), respectively. Now, D4 possesses one 
additional fourth-order Casimir invariant i4 , which can be 
constructed as follows. Let 

f.lj = (aj ,bj ), i = 1,2,3,4 

and set 

(4.6a) 

(4.6b) 

where Ea, ... b. is the completely antisymmetric Levi-Civita 
symbol in eight-dimensional space. Then, we set 
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(4.7) 

Using the same notation as is given in the previous section. 
i4( p) is then given byl5.16.20 

i 4(p) = 1.t2ii4' 11>/2>/3>1/41· (4.8) 

Now. we note thatg
"

va/3' e/1va/3' and 
K ~~"/3 = 1( g"vga/3 + g/1agv/3 + g/1/3gva) are mutually orthog­
onal in the sense that 

n/1va/3KIOI = e',va/3KIOI = n/1va/3e = ° (4.9) 
5 J-lva/3 J-lva/3 5 J-lva(3 , 

and these three quantities now span the vector space V. 
Setting 

DI41(p) = d(P)J4(P), 

(4.10) 

.z)141(p) = d(p)i4(p), 

both satisfy Eq. (1.25), so that we have two modified fourth­
order indices. 

We now define G/1va/3(P) by Eq. (2.18), as before. How­
ever, since Dim V = 3, we have to modify Eq. (2.23) as 

[2 + d (p)]G/1va/3(p) = B (p)g/1va/3 + C(p)e/1va/3 (4.11) 

for some constants B (p) and C (p). Multiplying both sides of 
Eq. (4.11) by gi,,'a/3 and eI1 va/3 and noting the orthogonality 
relation Eq. (4.9), we obtain 

(4.12a) 

[2 +d(Po)]d(p)i4(P) = ~eI1va/3e/1va/3C(p), (4.12b) 
4! 

Since for I A l = I All, we have '4(,1, ) ",,0, as we will see from 
Eq. (3.29a), the expression for B (p) is the same as before and 
is given by Eq. (2.24). 

Next,choosingX/1 =H;,Xv =Hj,Xa =Hk and 
X/3 = HI' mUltiplying both sides ofEq. (4.11) by gijgkl and 
noting that 

4 
~ ij kl _ 
,.;;.. g g eijkl - 0, 

;J.k.l~ I 

we find that the term proportional to C ( p) vanishes. There­
fore, from Eq. (2.27), we obtain again Eq. (2.29), and hence 
Eq. (1.27), i.e., 

~(p) = CDI41(p) (4.13) 

for the present case also, where C is a constant. 
Now, from the table of McKay and Patera,5 we calcu­

late ~(A d = ° for I p l = ! Ad. On the other hand, Eq. (3.30) 
requires D (41(A I ) ",,0. Therefore, Eq. (4.13) requires that 
C = 0, and we conclude that 

~(p)=o (4.14) 

identically for all irreducible representations I p l of the Lie 
algebraD4 · Actually, the validity ofEq. (4.14) is not acciden­
tal but is intimately connected with the existence of the tria­
lity principle7 for the Lie algebra D4 • We explain this fact 
below. It is well known 2

•
K that the Lie algebra D4 is very 
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exceptional in the sense that it alone among all simple Lie 
algebras has the maximum number of outer automorphisms. 
Let 

G = outer-automorphism group 

inner-automorphism group 
(4.15) 

be the quotient group of outer automorphisms over inner 
automorphisms. Then G is the identity for A I' G2 , F4 , E7 , E 8 , 

Bn (n:>2), and Cn (n:>2), while G is the cyclic groupZ2 for An 
(n:>2j,Dn (n:>5)andE6' However, GisZ3 for D4 , whereZp is 
the cyclic group of p objects. Moreover, it is known that G is 
isomorphic to the invariance group of Dynkin diagrams for 
these Lie algebras. 

As we see from the Dynkin diagram of D4 (see Fig. I), 
then G = Z3 is identified as the permutation group of three 
simple roots a I' a 3 , and a 4 , while the center root a 2 remains 
invariant. To see this more clearly, let us introduce 
K I,~, R I'" = - R VI" and R/1" = - R"" (l1,v = 1,2,3,4) as 
follows2o

.
25 

K\~ = !{ - X"" - X" + 4.,,+ 4 - i[X,i.V + 4 - X/1 + 4." ]}, 
R liV - R VI' - I{X X - - -2 IlV - 1,+4,l'+4 

- i[X".n 4 + X/1 + 4." n, (4.16) 

RI'" - R"I' = ~{ - X,,,, + X" + 4.,. + 4 

- i[X/1." + 4 + X" + 4.V]}. 

Then they satisfy commutation relations 

[K I' K a ] - {jI' K a {ja K /1 v' f3 - /3 'v - l' /3' 

[K I' R a/3] = _ "" R li/3 _ {j/3 R ai' 
l" U t ' \,' 

(4.17) 

[R R "/3]-""K/3+"/3K" ""K/3 ,,/3Ka 
Ill" - UI' t' Ut' I' - U,. JI - U,l v' 

[R ,,,,,Ra/3] = ° = [R '''',R a/3], 

for 11, v,a ,(3 = 1,2,3,4. The Cartan subalgebra elements Hj 

(j = 1,2,3,4) may then be identified as 

Hj = K j(no summation on}), } = 1,2,3,4, (4.18) 

while all other K \~ (;.t ""v), R ,,,,, and R I'" correspond to E,,'s 
for some nonzero root a. Ifv+ is the maximal (or highest) 
vector2 in the irreducible representation I p l, then we have 

(4.19) 

where.!; (j = 1,2,3,4) are given by Eq. (3.25). We now define 
two outer automorphisms, rr and a, in D4 as follows. First, 
we define rr by 

(i)I1",,4, v",,4, 

rr(K I,~) = K \~, 

rr(R,,,,) = R,,,,, 

(ii) 11 = 4, v",,4, 

rr(R '''') = R '''', 

rr(K;') = - R 4 " rr(R 41,) = - K;" 

(iii) 11 ",,4, v = 4, 

rr(Kn = R ,,4, rr(R ,,4) = K~, 

(iv) 11 = v = 4, 

rr(K:)= -K:. 
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FIG. I. Numbering of simple roots for the Dynkin diagram of D4 . 

We can verify that 1T is an outer automorphism of D4• Now, 
in view of Eqs. (4.19) and (4.20), 1T induces a mapping of 
weight systems of D 4 into itself in the same representation 
space ! p J, keeping the maximal vector v + intact. In 
particular, 

1T: jj---+jj , Ij---+lj U#4), 

14---+ - 14' 14---+ - 14 (j = 4). (4.21) 

Then, by Eq. (3.25), this is equivalent to interchanging of m J 

and m4 while m I and m2 remain unchanged. Therefore, we 
can interpret 1T to be the element of the permutation group 
Z3 which interchanges two simple roots a 3 and a 4 in the 
Dynkin diagram. 

Next, consider another mapping a defined by 

KI'---+ - K" + ~v ~ K" 
V I' 2 It i~l '" 

R 1"'---+ - ~ ~ R a(3 

2 
L El'va(3 , 

a,(3= I 

(4,22) 

R 1 ~ A/.va(3R 
Jl1!~- - ~ c· up, 

2 a.fJ= 1 

for ji, v = 1,2,3,4, where El'vafJ = €"va(3 is the completely anti­
symmetric Levi-Civita symbol in four-dimensional space. 
Although (T is also an outer automorphism of D4 , this is not 
so convenient for our purpose, since the maximal vector v+ 
can be seen to be not invariant under a. For this reason, we 
consider another mapping 'T defined as follows. Let Wbe an 
operation which interchanges labels I and 4 and 2 and 3 
(1-4 and 2-3) and set 

T= Wa. (4.23a) 

We simply remark that W corresponds to an inner automor­
phism. The explicit operation of T in D4 is now given by 

KI'---+ - K~ + ~v ~ K" 
v I' 2 I' i~1 '" 

R I'v I ~ R ar3 
---+ - -2 L Efivar3 ' 

a,(3 = I 

1 4 ___ fj 
RI'V---+ - - 2: €" va Rar3' 

2 a,(3= I 

where fi = 5 - f.l etc, so that 

T = 4, 2 = 3, '3 = 2, and 4 = 1. 

(4,23b) 

We can verify that T is an outer automorphism of D 4' Study­
ing the effect of T on the maximal vector v + , we see that it 
induces the mapping 
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Ir-4-~ = !(fl + 12 + I, - 14), 

12---+1; = ~(fl + 12 - I, + 14)' 

1,---+/, = !(fl - 12 + I, + 14)' 

It---+h = !( - II +12 + I, + It), 
or equivalently, 

or 

II---+~ = WI + 12 + r .. - 14), 

12-1z = WI + 12 - I, + '4)' 

'J---+J;, = WI - 12 + I, + '4)' 

14---+~ = !( - 'I + 12 + " + '4)' 

I"-/,, = WI + 12 + I, + 14) -Iii' 

Note that the ordering relation 

~>Iz>J;,>I~1 

(4,24a) 

(4,24b) 

(4.24c) 

(4.25) 

is still preserved, In terms of mj 's, this is equivalent to the 
interchange of m ,_m J, so that we interpret T to imply the 
permutation of two simple roots a I and a" In terms of 1T and 
T, the action of the six elements of Z3 ar~ given by 
1. I:identity, 
2, 
3, 

4. 
5. 
6, 

1T:a3+-+a4, 

T:a l+-+a 3, 

1TT1T = T1TT:a I +-+a 4 , 

T1T:a,-a3-a4-a I' 

1TT:a 1-a4-a3-a,. 

(4,26) 

Let us label the irreducible representation I p J as 
(f''/2'/3'/4)' Then, for example, we find 

1T: {( 1 ,0,0,0)_( 1 ,0,0,0) 

(!,!,!,!)-(!,M, - ~)' 

T:{(l,O,O,O)-(M,!, - !). 
(!,~,~,!)-(M,!,~) 

In other words, three eight-dimensional irreducible repre­
sentations, corresponding to the vector (1,0,0,0), the spinor 
(M,M), and the mirror spinor (!,~,~, - !), interchange among 
themselves by actions of Z3' This is one of the well-known 
manifestations26 of the triality principle? of D4 • The dimen­
sion d (p) is, of course, invariant under Z3' 

We first observe that I 2( p) is invariant under Z3 if we 
note 

/2 +/2 +/2 +/2 -[2 +/2 +/2 +/2 1 2 3 4 - 1 2 3 4' (4.27) 

where ~ are defined by Eq. (4.24b). However, the fourth­
order Casimir invariants are not invariant. We can readily 
see 

1r.{~4( P)---+J4(~) 
I4(p)---+ - I4(p)' 

However, by T, we find 

± (~)4 = _ ~ ± (lJ4 + 2.( ± l J)2 
1=1 2 j=1 4 j=1 

- 61)12Ii4' 
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1 + -1,12Ii4' (4.29b) 
2 

after some calculations. Since Eq. (3.28) for n = 4 gives 

J4( p)= ~{2± (lj)4 _ [ ± (lj)2]2} 
8 J~I J~I 

(4.30) 

for D 4 , Eq. (4.29) implies 

-r.{J4(P)- - ~ J4(p) - ~ i4(p) 

All A . 
14 ( p)- - -J4( p) + -I4( p) 

30 2 

(4.31) 

Then Eqs. (4.28) and (4.31) show that J4 ( p) and i4 ( p) [and 
hence D 141( p) and fj 141( p)] form a basis of two-dimensional 
irreducible representations of Z3' Note that if we had used 
14 ( p) instead of J4 ( pI, this conclusion would not apply. This 
is another indication of the naturalness of the modified 
fourth-order Casimir invariant J4 ( p) in contrast to 14 ( pl. 
Also, this implies the impossibility of finding the unique 
fourth-order Casimir invariant for D4 , which is independent 
of the reference representation! A I. 

Now, let us return to the discussion of ~(p). When we 
note gjk = c'8jk for a constant c' which does not concern us 
here, we find 

4 4 4 _ 

c' L gkHjHk = L(K~)2 = L(K~)2. j.k ~ I j ~ I j ~ I 

Therefore, ~(p) is invariant under Z3 since its invariance 
under 1T is also evident. Then, the validity of Eq. (4.13) re­
quires C = 0 and hence ~(p) = 0 identically, since D 141( p) 
belongs to a doublet representation of Z3' This is the reason 
why ~(p) = 0 is not accidental but is related to the triality. 

Also, we remark the following. Any irreducible repre­
sentation 1 pI = (/"/2,j,,h) satisfying 

II =12 + /" 14 = 0 (4.32) 

is invariant under Z3 since 
A =/,(A 1+ A3 + A4) + (/2 - /,)A 2, so that in view ofEq. 
(4.31), we must have 

J4(p) =I4(p) = O. 

This can be directly verified27 also from Eqs. (4.8) and (4.30). 
Then Eq. (4.11) requires G/1va/3( p) = 0 for any such represen­
tation. In particular, we have the validity ofEq. (1.37), i.e., 

TrX4=K(p)(TrX2)2 (4.33) 

for any irreducible representation! p J satisfying the condi­
tion Eq. (4.32). Especially the adjoint representation 
1 Po I = (1,1,0,0) must satisfy Eq. (4.33), as was already noted 
by Cvitanovic2H some time ago. 

As another application oftriality, we note that ifh = 0, 
then a similar consideration ofEq. (4.11) leads to the validity 
of Eq. (1.35). However, we can generalize this into the fol­
lowing type of representations: 

! PI) = (/1./2,j,,0), 

! P21 = (~,h,h,~), (4.34a) 

! p,J = (~,h,h, - h, 
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where~ satisfies the condition 

h=lt-h,-K (4.34b) 

Then Eq. (1.35) is valid for three types of representations: 
! P I I, ! P21, and! P31· The reason is as follows. By the action 
of Z3' the type! PI I representation transforms into! P21 
and/or! P31. Then we identify 

~ = Kt; +/2 +/,), 
h, = ~(/I + 12 - h.), 

h = ~(/I -12 + 13)' 
h = !( - II +12 + h.). 

(4.35) 

But for! pd, we have i4 ( PI) = 0, so that Eq. (4.31) requires 
i4 ( Pj) = is J4{ Pj) for j = 2 and 3. Then, from Eqs. (4.11) and 
(4.12), we find the validity ofEq. (1.35) also for! P21 and 
! P31, although the value of C4(t ) changes. 

We note that ifEq. (4.32) is satisfied, then 
! P d = 1 P21 = ! P 31· Also if we set h = 13 = 0 and II = p 
in Eq. (4.35), then three representations 

(p,O,O,O), 

(~,~,~,~). 
and 

( L L L _ L) 
2 ' 2 ' 2' 2 

transform among themselves under Z3' The case p = 1 cor­
responds to the eight-dimensional representation. 

In concluding this section, we simply note that 

(4.36) 

= 4 jty)\ - 5 Ltyj)4][ ktyd 2 J 
is invariant under Z,. This fact is relevant to the study of 
sixth-order Casimir invariants of D 4 , which can again be 
classified by actions of Z3' 
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APPENDIX 

As we noted in Eq. (1.27), we have 

~(p) = Cd (P)J4( pl· (AI) 

Since the constant C is independent of the generic irreducible 
representation I pI, we can compute it by 

C = ~(A did (A 1)J4(A d, (A2) 

where we can calculate J4(A I) by the formulas of Sec. 3. We 
may evaluate 12(A I) and 14(A d directly from the defining 
equations (1.1) and (1.5). However, our normalization condi-
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tion Eqs. (3.2) and (3.2') imply 

/2(A ,) = n, (A3) 

which differs by a factor of 2 for algebras Bn (n;>2) and Dn 
(n;> 3) from those adopted by McKay and Patera.5 In order to 
make a definite comparison to results of Ref. 5, we renorma­
lize our inner product by 

(a,a)ma, = 2 (A4) 

for simple roots, as in their paper, while formally retaining 
explicit expressions for J4( p) given in Sec. 3. With this under­
standing, we recalculate and find 

1.An (n;>1) 

/ (A ) = ~ = (N - 1)2 
4 1 n+1 N' 

l(A)= (N-I)(N-2)(N-3) 
4 1 3(N2 + I) 

c= 2 
(N + I)(N + 2)(N + 3)(N 2 + I)' 

2. Bn (n;>2) 

/2(A 1) = /4(A 1) = 2n, 

- 4n(n - I)(n - 2) 
14 (A 1) = 

3(2n2 + n + 2) , 

c= 16(n - 2) 
(n + 1)(2n + 3)(4n2 - 1)(2n2 + n + 2) . 

3. en (n;>2) 

n 
/2(A 1) = n, /4(A 1) = -, 

2 

~(A 1) = n(n - I)(n - 2) , 
3(2n 2 + n + 2) 

c= 4(n - 2) 
(n + 1)(2n + 3)(4n2 - 1)(2n2 + n + 2) . 

4. On (n;>3) 

/2(A J! = /4(A J! = 2n, 

- 4n(n - I)(n - 4) 
/4(A 1) = --',-:-----"'------" 

3(2n2 - n + 2) , 

c= 16(n-4) . 
(n + 1)(2n - 3)(4n 2 

- 1)(2n2 - n + 2) 

(A5) 

From these, we see ~(p) = 0 identically again for D 4' How­
ever, we find also ~(p) = 0 for B2 and C2 • The reason behind 
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the validity for the latter algebras is rather obscure in con­
trast to that for D4 , which has been discussed in Sec. 4. 
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neighborhood of the local gauge copy is filled with copies of transverse potentials. 
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1. INTRODUCTION 

Let us define a gauge as a section of the connection 
bundle t A IZ over A IG, where A denotes the space of connec­
tions and Z the center of the compact semisimple gauge 
group G. Usually one defines the gauge by imposing the Cou­
lomb condition upon potentials A ~, 

(1 ) 

This work is devoted to analysis of the local uniqueness of 
gauge from the standpoint of bifurcation theory. We deal 
with the Euclidean manifolds with a boundary as well as 
with R3 and R4 noncom pact spaces. 

Gribov2 argued that: 
(i) if the Faddeev-Popov determinant is singular at 

some transverse potentials [i.e., ones satisfying (1)], then the 
condition (1) does not assure uniqueness-there are local de­
generacies; 

(ii) the gauge is locally unique for sufficiently weak 
potentials. 

It should be noted that the singularity of the Faddeev­
Popov determinant corresponds to a nonzero solution of our 
equation (4), which is the result of the linearization of the 
transversality condition (3). It should be stressed, that Gri­
bov's statement (i) is not at all obvious, since solutions to 
linearized equations may not be tangent to any curve of exact 
solutions to a full nonlinear equation (see a counter example 
in Berger3

). The validity of (i) will be corroborated only par­
tially in this paper, under some assumptions about the multi­
plicity of solutions to the linearized Eq. (4). This will be done 
in Theorem 0: its possible generalization including the non­
compact R n case is discussed in Sec. 5. 

We will show that the locally degenerate potentials can 
have non vanishing measure in path integral quantization 
(that fact was pointed out by Moncrief,4 but he dealt with 
global copies and used different techniques). Two examples 
of copied potentials are contained in Sec. 3. 

The local uniqueness for weak potentials, so important 
from the perturbation theory viewpoint, is well known and 
probably proved previously (its generalization for noncom­
pact R case was done essentially by Moncrief). I will discuss 
it in Sec. 4 and 5 only for completeness. 

2. MAIN RESULTS 

Let us define the element of the gauge group G by 
g = exp ( - ia(x)·O'(, where 0' is the generator of the Lie alge-

bra G. We assume a basis for the Lie algebra G in which the 
structure constantsf~c are completely antisymmetric. The 
potentials transform under the gauge transformation ac­
cording to a pseudotensor rule: 

(h A;)g = hg-tA;g + ig-ta;g. (2) 

The parameter h may be interpreted as the intensity of the 
potential A;, after suitable renormalization. Such redefini­
tion of A; is always possible and it has the following advan­
tage: that we may use bifurcation theory methods treating h 
as a bifurcation parameter. The bifurcating solutions g ob­
tained below are analytical functions of h. 

The Coulomb condition is, inserting (2) into (1): 

a;(hg-tA ~(7bg + ig-ta;gj" = O. (3) 

Suppose that A ~ and a 0 are of class C '" (11 ) and on the 
boundary 

a O (al1) = O. 

(As a matter offact I should prove our theorems previously 
in suitable Holder or Sobolev spaces and then use the Sobo­
lev embedding theorem6 to show that obtained solutions a 0 

are of class Coo. I omit such technical details now and 
elsewhere). 

Expanding in (3) the functionsg near a = 0 give (includ­
ing terms to first order) 

LlaQ + 2hf~dA ~a;ad = O. (4) 

If these equations have a nontrivial solution at h = ho, van­
ishing on the boundary, and the critical values of h are isolat­
ed, then the full nonlinear equation (3) may have bifurcating 
solutions g ¥ 1, g(al1 ) = 1. 

The linearized operator D defined above [the Frechet 
derivative of (3) at a 0 = 0] is skew-symmetric, with elliptic 
symbol5

,6 so its kernel is finite, dim kerD < 00, (ii) kerD • 
= cokerD = kerD,5-7 Under our assumptions about the dif­

ferentiability of potentials and gauge transformations, tak­
ing into account (i) and (ii) we conclude that ker DnRangeD 
= 0, and the operator D acts bijectively between C 00 (11 )I 
ker D--+C "'(11 )/ker D, 

Hence, as a direct consequence of the theorem 4,2,3.5 

we get: 
Theorem 1: IfEq, (4) have an odd number of solutions at 

h = ho, then Eq, (3) have nontrivial solutions a O(x,h - hoI of 
class C "', such that a 0--+0 as h--+ho' These solutions are ap­
proximated to first-order by some combinations of the ele­
ments ofkerD. 
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The case of simple multiplicity may be examined in 
more detail by using the Lyapunov-Schmidt procedure.7 

The computations yield 

a O =jO(h - ho)xconst + O(h - hal, (5) 

whererE kerD, 0 (h - ha)/(h - ha)-O (h-ho)' 

In order to avoid misunderstandings we stress that for trans­
verse A ~ and h fixed there is only one element g near the 
unity of gauge group, such that Eq. (3) hold (assuming simple 
multiplicity). The fixed transverse potential h Ai with h suffi­
ciently near ho has a transverse gauge copy (hAi)g where 
g = exp( - ia aao ), and consequently a curve of transverse 
copied potentials (hAi)g parametrized by (h - ha) corre­
sponds to a curve h Ai [if (h - ho) is small enough]. Both 
curves originate from the point ho A 7 which has no small 
gauge copy itself. 

Now we prove 
Theorem 2: The bifurcating solution 

g = exp( - ia °aa)' where aa is taken from (5), is locally 
unique. 

Proof: Our thesis follows from the implicit function 
theorem which asserts that bifurcating solutions are unique 
in a sufficiently small neighborhood of critical points 
(ho,a 0).5,6.7 These results are valid in two, three, and four 
Euclidean dimensions. 

It follows from the Theorem 2 that the Frechet deriva­
tive D does not vanish at (hA ~ ,a a) if h =I ho, and h :::::: ho(a a is 
the bifurcating solution). Therefore the implicit function 
theorem assures the existence of a locally unique COO con­
tinuation g(A n on some open transverse neighborhood Vof 
hoA~. ! Note that the operator defined by 

¢> b (hA ~, a") = ai [exp( + ia"aa )hAiexp( - ia"ao) 

+ iexp( + z(?ao )aiexp( - ia"ao)6 ] 

acting between (C '" transverse potentials) X (C 00 Lie alge­
bra G valued functions)-(C 00 Lie algebra G valued func­
tions), annihilates (hA ~,a 0), but a¢> 0 lac? I ri' ~ a" is nonzero 
ifh = hoI. 

Hence we conclude that a whole neighborhood of each 
local gauge copy (hA ~)g is filled with copies of transverse 
potentials near hoA ~,A~EV. This fact means that the degen­
erate potentials can have nonvanishing measure in path inte­
gral quantization. Section 3 presents two families of such 
potentials. Moncrief obtained the result, but contrary to the 
way it was presented above, he requires that the global copies 
of small potentials are known; since they are not obtainable 
by linearization, it is rather difficult to find some explicit 
examples. 

3. EXAMPLES 

[Throughout this section we put G = SU(2)]. 
(a) Let n belong to R 3, with a sphere as a boundary. 

Suppose 

A ~ = Dol kr€ikIXka/COSV, (6) 

where Dal is the Kronecker's symbol. 
Then Eq. (4) are 
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.:1j2{X) - 2hk (r)€ikt x k a/ cosu aJ3(x) = 0, 

.:1j3(X) + 2hk (r)€ikl x k at cosu aJ2(x) = 0, 

.:1JI(X) = 0. 

The boundary conditions arer(an) = O.fl is zero, 
whileJ2 andJ3 may be found in the form 

PIx) = sincpP )(vlf2(r), 

J,(:x = coscpP )(vlf3(r). 

The equations for Plr) andj3(r) are 

(~+~~_~/\1'2+ 2hk(rlf' =0 
a? r ar ? f r ' 

(~+~~_I~)j3. + 2hk(rlf2 =0. 
a? r ar? r 

Put k (r) = - r and I = 1. Then 

(7) 

(8) 

(9) 

p(r) = J3(r) = r - !1' 3/2 (~2h r), where .f 3!2 is the Bessel 

function. Th~ bo.undary condition .f 3!2 (~2h Ro) = ° ef­
fects a quantIzatIOn of h. Nonzero solutions exist for suffi­
ciently large h and a smallest possible value of h, say ho' 
corresponds to a simple multiplicity. The solution bifurcat­
ing from g = 1 is (to first order) 

g(x) = exp[ - i(h - ha)constP: (V)1'3/2(~ 2hr)] 

x (a2sincp + a 3coscp.)] (10) 

(b) The same analysis in a two-dimensional case, under 
the assumption 

A~=8ol€ikxkk(r)'€ik = -€ki'€12= 1, (11) 

yields the following form of the solutions to the linearized 
equations: 

jl(X)=O, 

J2(X) = coscpj(r), 

J3(X) = sincpj(r), 

whereJ(r) is a solution of 

r +.!....j' - ~f - 2hk (r)f= 0, t(Ro) = O. 
r r r 

(Ro is a radius of a boundary). 

(12) 

(13) 

Suppose k (r) = const = c (such choice corresponds to a 
constant magnetic field along the third axis in the three-

dimensional context). Thenj = / 2(2~ - 2hcr ), and the 

critical values of h are given by / 2(2~ - 2hcRo ) = O. 
The bifurcating solution is 

g(x) = exp [ - i(h - ho)const1' 2(2~ - 2hcy r) 

x (a2coscp + a 3sincp.)] (14) 

4. THE COMPACT CASE 

The Frechet derivative of the operator defined in (3) at 
h = 0, a 0 = 0 is simply the Laplacian. The Laplacian acts 
isomorphically between C~ (n (spaces off unctions vanish­
ing on the boundary an) _C "'(il), and more generally, be­
tween C~+2 +d_C k + d (Holder) or W~ +2-+Wk 

(Sobolev) spaces. 5,6.7 So from the implicit function theorem 
we obtain: 
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Theorem 3: The gauge exists locally for sufficiently 
weak potentials [i.e., there exists such neighborhood ofg = 1 
where Eq. (3) has no solutionsg# 1]. 

5. THE NONCOMPACT CASE 

Consider the case when {J is replaced by R N. The 
Holder or Sobolev spaces are not correct now. 8 We will use 
those of Cantor-Nirenberg-Walker, M~,.s(R n,R m).8 M~i.s is 
the completion of CO' functions wiht compact support in the 

following norm II IIs,p • .s = :Ilo l <s I (~ 1 + r )Ia l 
+ .s D af I p 

where 8ER, s;;;.O an integer, lip denotes the usual Lp norm on 
R nand D a is alai I axf····axc;,.· corresponding to a multi-index 
a. The Laplacian acts isomorphically between 
M~jfr-+M~_2 . .s+2,forp>n/(n-2), l/p+ l/p'= 1, 
- nip <8 < - 2 + nip' (see Cantor8

). 

Theorem 4: For sufficiently weak fields the gauge exists 
locally in three or four Euclidean dimensions. 

Proof This is a direct consequence of the above men­
tioned Laplacian property, for p > 3 (in three dimensions) or 
p> 2 (in four dimensions); our thesis follows now from the 
implicit function theorem, as in Theorem 3. 

Note that this result was obtained essentially by Mon­
crier who proved injectivity of our operator D for small 
potentials A ~ (that is all that we used). 

The results of Sec. 2 cannot be obtained in the noncom­
pact case so simply. The methods used beforehand do not 
work since the zeroes of the Frechet derivative D are not 
isolated in the parameter space h. One must then put a sub­
sidiary condition (correctly stated); if the linearized equa-

23 J. Math. Phys., Vol. 23, No.1, January 1982 

tions have nonzero solutions at discrete values h, it is possi­
ble to get result analogous to our Theorem 1 (it is necessary 
to prove beforehand the splitting property4 of D in the spaces 

M~ . .s). 

6. REMARKS 

The Gribov ambiguities include also phenomena of 
nonlocal nature (e.g., Gribov showed that even the potential 
A = 0 has a nontrivial gauge copy, far from the unity ele­
ment); they are not explainable in the framework ofbifurca­
tion theory. One can study bifurcation from g # 1; especially 
interesting seems to be that case when a global g connects 
A = 0 and a nonzero transverse field. Unfortunately, such g 
is not known explicitly as yet, so the analytical method is 
inapplicable. 
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We d~velop ~ gener~l approa.ch to solve the transmission problem for a scalar macroscopic field in 
an an~sotroplc strattfie~ medIUm. The method is based on a chain like set offunctional equations of 
the LIppmann - Schwmger type. A typical example of the fields under consideration is the wave 
field of a particle in the effective mass tensor approximation. 

PACS numbers: 03.40.Kf, 03.6S.Nk 

I. INTRODUCTION 

In this paper, we develop a general approach based on 
equations of the Lippmann-Schwinger type to solve the 
problem of the propagation of scalar waves of any kind in an 
anisotropic plane-stratified medium. In the general case, the 
system under consideration consists of an arbitrary number 
of macroscopic crystalline layers of arbitrary thickness. The 
layers can be different from one another in their crystal sym­
metries, orientations of the crystallographic axes relative to 
the separation planes and in their physical characteristics. A 
typical example of the fields under consideration is the wave 
field of a particle in the effective mass tensor approximation. 

For any dynamic field in a stratified medium (as well as 
in any other medium, homogeneous or inhomogeneous), two 
interrelated problems of practical and theoretical interest 
can be formulated, viz., the problem of the field of an arbi­
trary "extraneous" source (the "forced" field) and the prob­
lem of a free field. The former is reduced to the problem of 
calculating the Green's function (i.e., the field of a point 
source) for the given system. This problem was solved in Ref. 
1. The problem of a free field is considered in the present 
paper. 

In a stratified medium, two kinds of states of a scalar 
field are possible. A state of the first kind arises as a result of 
all conceivable scatterings (i.e., multiple reflections and re­
fractions by all existing interfaces) of an initial plane wave 
impinging at an arbitrary angle on the nearest separation 
plane. The field in such a state is different from zero in the 
whole infinite or in some semi-infinite space and can there­
fore be called nonlocalized. On the contrary, the field in a 
state of the second kind is different from zero only in a region 
which is limited from both ends in the direction normal to 
the interfaces. Such a state can propagate in the form of a 
traveling wave only in the directions parallel to the interfaces 
and can therefore be called localized. In this paper, we con­
sider both kinds of states of a free scalar field. 

In Ref. 1, our approach was based on a chain like set of 
functional equations of Dyson's type in the mixed coordi-

a1pennanent address. 

nate~propagation vector representation. In the present pa­
per, m order to solve the problem of the propagation of a free 

macroscopic field in a stratified medium as described above, 
we also formulate a chainlike set of functional equations in 
the mixed coordinate-propagation vector representation. 
However, these equations are now equations for the scatter­
ing amplitudes, and not for the Green's function, and should 
therefore be of the Lippmann-Schwinger type.2 Thus, we 
generalize the conventional collision theorl·3 to the prob­
lem which is, in fact, classical. 
. The structure of the set of Lippman-Schwinger equa-

tIons proves to be similar to that of Dyson's equation. This 
similarity can be used in two ways. Firstly, the set of Lipp­
mann-Schwinger equations can be solved straightforwardly 
by essentially the same method as suggested in Ref. 1. Sec­
ondly, the scattering amplitudes can be expressed in terms of 
the corresponding total Green's function. Thus the problem 
of a free field reduces to the problem of the field of a point 
source. Naturally, the final results for the scattering ampli­
tudes obtained in these two ways are the same. 

The method of the Lippmann-Schwinger equations de­
veloped in this paper for a scalar field in an anisotropic strati­
fied media is of importance from both the practical and theo­
retical points of view. Practically, this is an extremely 
effective method of finding the eigenstates of the field in an 
anisotropic stratified system and also of solving the corre­
sponding transmission problem. The most essential advan­
tage of our approach over conventional methods is that our 
approach enables us to reduce the amount of calculations 
needed for solving each specific problem to a minimum. This 
is demonstrated in Sec. VII by a rather complicate example 
of an arbitrary anisotropic three-layer medium. Theoretical­
ly, our method is a generalization of the conventional colli­
sion theory2.3 to the problems which are essentially classical. 
Also, the scalar field is the simplest field in mathematical 
physics. The problem of the propagation of the acoustic or 
electromagnetic field in an anisotropic stratified medium 
can be solved by the same method but is technically much 
more complicated (compare, e.g., Refs. 1 and 4). Therefore, 
aside from the interest which results obtained present in 
themselves, the considerations of this paper can serve as an 
introduction to the corresponding theory of the more com-
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plicated fields just mentioned. This theory will be discussed 
elsewhere. 

II. FORMULATION OF THE PROBLEM 

A. The basic equation 

Let us consider a free scalar macroscopic field of fre­
quency UJ, 

t/J(r,t) = t/J(r;UJ)e - iw" UJ > 0, (2.1) 

in an anisotropic stratified medium. The class of the fields 
and the properties of the media under consideration are as­
sumed to be the same as in Ref. 1. 

Regarding a stratified system as a particular case of a 
spatially inhomogeneous medium, one can write the equa­
tion for t/J(r;UJ) in the form 

[w(r) + Vi~k(r)Vk ]t/J(r;UJ) = 0, (2.2) 

where 

w(r) = E - U (r) + iy(r), y(r)-+ ± 0, (2.3) 

~k (r) is a material characteristic of the medium 
(~k = €ki), U (r) is a potential, and y(r) is a small phenomeno­
logical parameter. The form of E depends on whether the 
original time-dependent equation for t/J(r,t ) is of Schro­
dinger's type or a conventional classical equation, viz., 

E = I full for Schrodinger's field, (2.4) 
loi for a classical field. (2.5) 

Similarly, y should be associated with the inverse lifetime of 
the state of energy E in the quantum case, or with the absorp­
tion of the field in the classical case. 

We deal with a medium consisting of anisotropic flat 
layers of arbitrary thicknesses in contact. In the general case, 
the layers are assumed to be different from one another in 
their energy-like (or frequency like) parameters wI'-' material 
characteristics €;, and in the orientations of the crystallogra­
phic axes with respect to the separation planes. The quanti-

• 'k 
ties wI'- and £'1'- are constants. The integer subscript /-l num-
bers the layers successively. 

Choosing the x-axis along a normal to the interfaces, we 
have l 

w(r) = i sl'-(x)w1" Eik(r) = i sl'-(x)€;, (2.6) 
I'-~o I'-~o 

where 
sl'-(x) = 8(x - dl'-_ d - 8(x - dl'-)' 

dl'-_I <dl'-' /-l = 1, .. ·,n - 1; 
(2.7) 

So(x) = 8 (do - x), Sn (x) = 8 (x - dn _ 1 ), 

do = - 00, d n = 00. 

We can also write 

t/J(r;UJ) = t/J(x)eifll·ru, t/J(x)==t/J(x;fll ,! Wy I), (2.8) 

where the mark II stands for the orthogonal projection of a 
vector onto they yz-plane (e.g., onto anyone of the inter­
faces). As a result, Eq. (2.2) becomes 

25 J. Math. Phys., Vol. 23, No.1, January 1982 

i [wySy(x) + ~:a:cSy(x)a~ It/J(x) = 0, (2.9) 
v=o 

where 

ak .,kl a .~ 
x = u ax + 1111' 

(2.10) 

wI'- = EI'- + iyl'-' EI'- = E - UI'-' Yl'--+ ± 0. (2.11) 

In this paper, we retain the main notation of Ref. 1. In par­
ticular, x = dl'- is the separation plane between the (p - l)th 
and the /-lth layers, sl'- (x) is the shape function of the /-lth 
layer, 8 (x) = !( 1 + sgnx) is the unit step function, n is the 
total number of interfaces. The total number of layers is 
equal to n + 1. According to Eqs. (2.7), the zeroth (/-l = 0) 
and the last (/-l = n) layers are assumed to be semi-infinite 
spaces x < do and x > dn _ 1 , respectively. In Eqs. (2.8) and 
(2.9), the subscript v is used instead of /-l. 

From the complex conjugate ofEq. (2.9) and from the 
definitition of t/J(x) [see Eqs. (2.8)], it follows that 

t/J*(x;fll ,! Wv I ) = t/J(x; - fll ,! w~ I ) = t/J( - x;fll ,! w~ I ). 
(2.12) 

In the case of Schrodinger's field, the state t/J* is time-re­
versed to t/J. 3 Hence, t/J(x;fll ,! w~ I ) should, according to Eq. 
(2.12), be regarded as a state which is time-reversed to 
t/J(x; - fll ,! Wv I)· By analogy, we retain this definition also 
for a classical field. It should, however, be remembered that 
the original time-dependent equation for a classical field is of 
the second order in a I at and therefore this definition is pure­
ly formal. 

B. Waves in a homogeneous medium 

If £,k (r) = ~: and U (r) = UI'- in the whole infinite space, 
Eq. (2.1) becomes 

(~I'- + E;ViVk)l,6l'-(r) = 0, (2.13) 

where we have substituted ~ I'- for wI'-' and 1,61'- (r) for t/J(r;UJ). 
Equation (2.13) gives the eigenfunctions and eigenvalues of 
the field in an infinite medium ofthe/-lth kind, viz., 

where f is a propagation vector, and al'- is a normalization 
coefficient. The quadratic form ~ I' (f) is assumed to be posi­
tive definite. 

The eigenfrequencies UJ = UJI'- (f) can be found by com­
bining the relation 

(2.15) 

with Eq. (2.4) or (2.5). At the same time, the group velocity of 
a wave packet, 

V~g(f) = JUJI'-(f)IJji, 

is expressed in terms of the quantity 

v~ (f) = J'6' I'- (f)IJp = 2€;J'k 

by a simple relation. This is 

Vi _ {Ii- 1 V~ (f) for Schrodinger's field, 
1'-8(f)- lE- 1/ 2 if)' 

2 VI'- ( for a claSSical field, 
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(2.17) 

(2.18) 

(2.19) 
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where the square root is positive (E = (J} > 0). 

C. The stationary scattering problem 

Our purpose is to represent the stationary state of the 
field in a stratified medium, which is formed as a result of all 
possible multiple scatterings (i.e., reflections and refractions) 
by all existing interfaces of a plane wave coming from infin­
ity. We assume that such a wave offrequency w comes from 
the semi-infinite space x < do and strikes the interface x = do 
at an arbitrary angle. We can therefore write 

(2.20) 

where ¢o(x) is the incident wave in the (x,fll ) representation 
X o(x) is associated with the wave reflected into the interior of 
the region x < do. 

In accordance with Eqs. (2.8), (2.14), and (2.15), the inci­
dent wave is given by the relations 

¢o(x) = aoeif~x, E = If o(f.) + U(), I~ = 0'1/; +/
11

, 

(2.21) 

where f. is its propagation vector, and E is connected with 
the frequency of the wave by Eq. (2.4) or (2.5). The magni­
tude of the normalization coefficient ao = ao(f.) is unimpor­
tant in the problem under consideration, because we are in­
terested only in the ratio of the wave amplitude in each layer 
to ao. The constant phase factor exp ( - if; do), which ap­
pears in the expression for ¢o(x - do) [see Eq. (2.20)], is intro­
duced for convenience and can, in principle, be included in 

ao· 
In addition to the characteristics of the "bare" plane 

wave, which are given by Eqs. (2.21), we introduce the sign 
index of the x-component of its group velocity, viz., 

s. =sgnv; = sgnv~g(f.), 

where 

(2.22) 

(2.23) 

in accordance with Eq. (2.17). The fact that the signs ofv~ (f. ) 
and v~g(f.) are the same follows from Eqs. (2.18) and (2.19). 

It is clear that 

s. = + 1 for forward propagation in time, (2.24) 

s. = - 1 for backward propagation in time. 
(2.25) 

The case of s. = + 1 corresponds to the stationary scatter­
ing problem as was formulated at the beginning of this sub­
section. If s. = - 1, we arrive at the stationary state which 
should be regarded as a time-reversed state, in accordance 
with the definition of Sec. IIA (compare with conventional 
collision theory3). In this paper, we consider both kinds of 
stationary solutions of the problem. 

It should be noted that, generally, there is no single­
valued correlation between the signs of v~ (f.) andf;. At 
each given s., the component I; can, in principle, have ei­
ther sign. Only in the case of an isotropic medium, 
sgnf; = s •. In fact, the sign of v~(f.), but not of f;, is 
important in the problem under consideration. 
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D. Boundary conditions 

At each separation plane, say x = d
" 

, the quantity ¢(x) 
satisfies the boundary conditions 

¢(d
" 

- 0) = ¢(dp + O)=¢(dp )' 

Jl (d
" 

- 0) = Jl (dl' + 0) Jl (d,,), 

where, by definition, 

(2.26) 

(2.27) 

Jl(x) = -c;.ka~¢(x), dl'_1 <x<dp ' p=O,I, ... ,n. 
(2.28) 

Equation (2.26) means that, at any separation plane, the field 
under consideration is assumed to be a continuous function 
of the position vector. Integrating both sides ofEq. (2.9) with 
respect to x between dp - 0 and dp + 0, and taking into 
account Eq. (2.26) and the definition of Jl (x), Eq. (2.28), we 
arrive at Eq. (2.27) as 0-+ + O. 

If the nth region is impenetrable to the given field, we 
have 

(2.29) 

As a consequence, Eq. (2.26) for p = n takes the form 

¢(dn _ I - O)=¢(dn ) = 0, (2.30) 

while Eq. (2.27) for p = n becomes ineffective. Thus, we ar­
rive at the scattering problem for a stratified semi-infinite 
space x < d n _ I with the rigid boundary condition at 
x = d n I as given by Eq. (2.30). 

E. Equations of motion 

Making use of Eqs. (2.7), and (2.27), and (2.28), and tak­
ing into account that de (x)ldx = o(x), one can rewrite Eq. 
(2.9) in the form of the set of differential equations 

(w" +<:a~a~)¢(x)=O, dp _ 1 <x<dp , p=O,I, ... ,n. 
(2.31) 

Since 

[If 0 (f. ) + E'oka~ a~ ]¢o(x) = 0, (2.32) 

substitution of Eq. (2.20) into Eq. (2.31) with p = 0 gives 

(WO+E~ka~a~)xo=o, x<do, p=O, 

where 

(2.33) 

Wo = Eo + iyo = If o(f.) + iyo (2.34) 

[for Eqs. (2.32) and (2.34), see Eqs. (2.10), (2.11), and (2.13)­
(2.15)]. Equations (2.31) withp = 1,2, ... ,n and Eqs. (2.33) 
form the complete set of equations of motion for the problem 
under consideration. 

F. The quantum-mechanical interpretation 

Writing < = ~~(mp -Irk, (2.35) 

we can regard Eq. (2.9) as a time-independent equation of 
Schrodinger''S type for quasiparticles in the effective mass 
tensor approximation. The original time-dependent equa­
tion for ¢(r,t) can obviously be written 

ifuJ¢/at = H¢, 

where 
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A n 
H = Vi~k(r)Vk + U(r), U(r) = L sl'(x)U1' (2.37) 

1'=0 

[for ~k (r) and sl' (x), see Eqs. (2.6) and (2.7)]. 
Making use ofEqs. (2.36) and (2.37), we arrive in the 

usual way (see e.g., Ref. 5, pp. 56, 57) at the continuity 
equation 

altPl 2/at = V'/, (2.38) 

where the current density is written as 

/ = (i/fI)Eik(tPVktP* - tP*VktP) [Eik = ~k (r), tP = tP(r,t )]. 
(2.39) 

An asterisk stands for complex conjugation. In developing 
Eq. (2.39), we have taken into account that iI * = iI and 
~k = Eki. 

Combination ofEq. (2.39) with Eqs. (2.1), (2.6), and (2.8) 
gives 

/ = /(x;fll ,! w" I) 

= ~[ i S,,(X)~:] [tP(x)a;*tP*(x) - tP*(x)a;tP(x)], 
fI v=o 

(2.40) 

wherea; is defined by Eq. (2.10). Owing to Eqs. (2.26)-(2.28), 
i = /(x) proves to be continuous at each interface, i.e., 

/(dl' - 0) =/(dl' + 0), ,u = O,I, ... ,n - 1, (2.41) 

as it should be. 
Substitution of ~k for ~k and rPl' (r) for tP [see Eqs. (2.13) 

and (2.14)] into Eq. (2.39) gives the current density of quasi­
particles in an infinite medium of the ,uth kind, 

j~ = lal' 12V~g(f), (2.42) 

where V~8 (f) is the group velocity as defined by Eqs. (2.17) 
and (2.18). Setting,u = 0 and f = f* in Eq. (2.42), we obtain 
the current density of the incident particles or, more general­
ly, the "bare" current density. Making use of the relation 

Iv 1'8 (f) 12=V~g (f)v~g(f) 
= 4f1-2(E!)iY1 k = fl2(ml' -2)iY1\ (2.43) 

we can normalizej~ to any desired intensity. 

III. THE RETARDED AND THE ADVANCED 
"STANDARD" GREEN'S FUNCTIONS 

Like conventional collision theory,3 our formalism is 
based on the use of the properly defined retarded and ad­
vanced "standard" Green's functions in the (x,fll )-represen­
tation. Below, we introduce these functions and discuss their 
main properties. 

The "standard" (unperturbed) Green's function for the 
,uth medium in the (x,fll )-representation, 
DI'(x)=DI' (x;fll ,wl')' is, by definition, the solution of the 
equation I 

(wI' + E;a~a; )DI' (x) = D(x), - 00 < x < 00, (3.1) 

where a~ is given by Eq. (2.10), and wI' is an arbitrary com­
plex parameter. It was shown in Ref. 1 that 

DI'(x) = - (2.8I')-lel'(x), (3.2) 

(3.3) 
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where 

el' (x) = exp(if;, (SxIXx), Sx = sgnx, (3.4) 

and IX = II' (sxlx = II' (SXI(fll ,wI') is the solution of the equation 

~ I' (f)=~/:f1k = wI' (3.5) 

with respect tolX, which satisfies the condition 

sgn Im/l' (sxlx = SX' (3.6) 

In addition to D I' (x) itself, the quantity TI' (x) as defined by 
Eq. (3.3) is of fundamental importance in our formalism. 

Equation (3.5) is quadratic inr and has therefore two 
solutions. These can be written 

I" =/~IX =/~IX(fll'wl') =PI' + isql' , s = ± 1, (3.7) 

where 

PI' = - (~X)-I~y~, ql' = (~x)-lpl" 

PI' = (~X)II2(UI' - WI')J, (3.8) 

1 iklilk 0 1 ik ik (-XX)-I-Xi-Xk UI' = /I, I'll II II > , /I, I'll = EI' - <:1' <:1' <:1' ' 

!i,kl = !y,z}, (3.9) 

sgn Reql' = sgn Re/31' = sgn(~X)1/2 = + 1. (3.10) 

Inserting Eq. (3.7) into Eq. (3.6) and taking into account Eq. 
(3.10), we find that s = SX' 

The quantity ul' has a simple physical meaning. Let us 
find the minimum of ~ I' (f) as a function ofr(fll = const). 
From the equation v~ (f) = 0 [see Eq. (2.17)], it follows that 

(3.11 ) 

After simple reduction, we find that the desired quantity can 
be written 

~ I'min (fll ) ~ I' (fl'min) = ul" (3.12) 

where Ufl is exactly that as defined by Eqs. (3.9). Since, by 
assumption, ~ fl (f) is positive for any f, the quadratic form 
Ufl = Ufl (fll ) is also positive definite. 

In all further considerations, we assume that 
Wfl = Efl + iyl" in accordance with Eqs. (2.11). Ifyfl - + 0, 
the quantity D I' (x) can be called the retarded Green's func­
tion. Ifyfl - - 0, we deal with the advanced Green's 
function. 

In order to find the retarded and the advanced Green's 
functions, we write 

I" =1" + i"" 
li=Dilr +/

11
, P = DiI!x +/

11
, 

where 

We also write 

Pfl =Pfl(l + iDfl)' 

where 
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(3.14) 

(3.15) 
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(3- = lim / a) _ E . 
{l 1I-'j.l WI' - "'/' + fYI• 1', . • ± 0 

1
(C;,")I12 ~ UI" - EI" if EI" < ul"' 

- iS1'I.(c;,X)1/2~ E,l - ul" if EI" > U,I , 

01" = [2(EI" -UI")]-l y,I , s1',. = sgnYI" , 

(3.16) 

(3.17) 

(3.18) 

with the square roots being positive. The sign factors on the 
right-hand sides ofEqs. (3.16) and (3.7) are chosen so that (31" ' 
Eq. (3.15), satisfies the condition (3.10). 

The quantity 1/ can be found if we insert Eq. (3.15) into 
Eq. (3.7) [ql" = (c;,X)-I(3'I ' see Eqs. (3.8)] and compare the 
resulting expression forl x with that given by the first ofEqs. 
(3.13). Thus we obtain 

1/ = 1/~1 = - isYIJ2/J,I = Y,J v~ (ii;'). (3. 19) 

In writing the final result in Eq. (3.19), we have made use of 
the relation 

v~ (~~I) = 2(c;,xl~'X + c;,klt) = 2is/J,I' (3.20) 

which follows from Eq. (2.17), in view of the definitions of 
1:~'i [see Eqs. (3.14) and (3.15)] and PI" [see Eqs. (3.8)]. 

Equations (3.14) and (3.19) can alternatively be derived 
if we insert/ i as defined by Eqs. (3.13) into Eq. (3.5) and then 
write Eq. (3.5) in the linear approximation in 1/ as 

g" I" (f) + i1/v~ (f) = EI" + iy I" 

[for v~ (fJ., see Eq. (2.17)]. Thus we recover Eq. (3.19). Also, we 
get g" I" (f) = EI"' which is equivalent to Eq. (3.14). 

In order to identify r = II" 1* with/~xlx one should set 
S = Sx in Eqs. (3.13)-(3.17), (3.19), and (3.20). 

From Eqs. (3.16) and (3.17), it follows that there is a 
difference between the retarded and the advanced Green's 
functions only if E'l> ul"' In this case, Eqs. (3.14) and (3.20) 
become 

Ix = l~'X l,. [a,.]x = PI" + ul" (c;,X)-II(31" I, 

v~(f) = 2uI" 1(31" I, EI" > ul"' (3.21) 

where 

ul" = SS1' , S,S1' = + 1. (3.22) 
Since!", ~nd v~'l fl") ~ obtained are real, combination of 

Eq. (3.6) with Eqs. (3.13) and (3.19) gives 

sgnv~(f) = SxS1'" if EI" > ul" (3.23) 

[for sr,,' see Eqs. (3.18)]. This relation justifies the above defi­
nition of the retarded and the advanced Green's functions: If 
sr" = + 1, the quantity DI" (x) is associated with waves com­
ing out from the plane x = 0 (sgnv~ = sgnx); if sr,. = - 1, 
the waves are incoming (sgnv~ = - sgnx). 

From the first of Eqs. (3.21), it follows that 

1_( - a]x = _I-(a]x + 2:p =I-(a]x _ 2(€".X)-I€".Y-1a]k 
I" I" I" I" I" I" I" ' 

U = ± 1. (3.24) 

In writing this result, we have taken into account the defini­
tion of PI" as given in Eqs. (3.8). 

In tensor notation independent of the system of coordi­
nates chosen, Eq. (3.24) can be written 
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l la)l = pikr1a]k =I-(a)i _ 2ni(v .f(a)) 
I" ,wI" I" 1"1"' (3.25) 

where 

pik = Oik _ 2vi nk 
It {l , 

v. = (f"bnanb)-I€iknk (3.26) 
Ii J-l JI' 

and n is a unit vector in the x-direction. A tilde stands for 
transposition. 

According to Refs. 1 and 6, P: as defined by Eqs. (3.26) 
is the operator of the generalized image in the plane r·n = 0 
which is the boundary of an anisotropic half-space (r.n < 0 or 
r·n > 0) of the ,uth kind. In other words, the generalized im­
age rimg of a space point r belonging to the half-space is writ­
ten as 

r:mg = Pj,"; = r - 2V;1 (r·n). (3.27) 

If now one defines the generalized image fimg of a propaga­
tion vector f by requiring that r·f = rimg .fimg , the result is 

I:mg = p;Jj 
= Ii - 2n'(v'I ·f). (3.28) 

This can readily be verified by means of the relation 

pu pjk = pu pkj = 0" (3.29) 
p. f..1 Jl • 

Calculations of v~ (fimg ) by Eqs. (2.17) and (2.38) give 

Vi (f. )=2~j r! = 2~j pjkrk = 2P U eikrk 
I-l Img - fkI lmg J.L,.w II fLI 

= P Z viI" (f) = v~ (f) - 2v~ (vI" (f)·n). (3.30) 

In developing this result, we have made use of the relation 

(3.31) 

which follows from Eqs. (3.26). Thus, under the generalized 
image transformation, the quantity vI" (f) and hence, the 
group velocity [see Eqs. (2.18) and (2.19)] are transformed 
like a position vector [compare Eqs. (3.27) and (3.30)]. 

Let us multiply Eq. (3.28) by v~ and Eq. (3.30) by ni. 
Since vI" 'n = 1, this gives 

v,I·fimg = - vl"'f, n'VI" (fimg ) = - n'vl" (f). (3.32) 

As a consequence, Eqs. (3.28) and (3.30) are invariant under 
the permutations (mg ~f and vI" (fimg )~v I" (f), respectively, in 
agreement with Eq. (3.29). For an isotropic medium, we have 

(3.33) 

and thereforel:mg = -IX, as it should be. 
Comparing Eq. (3.25) with Eq. (3.28), we conclude that 

the vector Iti c~n be regarded as the generali~ed image. of 
the vectorl I" - a), m the plane r'n = O. The phYSical meanmg 
of the generalized image is as follows (see also Sec. V A): If 
f = f1a

) is the propagation vector of a plane wave which 
propagates in an anisotropic half-space, r'n < 0 or r'n > 0, of 
the,uthkindandstrikestheplaner·n = x = o separating this 
half-space from a medium of a different kind, then 
fimg = f1- a) is the propagation vector of the reflected wave. 
The x-components of group velocities of the incident and 
reflected waves are given by the second ofEqs. (3.21), which 
is in agreement with the second of Eqs. (3.32) (ni = Oix). 

We recall that the "bare" plane wave is given in the 
region x < do, which corresponds to,u = O. Without loss of 
generality, we can assume that do = O. In view ofEq. (2.34), 
Eq. (3.17) with,u = 0 becomes 
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Po = - isyo Ie:kf! I = - isyos. Ef/f! = - !isyos. if.. 
(3.34) 

In developing the final result in Eq. (3.34), we have taken into 
account Eqs. (2.22) and (2.23). 

Substitution of Eq. (3.34) together with the expression 
for Po [see Eqs. (3.8)] into Eq. (3.21) withlL = 0 and s = s/l­
gives 

lolsx)x 10 [s.sy"lX !b'\x = 1; - (1 - S)(CoX)-ICo"l'!, (3.35) 

where 

(3.36) 

andf~ is defined in Eqs. (2.21). Equation (3.35) can be writ­
ten in covariant form as 

10 ISx)i l[s.syo)i lb·li = fi. - (1 - S)(vo·f. )ni (3.37) 

or, equivalently, 

1b -Iii = fi~"l'! =f~ - 2ni(vo·f.),fb + Iii =f~, (3.38) 

where p~k and v~ are defined by Eqs. (3.26). Thus,fb - lJi is 
the generalized image off~ in the plane r·n = x = O. 

Settingfi =f- I - Iii fi =fi and I/. = 0 in the second 
Img J.J-' .' r-

ofEqs. (3.32), and taking into account that ni = t5 ix, we have 

v~(fb-'I)= -v~(f.)= -if.. (3.39) 

As a consequence, Eq. (3.23) with r = rb - II and IL = 0 be­
comes SxSy" = - s.' in agreement with the fact that 
S = - 1 [see Eqs. (2.22), (2.23), (3.35), and (3.36)]' Since 
s x = - 1 (x < do = 0), the relation obtained reduces to 
Sy" = s •. 

This result is a particular case of the general condition 

Sy,. = s.' IL = O,l, ... ,n, (3.40) 

which, evidently, must be imposed on Sy,. [see the criteria 
(2.24), (2.25), and the discussion following Eq. (3.23)]. 

According to Eqs. (2.24), (2.25), and (3.40), one should 
use the retarded Green's functions when constructing the 
usual causal solutions of the stationary scattering problem, 
and the advanced Green's functions in constructing the 
time-reserved states. This is in agreement with conventional 
collision theory.3 

IV. LIPPMAN-SCHWINGER EQUATIONS 

In analogy with what was done in deriving the set of 
Dyson's equations in Ref. 1, we multiply the equation for the 
scattering amplitude in thelLth layer [i.e., Eq. (2.33) if IL = 0, 
and Eq. (2.31) if IL = 1,2, ... ,n] by the corresponding "stan­
dard" Green's function, D /l- (x I - x), where x I is an arbitrary 
fixed point on the x-axis. Then we integrate both sides of the 
resulting expression with respect tox betweend/l- _ I + D and 
d/l- - D, respectively, thus obtaining 

[o~/iDo(XI _ x)(wo + ~ka~a~)Xo(x)dx = 0, IL = 0, 

[
" -b D/l-(x , _ x)(w/l- + €:a~a~)¢(x)dx = 0, IL = 1,2, ... ,n, 

d" _] + 6 

where D is a positive infinitesimal (d _I = - 00, dn = 00). 
In these equations, we integrate by parts the terms contain­
ing derivatives with respect to x [see Eqs. (2.10)]. Lastly, 
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making use ofEq. (3.1) and the notation given by Eqs. (2.28) 
and (3.3), we arrive at the equations 

s~)(x)Xo(x) - Do(x - do + t5)Fo(do - t5) 
- To(x - do + c5)Xo(do - c5) = 0, IL = 0, (4.1) 

s~)(x)¢(x) + D /l- (x - d/l- _ I - D)ll (d/l- - I + t5) 

-D/l-(x-d/l- +D)ll(d/l- -8)+ T/l-(x-d/l-_
' 

-8) 

X¢(d/l-- I + c5) - T/l-(x - d/l- + t5)¢(d/l- - 8) 
= 0, IL = 1,2, .. ,n - 1, (4.2) 

s~)(x)¢(x) + Dn(x - dn -I - 8)ll(dn -I + t5) 
+Tn(x-dn_,-O)¢(dn-' +t5)=0, lL=n, (4.3) 

where 

ro(x) = - Coka~Xo(x) = ll(x) - Ao(x - do), x <do, (4.4) 

Ao(x) = - Coka~f/Jo(x) = - iCokf!f/Jo(x) = - !iv;f/Jo(x), (4.5) 

s~)(x) = O(x - df1.-
' 

- 8) - O(x -d/l- +8), 
I-t = 1,2, ... ,n - 1, 

s~)(x) = 0 (do - x - 8), s~)(x) = 0 (x - dn _ I - 8). (4.6) 

In writing Eqs. (4.1)-(4.3), we have substituted x for XI' In 
Eqs. (4.1) and (4.3), we have also taken into account that 
Df1.(± oo)=OandT/l-(± 00)=0 (d_ 1 = - 00, dn = 00). 
The final expression for ro(x) in Eq. (4.4) is apparent from 
Eqs. (2.20) and (2.28). 

Inserting the expressions 

Xo(do - 8) = ¢(do - 8) - f/Jo( - 8), 

ro(do - 8) = II (do - 8) - Ao( - c5), 

which follow from Eqs. (2.20) and (4.4), into Eq. (4.1), we 
obtain 

S~I(X)Xo(x) - Do(x - do + 8)ll (do - 8) 

-~~-~+~~~-~=-~~-~+~-~ 
IL=~ ~n 

where 

Fo(x,xo) = Do(xJAo(xo) + To(xo)f/Jo(xo)· 

From Eqs. (3.2)-(3.4), it follows that 

(4.8) 

T/l- (x) = D/l- (x)R ~xl, R ~xl = D /l-- '(O)T/l- (sx XO) = sxf3/l-' 
(4.9) 

Equation (4.8) can therefore be rewritten as 

Fo(x,xo) = Do(x)if> ~x)(xo), 

where 

if> ~xl(xo) = D 0- I(O)FO(sx XO,xo). 

(4.10) 

(4.11) 

Passing in Eq. (4.8) to the limit x_ ± 0, and taking into 
account Eqs (3.2)-(3.4), (3.34), and (4.5), we obtain that 

Fo(sx XO,xo) = - !(sx + s.Sy"lf/Jo(xo)' (4.12) 

At the same time, 

(4.13) 

where f30 is understood as its limiting value Po given by Eq. 
(3.34). 

Combination of Eqs. (3.34) and (4.12) with Eq. (3.40) 
yields 

(4.14) 
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(4.15) 

Let us now pass in Eqs. (4.2), (4.3), and (4.7) to the 
lim£')--->- + 0 and take into account that 

(4.16) 

where s/1- (x) are defined by Eqs. (2.7). Then making use of 
Eqs. (2.26) and (2.27), we arrive at a chainlike set offunction­
al equations of the Lippmann-Schwinger type, viz., 

o (do - x)Xo(x) - A ~I(x - do) = - Fo(x - do'O), fl = 0, 
(4.17) 

S/1-(x)¢(x) +A t-II(X - d/1-- I) -A t t-11(x - d'l) = 0, 
fl = 1,2, ... ,n - 1, (4.18) 

O(x -dn_I)¢(x) +A ~-II(x -dn_ l ) = 0, fl = n, (4.19) 

where 

and 

A ~I(X - dy) = D/1-(x - dy)l1(dy) + T/1-(x - dv)¢(dy), 

A = v = fl - 1 or fl = A + 1, v = fl, (4.20) 

Fo(x - do,O) = 0 (x - do)Do(x - do)lP 6+ 11(0), (4.21) 

lP 6+ 11(0) = - D 0- I(O)¢lo(O) = - aoD 0- 1(0) = 2ac/3o, 
(4.22) 

in accordance with Eqs. (4.10), (4.11), and (4.15) [for Do (0), 
see Eqs. (4.13) and (4.14)]. 

The structure of the set of Lippmann-Schwinger equa­
tions is similar to the structure of Dyson's equations consid­
ered in Ref. 1. Each of Eqs. (4.17)-(4.19) relates to one defi­
nite layer. However, formally each of them holds in the 
whole infinite space ( - 00 < x < 00 ), except for the points on 
the separation planes (x =f d /1-' fl = 0,1, ... , n - 1). This is 
achieved by using the shape functions S,l (x). The quantities 
¢(d/1-) and 11 (d/1-) in Eqs. (4.20) are unknowns to be found in 
the course of solving Eqs. (4.17)-(4.19). 

It should be emphasized that Eqs. (4.17)-(4.19) deter­
mine both the usual "causal" solutions of the stationary scat­
tering problem and the time-reversed states. The character 
of the solution depends on whether the retarded or the ad­
vanced "standard" Green's functions are used in Eqs. (4.20)­
(4.22\' 

V_ SOLUTION OF THE LIPPMANN-SCHWINGER 
EQUATIONS 

Equations (4.17)-(4.19) can be solved by the method 
used in Ref. 1 for solving a similar set of Dyson's equations. 
Following this method, we set x = xo+ in Eq. (4.17), x = x/1-­
and x = x/1-+ in Eq. (4.18), and x = xn- in Eq. (4.19), where 
x/1-- and x/1-+ are arbitrary fixed points satisfying the inequal­
itiesx/1-- <d/1- _ I and x,; > d/l , respectively. In particular, we 
can set 

x =x/1-- = d/1--1 - 0, X =x/1-+ = d/1- + O. (5.1) 

As a result, we obtain a chainlike set of 2n linear algebraic 
equations with respect to 2n unknowns ¢(d/1-) and 11 (d/1-) 
(.u = 0,1, ... , n - 1). All these equations, except for the first, 
are homogeneous. Since 
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D/1-( - 0) =D/l ( + 0) =D,,(O), ~,( - 0) - ~,( + 0) = 1 
(5.2) 

[see Eqs. (3.2) and (3.3)], the same set of equations can also be 
obtained by the substitutions x = d /1- _ I + 0 and x = d /1- - 0 
instead of those given by Eqs. (5.1). Having found ¢(d /l ) and 
II (d,,), we can insert them back into Eqs. (4.17)-(4.19) and 
thus obtain the scattering amplitudes for all values of x. 

In what follows, we consider a transformation which 
proves to be very useful in solving Eqs. (4.17)-(4.19). Also, 
we need this transformation in the further discussion (see the 
next section). 

Setting x = do + 0 in Eq. (4.17) and x = dn _ I - 0 in 
Eq. (4.19), we solve the resulting equations with respect to 
11 (do) and 11 (d n I)' respectively. In view of Eqs. (4.20) and 
(4.21), we obtain 

fl (do) = lP b + 11(0) - R i/ 11¢(do), 

fl(dn_ I )= _R~-II¢(dn_I)' 

where R ~I is defined in Eqs. (4.9). 

(5.3) 

(5.4) 

Substitution ofEq. (5.3) into Eqs. (4.17) and (4.18) with 
fl = 1, and ofEq. (5.4) into Eqs. (4.18) with fl = n - 1 and 
(4.19) gives 

o (do - x)Xo(x) = 0 (do - x)Do(x - do)D 0- 1(0) 

X [¢(do) - ¢l0(0)], fl = 0, (5.5) 

SI(X)¢(X) - Ddx - ddfl (dd - TI(x - dd¢(d l ) 

+ 86t II(x - do)¢(do) = - DI(x - d l )lP6 + 11(0), fl = 1, 
(5.6) 

Sn _ I (x)¢(x) + Dn _ I (x - dn _ 2 )l1(dn - 2) 

+ Tn _ I (x - dn _ 2 )¢(dn - 2) 

-8~;;-~II(X-dn_I)¢(dn_d=0, fl=n-1, (5.7) 

o (x - d n _ I )¢(x) = 0 (x - d n _ I )D n (x - d n _ I ) 
XD n- I(O)¢(dn _ I)' fl = n, (5.8) 

where 

8~~(x) = Ty(x) - Dv(x)R ~:I = Dy(x)R ~:,XI, S = ± 1, 
(5.9) 

R (s".s,.1 = R (s,.1 _ R (s,.I = S {.3 - S {.3 S S = + 1 
!-LV V Jl V v J.l J.l' J.l' v -

(5.10) 

[see Eqs. (4.9)]. In Eqs. (5.5) and (5.8), the coefficient of ¢(do) 

and ¢(d n _ I ) appear originally in the form of 8 lxi II(x - do) 
and 8~;;- II(x - d n _ I)' respectively. In view of Eqs. (4.9), 
(5.2), and (5.9), these can be written 

8 ~~ (x) = sO ( - SX)D/l (x)D /1-- 1(0), (s = ± 1, fl = O,n). 
(5.11) 

In deriving Eq. (5.5), we have also taken into account Eqs. 
(4.11) and (4.15). 

Thus, we have eliminated the unknown constants II (do) 
and 11 (dn _ I) and reduced the original set of n + 1 Lipp­
mann-Schwinger equations to a set of n - 1 interdependent 
functional equations. These are Eq. (5.6), Eqs. (4.8) with 
fl = 2,3, ... ,n - 2, and Eq. (5.7). Equations (5.5) and (5.8) are 
independent ofthose equations and of each other. On finding 
¢(do) and ¢(dn _ I)' Eqs. (5.5) and (5.8) determine Xo(x) 
(x < do) and ¢(x) for x > dn _ I , respectively. Equation (5.5) 
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for x> do and Eq. (5.8) for x> dn _ I become identities ofthe 
type 0=0. 

Moving from the beginning and from the end of the 
reduced set of n - 1 equations towards its middle, we can 
continue the process of successive elimination of the remain­
ing unknown constants tP(dl' ) and II (dl' ) until the original set 
of Lippmann-Schwinger equations is completely solved. 

Combination ofEqs. (4.20) with Eqs. (3.2)-(3.4) gives 

A ';:-II(x - dl' -I) = - aoa~+ Ilexp[if~+ IIX(x - dl'_1 I], 
x>dl'_I' 

A';: + II(x - dl') = aoa~- Ilexp [if~- IIX(X - dl')],x <dl',(5.12) 

where 

a~+ II = (2aoBl')-1 [ll(dl'_l) +/3l'tP(dl'-1 I], 
a~-II = - (2aoBl')-1 [/l(dl') -/3l'tP(dl')] (5.13) 

are constants independent of ao. In Eqs. (5.12) and in all 
equations belowJ~IX is understood as its limiting valuel~lx 
as YI' - ± 0 (see Sec. III). 

Inserting Eqs. (5.12) into Eqs. (4.17)-(4.19), we express 
the scattering amplitudes in the form of superpositions of 
plane waves, viz., 

( ) (-II [i/I-IIX( d)] d X 0 x = aoao exp loX - 0 ,x < 0' Il = 0, 
(5.14) 

tP(x) = ao{a~ + Ilexp [if~ + IIX(X - dl' _ I)] 

+ a~- II exp[if~- IIX(X - dl')]}' dl' _ I <x <dl" 

Il = 1,2, ... ,n - 1, (5.15) 

tP(x) = aoa~ + Ilexp [if~ + IIX(X - dn _ I)]' 

(5.16) 

In writing Eq. (5.14), we have taken into account that 
Fo(x - do'O) = 0 if x <do [see Eq. (4.21)]. 

Each given wave in Eqs. (5.15) and (5.16) is either travel­
ling or spatially damped depending on whether the corre­
sponding quantity 11 ± I)x = l~ ± Ilx is real or complex (see Sec. 
III). However, in any case, we have 

Ib-Ilx=lb-llx=/~ -2(vo·f.)= -/~ -2(CoX)-ICo'J~ 
(5.17) 

[see Eqs. (3.26), (3.35)-(3.38), and (3.40); ni = 8 iX
]. Thus,Xo(x) 

as given by Eq. (5.14) always corresponds to a traveling 
wave. According to Eq. (3.30), the group velocity of this 
wave is determined by the relation 

V~(fO-II) = V6(f.) - 2v6(Vo(f.).n) 

= v~ - 2v~ (CoX)-I€:; (5.18) 

[see also Eqs. (2.18) and (2.19)]. If the medium is isotropic, we 
havefb- Ilx = - f~, as it should be 

From Eqs. (5.14) and (5.16), it follows that 

ab + II = ao- IXo(do), a~ - II = ao- ItP(d
n 

_ I ). (5.19) 

Formally, these relations can be proved with the help ofEqs. 
(5.3), (5.4), and (5.13) [see also Eqs. (5.5) and (5.8)]. 

Equations (4.17)-(4.19) and the related discussion cor­
respond to a stratified infinite space. In the case of a stratified 
semi-infinite space x < d n _ I , one should omit Eq. (4.19) and 
combine the last of Eqs. (4.18) (i.e., for f-L = n - 1) with Eq. 
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(2.30). The set offunctional equations so obtained can be 
treated in the same way as above. 

IV. THE REFLECTION AND TRANSMISSION 
COEFFICIENTS 

We define the reflection (R ) and transmission (T) coeffi­
cients of a stratified medium as 

R = lim lim Ilrefl (xliii hn I, 
(do - x)_ + 00 ('0- ± 0 

T= lim lim l!.'r(x)l/lhn I, 
(x-d,.. 1)-+ 00 y,._±O 

(6.1) 

where jin' lefl (x), and j,r (x) are the current densities of the 
incident, reflected, and transmitted waves, respectively. The 
limiting transitions in Eqs. (6.1) should be understood in the 
sense that 

l1]b - III «do - x)-I<l/b - IIXI, x <do, 

11]~ + 111«x - dn _ I )-I<I/~ + I)XI, x>dn _ \J (6.2) 

where/~lx and 1]~1 are defined by Eqs. (3.13)-(3.19) [see also 
Eq. (5.17)]. Thus the limiting transition Yo- ± 0 or 
Y n - ± 0 must be performed before the corresponding limit­
ing transition with respect to x. 

It should be emphasized that all YI' must be of the same 
sign, in accordance with Eq. (3.40). Also, they should have 
been taken to be positive, in view of the criterion (2.24). How­
ever, in fact, the final results for Rand Tproveto beindepen­
dent of the choice of the sign index s •. 

Substitution of tPo(x) (x < do), X o(x) (x < do) or "'(x) 
(x >dn _ I )asgiven by Eq. (2.21), (5.14), or(5.16), for tP(x) into 
Eq. (2.40) yields 

jin = laoI 2vog (f.), 

jrefl(x) = IXo(xWRevog(fo- I)), x<do, 

j,r(x) = ItP(xWRevng(fn+ II), x>dn -I' 

(6.3) 

where v ng (f.), VOg (fo - II), and v ng (fin + II) are the group veloci­
ties of the incident, reflected and transmitted waves, 
respectively. 

Inserting Eqs. (6.3) into Eqs. (6.1), and taking into ac­
count Eq. (2.18), we obtain 

R = lab - 1)12Iv~(~a - 1))l/lv~(f.)1 = lab - 1112, (6.4) 

T- {Ia~ + 1112Iv~(~n+ 11)l/lv~(f.)1 = !a~ + 11121/3n 111/301 

- If En > Un' (6.5) 

o if En < Un (6.6) 

In developing Eqs. (6.4) and (6.5), we have made use of the 
second ofEqs. (3.21) and Eq. (4.14);/30 and/3n are understood 
asiJa and /3 n' respectivley. In order to prove Eq. (6.6), we note 
that, in the case of En < Un' the quantity f~ + Ilx is complex 
and v~(fin+ II) is pure imaginary as Yn- ± 0 [see Eqs. (3.14), 
(3.16), and (3.20)]. Therefore both factors I ",(xW and Re Vag 
in the expression for j'r(x) [see Eqs. (6.3)] vanish if x is large 
enough and Yn- ± O. 

The quantitiesR and Tas given by Eqs. (6.4)-(6.6) satis­
fy the relation 

R=I-T. (6.7) 
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This can be proved in the general form in analogy with what 
is done in quantum mechanics (see, e.g., Ref. 5, pp. 75-78). In 
each particular case, Eq. (6.7) can also be verified by straight­
forward calculations (see, e.g., the next section). 

The above results were derived for Schrodinger's field. 
In the case of a classical field, the only difference is that one 
should use Eq. (2.19) instead of Eq. (2.18). Therefore Eqs. 
(6.1), (6.3), (6.4), and (6.6) remain in force. The same applies 
to Eq. (6.5) if we assume that Uo = Un = 0 and therefore 

i'f o(f.) = 15/ n (fill~ II) = E 0 2 

[see Eqs. (2.11), (2.21), and (3.5)]. 

VII. EXAMPLES 

A. Two half-spaces in contact (n = 1) 

(6.8) 

By way of example let us consider the simplest case of 
two semi-infinite spaces x < do and x > do is contact. This 
corresponds to n = 1. More complicated cases of a three­
layer medium and a compound semi-infinite space will be 
considered in Secs. VIIB and VIle. 

Equating the right-hand sides of Eqs. (5.3) and (5.4) 
(n = 1) for JJ (do), we obtain 

ll;(do) = R \;; I. + II -- I<p h + 11(0) = 2aJ3o/([3o + (3d, (7.1) 

where use has been made of Eqs. (4.22), (4.13), and (5.10). 
Combination of Eqs. (5.19) (n = 1) with Eqs. (2.20), 

(2.21), and (7.1) gives 

a~)- II = ([30 - (31)1([30 + (31)' a\ + II = 2{301([30 + (31)' 
(7.2) 

As before, a bar over {3l
l 

is omitted. 
One can easily verify that Rand Tas given by Eqs. (6.4) 

and (6.5) (n = 1), subject to Eqs. (7.2), do satisfy Eq. (6.7). 
Also, in view of the definition of{3o [see Eq. (4.14)] and{31 [see 
Eqs. (3.16) and (3.17)], it follows from Eqs. (7.2) that 
lab- III = 1 if EI <U I, and lab III < 1 if EI >U I. 

If 1{311~00 (i.e., UI~OO or t;'x~oo, Iqll < (0), Eqs. (7.2) 
become 

(7.3) 

which corresponds to the semi-infinite space x < do with a 
rigid boundary x = do. 

B. A three-layer medium (n = 2) 

In the case of a medium consisting of three layers in 
contact, viz., a flat slab do <x <d l and two semi-infinite 
spaces x < do and x > d I' one should set n = 2 in all general 
relations. Combining Eqs. (5.3) and (5.7) or (5.4) and (5.6), we 
obtain the same equation, namely 

SI(X)t,b(X) + Bbi II(X - do)t,b(do) - Billl(X - ddt,b(dd 

(7.4) 

In order to solve this equation, we evaluate it at 
x = do - 0 and x = d l + 0 in turn. Thus, we get the set of 
two linear algebraic equations 

Bbi II( - O)t,b(do) - Billl( -ldt,b(d l ) = -DI(O)<Pb+ 11(0), 

(7.5) 
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Bbi 11(/1)t,b(do) - e~lll( + O)t,b(d l ) = - DI(lI)<P~/ 11(0), 

where, according to Eqs. (3.2), (5.9), and (5.10), 

eLi II( - 0) = (2{3d- I([31 + (30), 

eLi l)(ll) = - (2{3r l([31 -(3o)e l(lI)' 

e ~III( + 0) = - (2{3d- I([31 + (32)' 

e~1 II( -II) = (2{3d- I([31 -(32)ed -II)' 

and 

(7.6) 

II = d l - do (7.7) 

is the thickness of the slab. 
From Eq. (7.5), it follows that 

t,b(do) = M 2S ~ : <P b + 11(0), 

¢(d l ) = 2{3lel(ldS ~: <P b + 11(0), 

where we use the notation 

Sa" = ([31 + aJ3o)([31 + (32) - ([31 - ac/Jo)([31 - (32) 

(7.8) 

Xexp( - 2qJd, a o = ± 1, (7.9) 

Mp = {31 + {3l l + ([31 - {3Ji )exp( - 2ql/d, f.1 = 0,2. 
(7.10) 

Substitution of Eqs. (3.2) and (7.8) into Eqs. (5.5), (5.8) 
(n = 2), and (7.4) gives Eqs. (5.14), (5.15) (;.t = 1), and (5.16) 
(n = 2) with 

al
1
- II = ao- I [t,b(do) - 1/10(0)] 

= 2{3oM2S :.:: - 1 = - S_IS ~-:, 

a\-+ II = (aoS+d- I([31 + (32)<P l/ 11(0) 

= 2{3o([31 + (32)S ~t :, 

all - II = (aoS+ 1)--1([31 - (32)e l (ld<P L + 11(0) 

= 2{3o([31 - (32)S ~: exp(ifll+ IIX/I), 

ai+ II = ao-It,b(d l ) = 4{3J3IS -+ :exp(if\+ IIXld 

(7.11) 

[see also Eqs. (5.13) with f.1 = 1 and (5.19) with n = 2]. In 
developing these results, we have made use of Eqs. (5.9), 
(5.10), (7.9), and (7.10). We have also taken into account the 
definitions of I/Io(x), ep(x), and <P b + 11(0) [see Eqs. (2.21), (3.4), 
and (4.22), respectively]. As before, we omit bars over all 
variables. Thus, (3I

L 
with f.1 = 1,2, is given by Eqs. (3.16) and 

(3.17) together with Eq. (3.40); {30 is given by Eq. (4.14). The 
quantities q I and III + I Ix are expressed in terms of {31 by Eqs. 

(3.8) and (3.14). 
Since{3o is always pure imaginary, and{32 can be either 

real or pure imaginary, it is convenient to rewrite Eq. (7.9) in 

the form 

Syl = ±2e-Q ,/,Sy' 

where 

S± =S' ±S", 

S ' = {30([31 coshq III + {32sinhq lid, 

or 

Va. A. losilevskii 

(7.12) 

(7.13) 

32 



                                                                                                                                    

S =SIII +S121 
± ± ±, 

SI~ = - is • .8I(I.8ol ± 1.821)coshqI11' (7.14) 

SI~ =(±.8i -1.8011.821)sinhqI11 if E2 >U2 

f/32 is imagnary). 

In order to derive Eqs. (7.14) from Eqs. (7.l3), we rearrange 
somewhat the terms in Eqs. (7.13) and make use ofEqs. (3.17) 
and (3.40) withp = 2 [see also Eqs. (2.22) and (4.14)]. 

Taking into account Eqs. (3.16) and (3.17) withp = 1, 
one can readily see from Eqs. (7.13) and (7.14) thatS' or SI~ 
is pure imaginary (real) and simultaneously, S " or S I~ is re;l 
(pure imaginary) if.81 is real (pure imaginary). Hence, 

IS+1 2 =IS'1 2 +IS"1 2 ifE2 <u2, (7.15) 

IS ± 12 = ISI~ 12 + ISI~ 12 = 1.811 2(1.801 2 + 1.821 2) 

X cosh2ql11 + (1.811 4 + 1.80121.8212)lsinhqIII12 

± 21.8011.811 21.821 if E2 >U2. (7.16) 

In developing Eq. (7.16), we have made use of the identity 

.8i Isinhql11 12=1.81 12sinh2ql l l (ql = (e;'X)-I.8I)' (7.17) 

which is valid if.81 is real or pure imaginary. 
Combination of Eqs. (7.11) and (7.12) gives 

a l - II - S IS a l + II - 2{3 R eip'/'IS o - - +, 2 - <PI + 

(see also Eq. (3.7)). Therefore, Eqs. (6.4) and (6.5) become 

R = IS_12/IS+12, T=41.8oll.81121.821/IS+12. (7.18) 

In viewofEqs. (7.15)and(7.16),R = 1 ifE2 < u2, andR < 1 if 
E2 > Uz. Also, one can readily verify that Rand T as given by 
Eqs. (7.18) subject to Eq. (7.16) satisfy Eq. (6.7). 

If.8o =.82 (i.e., ~k = ~k and Uo = U2 ), Eq. (7.16) 
becomes 

IS ± 12 = (1.801 2 + 1.8112flsinhqlll12 

+ 4u ± 1.801 2 1.811 2, u+ = 1, u_ = 0, (7.19) 

where we have again made use of Eq. (7.17). 

C. A compound half-space 

If 1.821----'00 (i.e., U2----.00 or ~x----.oo,_ Iq21 < 00), Eqs. 
(7.11) subject to Eqs. (7.12) and (7.13) become 

ab - II = S I",I/S 1,,:-1, a il- II = .8oeq'/'ISI~I, 

a~ + II = - .8oeiP'/'ISi~l, a~ + II = 0, 

where 

(7.20) 

SI;I =.8osinhqI11 ±.8lcoshqlll' (7.21) 

Evidently, SI~I = !eq'/'Mo, whereMo is defined by Eq. (7.10). 
In this case, Eqs. (5.14) and (5.15) fJ-l = 1) give the scat­

tering amplitudes in a medium consisting of a fiat slab 
do < x < d I with a rigid boundary x = d I and a semi-infinite 
space x < do in contact (¢(x) = ah + II = ° if x> d J). In anal­
ogy with Eq. (7.15), one can readily see that 

ISI;112 = 1.8012IsinhqJ/112 + 1.8112(coshqlll)2, (7.22) 

and therefore R = ISI",112/ISI~112 = 1, as it should be 
expected. 
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VIII. RELATIONS BETWEEN THE SCATTERING 
AMPLITUDES AND THE TOTAL GREEN'S FUNCTION 

A. The total Green's function 

In Ref. 1, we derived the set of Dyson's equations for 
the total Green's function of a stratified medium in the (x,fll ) 
representation, D (x,xo) D (x,xo;fll ,I w,. J). In analogy with 
Eqs. (4.17)-(4.19), those equations can be written 

e (do - x)D (x,xo) - B bll(X - do,xo) 

= e (do - xo)Do(x - xo), p = 0, (8.1) 

S{L (x)D (x,xo) + B ~ - II(x - d{L _ I ,xo) - B ~ + II(x - d{L ,xo) 

= S{L (xo)D{L (x -xo), p = 1,2,oo.,n - 1, (8.2) 

e (x - dn _ J)D (x,xo) + B ~n - II(x - dn _ I ,xu) 

=e(XO-dn_I)Dn(x-xo), p=n, 

where 

B~I(x - d,.,xo) = D{L(x - d,.)P(dv'xo) 

+ T,,(x - dv)D(dv'xo)' 

A = v = p - 1 or A = p + 1, v = p, 

D (d,.,xo) = D (dv - O,xo) = D (d,. + O,xo), 

(8.3) 

(8.4) 

(8.5) 

P(dv'xo) = P(dv - O,xo) = P(d,. + O,xo), Xo =l=dv , 
(8.6) 

P(x,xo) = -~ka~D(x,xo), d{L-1 <x<d{L' 

- 00 <Xo< 00, P = O,l,oo.,n (8.7) 

[see Eqs. (2.12)-(2.17) of Ref. 1]. The quantitiesD (dv'xo) and 
P(dv'xo) are unknowns to be found in the course of solving 
the Dyson's equations [compare with ¢(d,.) and n (dv) in the 
case of Lippmann-Schwinger equations]. 

In the general case, the total Green's function of a 
stratified medium can be written as 

n n 

D(x,xo) = I I S{L(X)S{L,,(XO)D{Lll,,(X,XO)' 
}-l=OJ.-lo=O 

where 

D'll'jx,XU) = Dl'll"DI'(x - xu) + A/ll',,(x,xo), 

A,ll',,(x,xo) 

(8.8) 

(8.9) 

I I DI'(x-d,.)K{L11".w"DI'"(dv,, -xo), 
\'=fL~ l,jlvo =}-lo-I.j.1o 

(8.10) 

while K'll'"."v" = KI'I'".,""" (fll' I W;. J lis a matrix which depends 
neither on x nor on xO' In each particular case, this matrix 
can be found in the course of solving the corresponding set of 
Dyson's equations. 

From the reciprocity relation J 

D (x,xo;fll' I W;. J) = D (xo,x; - fll' I W;. I), (8.11) 

if follows that 

AI'''" (x,xo;fll' I W;. J) = AI','" (xo, x; - fll' [w;. J) (8.12) 

and therefore 

K (f [w J) = K ( - f . [w J) J.LJ1'(» vvo 11'..i /-l(J.l.v()v II' A • (8.l3) 

In order to derive Eqs. (8.8)-(8.10), we insert Eq. (8.4) 
into Eqs. (8.1)-(8.3) and make use of Eqs. (4.9). Thus, we 
arrive at Eqs. (8.8) and (8.9) with 
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A/l/l.,(x,xo) = L D/l(x - dv)L/l/lo.v(xo), (8.14) 
v=/l-I./l 

where 

L/l/lo./l - I (xo) = - P(d/l _ I ,xo) - f3/l D (d/l _ I,xO)' 

(8.15) 

L/l/lo./l(xo) = P(d/l'xo) - f3/l D (d/l'xo) 

[cf. Eqs. (5.13)]. In writing these results, we have taken into 
account that Jl and Jlo in Eqs. (8.9) and (8.10) are indices of 
layers which contain x andxo, respectively [see Eqs. (2.7) and 
(8.8)]. Therefore the right-hand sides ofEqs. (8.15) depend on 
Jlo implicitly. Since 

D/l (x;fll ,w/l) = D/l ( - x; - fll ,w/l)' (8.16) 

combination of Eqs. (8.12) and (8.14) immediately gives Eq. 
(8.10). 

According to Eqs. (3.2), (3.4), and (3.7),D/l(x) is continu­
ous on the whole x-axis. From Eqs. (8.5), (8.8)-(8.10), it 
therefore follows that D (x,xo) is a continuous (and hence 
bounded) function of both x and xo, i.e., 

D (x ± ~,xo) = D (x,xo ± ~) = D (x,xo), (8.17) 

where ~ is a positive infinitesimal. Equation (8.17) holds for 
Ix - xol >~ as well as for Ix - xol <~ (i.e., for x = xo)' In 
particular, x or Xo or both can be equal to d/l' 

On the other hand, the quantity P (x,xo) as defined by 
Eq. (8.7) satisfies the relations 

P( ") P( ") _ {O if Ix - xol>~,(8.18) x - U,Xo - X + u,xo -
1 if Ix -xol<~·(8.19) 

This result can immediately be obtained by integrating both 
sides of Eq. (2.9) of Ref. 1 with respect to x between x I - ~ 

andx l +~, wherex l is any fixed point on the x-axis, and~ is, 
as before, a positive infinitesimal. Taking into account Eqs. 
(8.7) and (8.17) and replacing XI by x, we arrive at the desired 
result. 

Thus, in calculating P (x ± ~,xo) as X-Xo and ~- + 0, 
the order of the limiting transitions with respect to x and ~ is 
essential. 

It should also be noted that Eq. (8.6) is a particular case 
ofEq. (8.18), which corresponds to Ix - d/l I <~ and 
Ixo -d/ll>~· 

B. The scattering amplitudes 

Setting Xo = do - 0 in Eqs. (8.1)-(8.3), we obtain 

() (do - x)D (x,do - 0) - B ~I(x - do,do - 0) = Do(x - do), 
Jl = 0, (8.20) 

s/l (x)D (x,do - 0) + B ~ - II(x - d/l _ I ,do - 0) 

- BIj:+ II(x - d/l,do - 0) = 0, Jl = 1,2, ... ,n - 1, 
(8.21) 

() (x - d n _ I)D (x,do - 0) + B ~ - II(x - dn _ pdo - 0) = 0, 
Jl = n. (8.22) 

Equation (8.20) and Eq. (8.21) withJl = 1 involve the 
quantitiesD(do,do - O)andP(do,do - 0) which should be un­
derstood as the limiting values 

D (do,do - 0) = lim lim D (do ± ~I,do - ~2)' (8.23) 
8,~+O 8,~+O 
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P(do,do - 0) = lim lim P(do ± ~I,do - ~2)' (8.24) 
{j,-~ + 0 8, • + 0 

where ~I tends to zero first. This follows from the definitions 
of D (d/l ,xo) and P (d/l ,xo), Eqs. (8.5) and (8.6) 
(Ix - dol<lxo - dol)· 

On account of the continuity of D (x,xo) (see Eq. (8.17)), 
we have 

D (x,do - 0) = D (x,do + 0) = D (x,do) 

and, in particular, 

(8.25) 

D (do,do' - 0) = D (do,do + 0) = D (do,do)' (8.26) 

This means that the order of the limiting transitions in Eq. 
(8.23) can be changed. On the other hand, the same limiting 
transitions in Eq. (8.24) are not permutable because P (x,xo) is 
discontinuous at x = Xo' It should be noted that we do not 
need Eqs. (8.25) and (8.26) in the further considerations. 
However, these equations can be useful in specific calcula­
tions [see, for example, Eq. (8. 37) and the related 
discussion] . 

We observe that the sets ofEqs. (4.17)-(4.19) and (8.20)­
(8.22) have the same "matrix of coefficients", and the unk­
nowns which are involved in these equations, except for 
Xo(x), satisfy the boundary conditions of the same kind [com­
pare Eqs. (2.26) and (2.27) with Eqs. (8.5) and (8.6)]. Howev­
er, thefact that Xo(x) andD (x,do - 0) satisfy completely dif­
ferent boundary conditions at x = do [see Eqs. (2.20)], (2.26) 
and (2.27) does not enable us to express the solution of Eqs. 
(4.17)-(4.19) directly in terms of D (x,do - 0), which is the 
solution of Eqs. (8.20)-(8.22). 

This difficulty can be avoided by elminating Eqs. (4.17) 
and (8.20). Equation (4.17) is eliminated by the transforma­
tion considered in Sec. V. Likewise, in order to eliminate Eq. 
(8.20), we evaluate it at x = do + 0, thus obtaining 

whereR b + II is defined in Eqs. (4.9). Substitution ofEq. (8.27) 
back into Eq. (8.20) and into Eq. (8.21) with Jl = 1 gives, in 
analogy with Eqs. (5.5) and (5.6), that 

() (do - x)D (x,do - 0) 

= () (do - x)Do(x - do)D 0 I(O)D (do,do - 0), Jl = 0, 
(8.28) 

sl(x)D(x,do - 0) - DI(x - dl)P(dl,do - 0) - TI(x - dd 

XD(dl,do - 0) + 8bi II(x - do)D(do,do - 0) 

= DI(x - d l ), Jl = 1, (8.29) 

where 8bi II(x - do) is defined by Eqs. (5.9) and (5.10). 
Let us now consider two reduced sets offunctional 

equations, Lippmann-Schwinger and Dyson's. The first 
consists ofEqs. (5.6), (4.18) withJl = 2,3, ... ,n - 1, and (4.19). 
The second consists of Eqs. (8.29), (8.21) with 
Jl = 2,3, ... ,n - 1, and (8.22). It is essential that these sets of 
equations involve only such unknown functions [viz., !fIx) 
and D (x,do - 0), respectively] which satisfy the boundary 
conditions of the same kind at all separation planes x = d /l ' 
Jl = O,I, ... ,n - 1. 

We multiply Eqs. (8.21) withJl = 2,3, ... ,n - 1, (8.22), 
and (8.29) by f/J b + 11(0). Then putting 
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¢'(x) = - D (x,do - 0)4'> ~ + 1)(0) = - 2aJ3oD (x,do - 0), 

x> do, (S.30) 

as well as 

¢'(dp.) = - D (dp. ,do - 0)4'> b + 1)(0) 

= - 2aJ3oD (dp. ,do - 0), 

n (dl") = - P (dl" ,do - 0)4'> b + 1)(0) 

= - 2aJ3oP (PI" ,do - 0) 

(S.31) 

(S.32) 

for all fl = O,I, ... ,n - 1, we arrive at the set of n functional 
equations, which exactly coincides with the reduced set of 
Lippmann-Schwinger equations [for 4'> b + 1)(0), see Eqs. 
(4.22), (4.13), and (4.14)]. Since this set of equations has a 
unique solution, the quantity ¢'(x) as defined by Eq. (S.30) 
should be identified with the scattering amplitude, while the 
quantity n (d ) as defined by Eq. (S.32) is identical with 
n (d ) given by Eq. (2.27) and (2.28). Equation (8.31) is, obvi­
ousl;, the particular case ofEq. (S.30), which corresponds to 
x = d . It should also be noted that the reduced sets of Lipp­
mann~Schwinger and Dyson's equations involve n (dl") and 
P (dl" ,do - 0) with all fl, except for fl = O. N~vertheless, E~. 
(S.32) remains in force for fl = a as well. ThIS can be seen If 
we multiply Eq. (S.27) by 4'> b + 1)(0) and compare the resulting 
with Eq. (5.3). 

Inserting ¢'(do) as given by Eq. (S.31) into Eq. (5.5) and 
making use ofEq. (8.28), we obtain 

Xo(x) = [D (x,do - 0) - Do(x - do)lD 0- I(O)tPO(O) 

= - ao\2f3oD (x,do - 0) + exp [ifb - I)X(X - do)] J, 
x <do, (8.33) 

where f30 andfb - I)x, are understood as Po andlb - I 'x, respec­
tively [see Eqs. (4.14) and (5.17)]. 

It is convenient to write 

¢,(x) = i SI" (x)XI" (x), x>do' (8.34) 
I"~t 

where sl" (x) are given by Eqs. (2.7). Thus, we introduce the 
notation 

¢'(x) XI" (x), dl"_t<x<dl"' fl=I,2, ... ,n (8.35) 

[for fl = 0, see Eq. (2.20)]. Then making use of Eqs. (8.8) and 
(8.9), we can rewrite Eqs. (S.30) and (8.33) in the form 

Xp.(x) = -2aJ3oAl"o(x,do -O), dl"_' <x<dl"' 

fl = O,l, ... ,n. (8.36) 
Equations (8.30) and (8.33) or, equivalently, Eqs. (8.36) are 
the desired relations which express the scattering amplitudes 
in terms of the total Green's function. Combining these 
equations with the corresponding expressions for D (x,xo) of 
Ref. 1, we recover the results of Sec. VII. 

In connection with Eqs. (8.30) and (8.33), we recall that 
the first step in the calculation of D (x,xo) consists of solving a 
set of linear algebraic equations in the unknowns D (dl" ,xo) 
and P(dl" ,xo),fl = O,l, ... ,n - 1. These equations follow from 
Eqs. (8.1 )-(8.3) as a result of any of the series of the substitu­
tions mentioned in Sec. V. Having, in particular, found 
D (do,xu), we can make use of Eqs. (8.11) and (8.25) to write 

(8.37) 
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Thus, in order to calculate the scattering amplitudes by Eqs. 
(8.30) and (8.33), we need not calculateD (x,xo) for arbitrary x 
and Xo and can confine ourselves to the first step in solving 
the Dyson's equations. 

C. Space Inversion 

So far, we considered the stationary scattering problem 
in the case where the "bare" plane wave was given in the 
semi-infinite space x < do. If the "bare" plane wave is given 
in the semi-infinite space x > dn _ I' one should write, instead 
of Eq. (2.20), that 

¢'(x) = tPn(x - dn_ , ) + Xn(x), x>dn_ , . (8.38) 

In this case, the "bare" wave tPn (x) can be defined by substi­
tuting the subscript fl = n for fl = 0 in Eqs. (2.21) which 
define tPo(x). Also, we have now, by definition,that 

s. = sgnv~ (f.), (8.39) 

in place of Eq. (2.22). Therefore the index s. should be re­
placed by - s. in the criteria (2.24), (2.25), and in all related 
considerations. In particular, Eq. (3.40) turns into 

s = -s., fl=O,I, ... ,n. r" (8.40) 

In analogy with what was done in Sec. IV, one can read­
ily show that the set of Lippmann-Schwinger equations con­
sists now of Eqs. (4.18) and the equations 

() (do - x)¢,(x) - A ~'(X - do) = 0, fl = 0, (8.41) 

()(x - dn_ , )Xn(x) +A ~n-I'(x - dn_ , ) = Fn(x - dn_ 1,0), 

fl = n, (8.42) 
where 

Fn (x - d n _ I ,0) = () (d n _ I - x)D n (x - d n _ I )4'> ~ - 11(0), 
(8.43) 

4'>~ - 1'(0) = D n- I (O)Fn ( - 0,0) = D n- I(O)tPn(O) = - 2anf3n 
(8.44) 

[compare with Eqs. (4.21) and (4.22)]. The quantities 
A ~ '(x - d v ) are, as before, defined by Eqs. (4.20). In order to 
make sure of the validity of Eqs. (8.43) and (8.44), we note 
that Eqs. (3.34) and (4.8)-(4.13) can be rewritten correctly by 
substituting the SUbscript n (or, in general, any fl) for the 
subscript O. However, on account ofEq. (8.40), Eqs. (4.14) 
and (4.15) are replaced now by 

f3n = Pn = ic,,"I! = !iv~ (f.), 
Fn(sx XO,xo) = ()( -x)tPn(XO)' (8.45) 

The set of Lippmann-Schwinger equations so obtained 
can be solved in a straightforward way as was described in 
Sec. V. Alternatively, the scattering amplitudes can be ex­
pressed in terms of the total Green's function in analogy with 
what was done in the previous subsection. 

Following the latter method, we make the substitution 
Xo = dn _ I + 0 in Eqs. (8.1)-(8.3). Thus we arrive at equa­
tions similar to Eqs. (8.21) as well as at the equations 

() (do - x)D (x,dn _ I + 0) - B ~'(x,dn _ I + 0) = 0, 
- 0 (8.46) fl- • 
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(}(x-dn_,)D(x,dn_ , +0) 

+ B~n-II(X,dn_1 + 0) = Dn(x - dn -I)' 
11 = n, (8.47) 

which appear instead of Eqs. (8.20) and (8.22), respectively. 
On eliminating Eqs. (8.42) and (8.47) (by the substitution 
x = d n _ I - 0), we proceed as in the previous subsection. 
The final results can be written as 

¢(x) = D (x,dn _ I + 0)<1> ~ - 1)(0) 

= -2anf3nD(x,dn_, +0), x<dn_
" 

(8.48) 

Xn(x) = [D(x,dn_ , +O)-Dn(x-dn_,)]Dn-'(O)tPn(O) 

= - an [2f3n D (x,dn _ I + 0) 

+exp[if~+I)X(x-dn_I)]j, x>dn_
" 

(8.49) 

¢(d,l ) = D (d" ,dn _ I + 0)<1> ~ - 11(0) 

= - 2a n f3n D (d" ,dn _ I + 0), (8.50) 

II (d,t ) = P (d" ,dn _ I + 0)<1> ~ - 11(0) 

= - 2anf3n P (d",dn _ I + 0) 

(11 = 0,1, ... , n - 1), where 

f~ + I)x = - f: - 2(~X)- I~kf~, 

[compare with Eq. (5.17)]. 
In analogy with Eq. (8.34), we write 

n-I 

¢(x) = LS,l(X)X,,(x), x<d n _ l , 
,,~o 

(8.51 ) 

(8.52) 

(8.53) 

thus introducing the notation as given by Eq. (8.35) with 
}J = O,I, ... ,n - 1, [x n (x) is defined by Eq. (8.38)]. As a conse­
quence, Eqs. (8.48) and (8.49) become 

X,,(x) = -2anf3nA"n(x,dn_1 +0), }J=O,I, ... ,n 

[compare with Eq. (8.36)]. 
(8.54) 

IX. DISCUSSION 

A. Stationary states 

Equations (2.20), (8.30), and (8.33), on the one hand, or 
Eqs. (8.38), (8.48), and (8.49), on the other hand, determine 
the stationary states of the field, which can be denoted as 
¢o(x;tll , [E" ± iO)) or ¢n (x;fll , [Ev ± iO)), respectively. The 
state ¢" (x,fll , [Ev + iO)) (11 = O,n) is associated with a wave 
process which develops in the usual causal time sequence. In 
accordance with Eq. (2.12), the state ¢" (x;fll , [Ey - iO)) is 
then time-reversed to ¢" (x; - til; [Ey + iO)). The corre­
sponding quantity D (x,xo;fll , [Ey + iO)) or 
D (x,xo;fll ,[ Ey - iO) ) should therefore be identified as the 
total retarded or advanced Green's function, respectively. 

B. Localized states 

We have studied the stationary states which have the 
asymptotic form of an incident ("bare") plane wave plus a 
reflected plane wave either in the semi-infinite space x < do 
or in the semi-infinite space x> d n _ I' In addition, there can 
exist stationary states of the field, which penetrate neither of 
the two semi-infinite spaces. Such states can be called 
localized. 
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Putting formally that Xo(x) = ¢(x) and tPo(x) = ° in Eq. 
(4.17) or X n (x) = ¢(x) and tPn (x) = ° in Eq. (8.42), we find that 
the complete set of Lippmann-Schwinger equations for lo­
calized states consists of Eqs. (8.41), (4.18), and (4.19). By any 
of the three series of substitutions mentioned in Sec. V, we 
reduce these equations to a set of linear homogeneous alge­
braic equations with respect to ¢(d,l ) and JI (d,,), 
11 = 0,1 , ... ,n - 1. Since the number of equations is equal to 
the number of unknowns, we obtain in a regular manner the 
secular equation for E [see Eq. (2.11)). If the secular equation 
has a solution, E = E (fll ), we can then find the unknowns 
¢(d,,) andJI (d,,) up to an arbitrary constant factor, ao. Insert­
ing ¢(d,,) and JI (d,,) so obtained back into the original func­
tional equations, we find ¢(x), also up to a ao which is a 
normalization coefficient. 

It follows from the above that the energy (or the fre­
quency) of a localized state is a pole of the scattering ampli­
tudes and of the total Green's function, in agreement with 
the general theory. For example, in the case of a three-layer 
medium, the secular equation is S + I = ° or, equivalently, 
S+ = 0 [see Eqs. (7.9), (7.11), (7.12), and (7.14)]. If U2-oo, 
the equation becomes S(~) = 0, in accordance with Eqs. 
(7.20) and (7.21). 

The wave function of a localized state, ¢(x), can obvi­
ously be written in the form of Eqs. (5.14)-(5.16), but one 
should put Xo(x) ¢(x) in Eq. (5.14). In this case, the quanti­
tiesfL·· Ilx = lL - Ilx andf~ + I)x = l~ + Ilx must simultaneously 
be complex. In other words, /30 and f3n must be real and 
therefore E must satisfy the inequality 

E<min[uo+ UO,u n + Un)' (9.1) 

in accordance with Eqs. (2.11) and (3.16). In view of Eq. 
(3.12), the inequality (9.1) means that the energy ofa local­
ized state is less than the minimum of the unperturbed ener­
gies It"l (f) + U" [see Eq. (2.15)] with fll = const in both outer 
layers (11 = O,n). 

If both boundaries x = do and x = dn _ I are rigid, we 
have to omit Eqs. (8.41) and (4.19) and to combine the first 
(p, = 0) and the last (p, = n) ofEq. (4.18) with the equations 
¢(do) = ° and ¢(dn _ I) = 0, respectively. Solution of the set 
of n - 1 equations so obtained gives all possible state of the 
field in the stratified flat slab do <x <dn _ with rigid bound­
aries. The eigenenergies (or eigenfrequencies) of the field can 
alternatively be found by poles of the corresponding Green's 
function. I 

C. The one-dimensional motion 

Setting til = ° and c; = 1l212m" in the resulting rela­
tions of this paper, we obtain the solution of the problem of 
the one-dimensional motion of a particle with a piecewise­
constant mass in a piecewise constant potential. If, in addi­
tion, m" = m, 11 = O,I, ... ,n, we arrive at the conventional 
quantum-mechanical problem. 5 

X. CONCLUSION 

We form ulated a chainlike set of functional equations of 
the Lippmann-Schwinger type for the scattering amplitude 
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of a plane wave in a medium of anisotropic flat layers in 
contact. The angle of incidence, the thicknesses of the layers 
and the orientations of the crystallographic axes of individ­
uallayers with respect to the interfaces are arbitrary. The 
functional equations obtained include the equation of mo­
tion for the scattering amplitude and the boundary condi­
tions at all separation planes. The boundary conditions are 
represented in the Lippmann-Schwinger equations by cer­
tain constants which are to be eliminated in the course of 
solving the equations. In the case of a system with n separa­
tion planes, there are 2n such constants. Half of them are the 
values of the wave function at the separation planes. The rest 
are the values, at the same points, of a quantity which is, like 
the wave function, continuous at the separation planes. 

We suggested a simple algorithm to solve the set of 
Lippmann-Schwinger equations. This algorithm is based on 
the idea of successive elimination of unknown constants and 
consists of n steps for a medium with n interfaces. It ends at 
the nth step, thus giving the solution. Also, we described an 
alternative, straightforward method of solving the Lipp­
mann-Schwinger equations. In the framework of this meth­
od, one should evaluate the Lippmann-Schwinger equation 
for each given layer at the points corresponding to the layer 
boundaries. This gives a chainlike set of 2n linear algebraic 
equations for the same number of unknown constants. One 
of the equations is inhomogeneous while the remaining are 
homogeneous. The inhomogeneous equation corresponds to 
the region x <do{P = 0) or x > d n _ ! (p = n), in which the 
incident plane wave is given. Having found the unknown, 
constants, we insert them back into the original functional 
equations and thus find the scattering amplitude within each 
layer. 

As far as we know, there are no publications where the 
problem of propagation of a plane wave in an anisotropic 
stratified medium is considered in the general form within 
the framework of the conventional method. This is due to the 
enormous amount of calculations needed in attacking the 
problem by the conventional method. The advantages of the 
proposed approach over the conventional one is obvious 
when both methods are applied particularly in the case of an 
isotropic system. 

We recall that the conventional method (see, e.g., Ref. 
7) deals directly with the amplitudes of secondary (reflected 
and transmitted) plane waves. There are generally one re­
flected plane wave in the zeroth layer (x < do, f.L = 0), two 
secondary plane waves in each inner layer (d I-' _! < X < d I-' ' 
f.L = 1,2, ... ,n - 1) and one transmitted wave in the last layer 
(x> dn _ I' f.L = n), 2n waves altogether. Thus the number of 
unknown wave amplitudes is the same as the number of aux­
iliary constants involved in the Lippmann-Schwinger equa­
tions. Nevertheless, by whichever method the set of Lipp­
mann-Schwinger equations is solved, the approach based on 
these equations has essential advantages over and is much 
simpler than the conventional approach owing to several 
factors. 

(i) The Lippmann-Schwinger equations contain, from 
the very beginning, some "finished blocks" in the form of 
combinations of the "standard" Green's functions. 

(ii) The constants involved in the Lippmann-Schwinger 
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equations are to be eliminated in the course of solving the 
equations and therefore playa subsidiary role. In contrast to 
this, the constants dealt with in the conventional method are 
the sought after scalar amplitUdes. These are to befound in 
the course of solving the corresponding equations. 

(iii) The set of Lippmann-Schwinger equations has, 
with respect to the unknown constants, a chainlike form 
with a very simple "matrix of coefficients". This facilitates 
the problem of eliminating the unknown constants even if 
their elimination is achieved through finding them. Also, the 
constants involved in the Lippmann-Schwinger equations 
are particular values of the quantities which are continuous 
at the interfaces. This is in constrast to the conventional 
method, where constants do not satisfy any such condition. 

(iv) The method of Lippmann-Schwinger equations en­
ables us to find, in the general form, the scattering ampli­
tude, i.e., the total field at each point, with allowance of all 
existing separation planes. At the same time, we established 
general relations to express the amplitUdes of individual 
scattered waves in terms of constants involved in the Lipp­
mann-Schwinger equations. Thus, on solving the Lipp­
mann-Schwinger equations, the amplitudes of all secondary 
waves can also be found. 

Our approach is illustrated by solving the free field 
problem for a compound infinite space consisting of two ani­
sotropic half-spaces in contact and for an arbitrary anisotro­
pic three-layer medium (a flat slab and two half-spaces). As 
particular cases of such systems, we also consider an aniso­
tropic homogeneous half-space with a rigid boundary and a 
compound half-space consisting of a flat slab with a rigid 
boundary and a homogeneous half-space in contact. 

In addition to the direct methods of solving the Lipp­
mann-Schwinger equations, we made use of these equations 
to establish general relations expressing the scattering am­
plitude in terms of the total Green's function. The latter can 
be found by solving a chain like set of Dyson's equations. I 
Although the Dyson's equations are solved by the same 
methods as the Lippmann-Schwinger equations, the rela­
tions obtained are useful in several respects. Firstly, they 
express the solution of the free field problem in terms of the 
solution of the forced field problem for a point source. Sec­
ondly, the total Green's function seems to be more funda­
mentally related to the dynamic properties of the system 
because it can be used not only for finding the scattering 
amplitUdes but also in solving many other problems (see e.g., 
Ref. 8). Lastly, the relations established give another con­
structive method to find the scattering amplitUde. 

Besides the free fields which can propagate throughout 
the system in the form of waves travelling at all possible 
angles with respect to the separation planes, and which are 
therefore nonlocalized, we also considered briefly localized 
states. The field in a localized state exists within one or sever­
al neighboring layers and can propagate only in directions 
parallel to the interfaces. The localized states gives rise to 
poles in the scattering amplitude at the associated frequen­
cies as well as giving poles in the total Green's function. This 
fact enables us to find the amplitudes oflocalized states, up 
to a normalization constant, and their energies (frequencies) 
from the same set of Lippmann-Schwinger equations. 
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INTRODUCTION 

It is well known that the operators in quantum mechan­
ics are, generally, unbounded; as a consequence, one has to 
deal with quite complicated problems of domain. There is a 
situation, however, when a simplification is possible; this 
occurs when all the operators, involved in the description of 
the physical system have, together with their adjoints, a 
common invariant dense domain fiJ. (See, for instance, the 
simple case of the harmonic oscillator, where such a domain 
can be understood to be the set 

fiJ = {p(x)e - X'/2withp(x) polynomial} 

or, better, the space.Y of the Schwartz test functions. See 
also the definition of Wightman field, etc.) 

In this case, it is interesting to consider noncomplete 
scalar product spaces and operators defined in them. 

In previous papers we considered this problem already 
and we studied, particularly, an interesting class of opera­
tors, defined in a pre-Hilbert space, which is in some cases 
and from some point of view, the natural algebra of observa­
bles and of the corresponding operators (see references in 
Ref. 1). 

Completeness of a space is, on the other hand, a very 
strong property and when it fails it is not possible to recover 
many results, even some of the simplest ones, true in Hilbert 
space and for the operators defined in it. 

The aim ofthis paper is to study further some properties 
of a scalar product space l:i/ and of the operators defined in 
it. 

In Sec. I we examine some properties of pre-Hilbert 
space relative to orthocomplementation; in Sec. 2 we extend, 
so far as it is possible, some classical results, true for opera­
tors inr, to a particular class of operators in .rei . 
1. WEAKLY CONTINUOUS FORMS IN SCALAR 
PRODUCT SPACE 

In the sequel, we will indicate by fiJ a scalar product 
space (pre-Hilbert space) and by cW' a complete scalar prod­
uct space (Hilbert space). Beside, we denote by £T(fiJ ,fiJ) the 
usual weak topology in g; and by r(91 ,!iJ) the Mackey to­
pology in .q; . 

Theorems concerning projection operators and ortho­
complemented subspace in Hilbert space are well known. 
These theorems, however, are not always true if the com­
pleteness of the space fails; in fact, in contrast with what 
happens in c?r, not all norm-closed subspaces of 91 are orth-

ocomplemented in fiJ. 
We report here, for the reader's convenience, only the 

following proposition, true in pre-Hilbert space. 
Proposition 1.1. Let!iJ be a pre-Hilbert space and M a 

subspace of fiJ. The following statements are equivalent: 
(i) Mis CT(fiJ ,!iJ)-closed, 
(ii)M is r(fiJ ,!iJ)-closed, 
(iii)MH=M. 
The proof of (i)~(ii) can be carried out from Ref. 2, 

prop. 35.2, and that of(ii)~(iii) from Ref. 2, Chap. 35, Cor. 2. 
Notice that in pre-Hilbert space a norm-closed or 

CT(!iJ ,fiJ)-closed subspace M cannot be orthocomplemented 
and M H = M is only a necessary condition in order that M 
be orthocomplemented, but if M is maximal we can prove 
the following theorem. (For the definition ofmaximality see 
Ref. 3, Chap. I, Sec. 5.) 

Theorem 1.2.Let M be a proper maximal subspace of 
g; . For M one, and only one, of the following statements 
holds true: 

(i) Mis orthocomplemented, 
(ii)Ml=O. 
Proof If M 1 #0, M ffi M 1 is isomorphic to a subspace of 

fiJ which contains M properly; for the maximality of M, 
M ffi M 1 is isomorphic to the whole space !iJ, i.e., Mis 
orthocomplemented. 

Conversely, it is obvious that, if M is a proper ortho­
complemented subspace of !iJ , then M 1 # O. 

Corollary 1.3. If M is a CT(fiJ ,!iJ )-closed proper and 
maximal subspace of g;, then it is orthocomplemented. 

Proof If M is not orthocomplemented, by Theorem 1.2, 
M 1 = 0 and then M 11 = fiJ ; from Proposition 1.1, it fol­
lows that M = fiJ and this is not possible. 

Corollary 1.4. LetFbe a linear form on fiJ. Fis continu­
ous in theCT(fiJ ,!iJ)-topology if, and only if, Ker Fis an ortho­
complemented subspace of fiJ . 

Proof If F = 0 the thesis is trivial. If F #0 and Ker Fis 
orthocomplemented then, by Proposition 1.1, it is £T(!iJ ,!iJ)­
closed and hence F is £T(E? ,.g{; )-continuous. 

Conversely, if Fis CT(iZ! ,iZ! )-continuous, Ker Fis a prop­
er closed maximal subspace of fiJ (see Ref. 3, Chap. I, Sec. 5) 
and then, by Corollary 1.3, Ker Fis orthocomplemented. 

Theorem 1.5. Let fiJ be a scalar product space. If every 
maximal norm-closed subspace is orthocomplemented, then 
g; is complete. 

Proof It is sufficient to prove that every bounded form 
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is a(.C/! ,(;1) )-continuous; in fact, in this case, the weak dual of 
o'/! coincides with the strong dual, which is the norm comple­
tion /) of ,q;. Hence ,ry; is complete. 

But every bounded form F has the kernel maximal and 
norm-closed, hence, by the hypothesis, orthocomplemented, 
and by Proposition 1.1, a(oCi),ffi )-closed; then F is a(,Ci' "ry;)­
continuous. 

Notice that the above theorem was proved with the 
stronger requirement that M be only norm-closed (see Ref. 
4). 

2. SOME PROPERTIES OF OPERATORS IN SCALAR 
PRODUCT SPACE 

We now consider a class of operators in a pre-Hilbert 
space l.iJ which is, in particular, a *-algebra having some 
analogies with the algebra B (JY) of bounded operators in 
Hilbert space; further, it coincides with B (JY) when l.iJ is 
chosen to be complete. We call this algebra C,/, . 

Let 9 be a scalar product space; we indicate by the 
symbol C '/ the *-algebra of all linear operators in ,q; , which 
have adjoint in !iJ, or equivalently, the *-algebra of all 
aUi1 ,9 )-continuous operators. We denote by B g the subal­
gebra of bounded operators of C q . 

The algebra C q; can be understood to be the set of all 
closable operators A in ,r having g; as a dense common 
invariant domain and such that A *(9) ~ ,q;. The involution 
in C9 is then defined by A-A + with A + = A * t Eb' 

For the definitions and theorems concerning C g, see 
references cited in Ref. 1. 

Some authors also indicate the algebra CO/' by the sym­
bol L+(9) (see, for instance, Ref. 5). 

By d ,;:;;C/ we will mean that.r:f is an involutive subal­
gebra with unity of C/ . 

If ."jJ C C'/ , we will indicate with M' the weak commu­
tant of M, i.e., the set 

/j'J' = I BED (JY):(S +q;,Bt/J) = (q;,BSt/J)VSE/j'J ,Vq;,t/JEf::!!]. 

The com mutants of higher order are defined in the usu­
al way in B (JY); for instance 

.jJ" = ICED (JY):BC = CB V BEM' ]. 

If ,:jJ ~ C '/' , we will denote by the notation [M] the sub­
algebra of C ,/ generated by M. When M = I A ] 'we will 
write [A ] instead of [I A 1]. 

In the sequel we call g; -self-adjoint an operator T of 
C~/' such that T = T +. 

Theorem 2.1. Let TEC, be a g; -self-adjoint operator. 
Suppose that the following conditions are sati~fied: 

(a) T has a unique self-adjoint extension T to uW'; 
(b) there exists an algebra d ,;:;;C'/' such that [T]" ~ d' 

and!iJ is ,r:f-self-adjoint (see Ref. 1, def. 2). 
Let I E).] be the spectral family associated with T and 

u:R_R a measurable function, finite and determined almost 
everywhere with respect to I E).] such that 

9 ~ I q;EuW': J~ 00 U2(A ) d (E). q;,q; ) < 00 ], (1) 

letting 
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(u(T)q;,t/Jl = roo oc U(A) d(E).q;,t/J), q;,t/JEl.iJ; (2) 

then (2) defines an operator U(T)EC,/, 
Proof It is known that (see, for instance, Ref. 6, n.127) 

(u(T)q;,t/Jl = foc 00 UtA ) d (E). q;,t/J), q;,t/JE/j(' 

defines an operator u(T) in ,)y. We will prove that 
u(T) t 9 ECg [(1) implies that g; ~D (u(T))]. We now show 
that 

VAE,r:f, (A + q;, u(T)t/J) = (q;, u(T)At/J), Vq;,t/JE9. 

In fact we have 

(u(T)t/J,A + q;) = foo 00 U(A) d (E). t/J,A + q;) 

= foo oc U(A) d (E).At/J,q;) = (u(T)At/J,q; ). 

We used here the fact that E). E[ T 1" ~ .r'/' (see Ref. 1, Theo­
rem 13) By Lemma 12 of Ref. 1, u(T) is invariant in 9). 

Corollary 2.2. Let TEC 9 be a (j) -self-adjoint positive 
operator of C 5) • If the conditions (a) and (b) of Theorem 2.1 
are satisfied, then there exists a unique operator HEC 9 , !.YJ­
self-adjoint and positive, such that H 2 = T. 

Proof We know that, if Tsatisfies the conditions (a) and 
(b) of Theorem 2.1, then it is 9 -spectral, i.e., the spectral 
family {E).} associated with it, takes its values in the same 
algebra Cq; (see Ref. 1, Theorem 13). 

Let {EA } be the spectral family associated with T. Since 
T is positive, E A = 0 for A < 0 results. 
We pose 

D (H) = {q;sW':1°O Ad (EA q;,q;) < 00 }. 

Vf-.e will show that g; ~D (H). We observe that 
(T + I) t " EC, / and therefore, for t/JE.9J, we have 

t/JE{q;EJY':1°O(A + 1)2 d(EAq;,q;)} < 00. 

Hence for such a t/J 

Loo A 2 d (EA t/J,t/J) + 2100 

A d (EA t/J,t/J) 

+ r'" d(EAt/J,t/J) < 00; 
Jo 

that is 

and so 

100 

A d(EA t/J,t/J) < 00. 

For q;E!iJ we set 

Hq; = 100 

A 1/2 dEAq;. 

By Theorem 2.1, HEC,/! . From a direct calculation H 2 = T 
results. The positivity and uniqueness of the operator H fol­
lows easily from the positivity and uniqueness of the spectral 
family. 
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Because C'L} is a *-algebra no difficulty arises for the 
Cartesian decomposition. On the contrary, the polar decom­
position, to be handled carefully for closed operators in ~ 
(Von Neumann's theorem, see Ref. 7, Chap. IV, Sec. 21.1), 
becomes more difficult for the operators of C'L} and requires 
very strong hypotheses. 

The above theorem allows us to state the following 
proposi tions. 

Theorem 2.3. Let T be an operator of C'L} such that 
T + T satisfies the conditions of Corollary 2.2. Then 

T=UH, 

where H = (T + T) I /2 and U is an isometry from R (H) into 
R(T). 

Proof ForH = (T+T)I/2, we define U:R (H)_R (T)by 

U(HqJ) = TqJ VqJEg;. 

Furthermore, we have 

IIU(HqJ)11 2= IITqJ I 12 = (TqJ,TqJ) = (T+TqJ,qJ) 

= (H 2qJ,qJ ) = (HqJ,HqJ ) = II HqJ 112. 

From the fact that II TqJ II = II HqJ II it follows that 
HqJ = 0 if and only if TqJ = 0 and so U is a well-defined 
operator. It is thus proved that U is an isometry from R (H) in 
R(T). 

Example. If we consider the creation and annihilation 
operators of the harmonic oscillator, in the space Y of the 
Schwartz test functions 

b = 2- 1
/

2(q + ip), 
b + = 2- 1/2(q - ip), 

the operator b + b = ~(q2 + p2) satisfies, as was proved in Ex­
ample 2 in the Appendix of Ref. 1, the conditions required by 
Theorem 2.3, and then b, or b +, admits the polar 
decomposition. 

It is not possible, generally, to say that the polar decom­
position, given in Theorem 2.3, is unique. However, the fol­
lowing propositions hold true. 

Theorem 2.4. In the hypotheses ofTheorem 2.3, if R (H) 
and R (T) are orthocomplemented in g; , then the polar de­
composition of the operator T of C ,/ is unique. 

Proof In this case U can be understood to be a partial 
isometry from R (H) in R (T). In fact, we set UqJ = 0 for 
qJER (H)1 and define U + qJ = U - I qJ for rpER (T) and 
U +qJ = 0 for qJER (T)l. 

Then UEC '/ and we have T + = HU + and 
T+T= HU +UH = HPR(H)H = H2 and thereforeH, and 
consequently U, are uniquely determined. 

Theorem 2.5. In the hypotheses of Theorem 2.3, if the 
operator T is invertible in !dJ, then the polar decomposition 
T = UH is unique and U is a unitary operator of C~ .. 

Proof If T is invertible, so are T + and T + T. We have 
R (T + T) = R (T +) = !iJ and further R (T + T) c;;;, R (T + T) I /2 

= R (H). It follows that R (H) = !iJ. The uniqueness can be 
deduced immediately. 

From the fact that R (H) = !dJ, U is everywhere defined 
and it is invertible, becauseR (T) = g;. It is easy to see that U 
is unitary. 
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We conclude with some propositions concerning the 
Cayley transform. 

The existence of a unitary operator V, called the Cayley 
transform, for any self-adjoint operator of B (JY/ is well 
known. It is also known that a closed symmetric operator T 
defined in a Hilbert space ~, admits a Cayley transform 
which is generally isometric; V is unitary if and only if Tis 
self-adjoint in ~ (see, for instance, Ref. 6, n. 121 and n. 123). 

With rather natural hypotheses, one can prove the exis­
tence of a Cayley transform for some !iJ -self-adjoint opera­
tors ofC~,. 

Definition 2.6. Let T be an operator of C V" We call a 
resolvent set of T the subset of the complex field C, 

pC/' (T) = {IlEC:3(T - Ilf)-IEE",.} . 

We call the spectrum of T the set (J~/ (T) = C - p,/ (T). 
We have already discussed in a previous paper the con­

venience of giving such a definition of resolvent set for opera­
tors of C C/' (see Ref. 1). 

Definition 2. 7. Let T be a self-adjoint operator of C,>" 
such that iEpC/' (T). We call a Cayley transform of Tthe 
operator 

V = (T - iI)( T + if) - I. 

From Definition 2.6 it follows immediately that VEC,/ . 

Theorem 2.8. The Cayley transform V of a .q; -self-ad­
joint operator Tsuch that iEp,/ (T) is a unitary operator in 
§. Also 

T= i(I + V)(I - V)-I. 

Proof The fact that V is unitary is straightforward. The 
relation T = i(I + V)(I - V) - I can be verified with easy alge­
braic calculations in C/ , after having shown that the opera­
tor 1- Vhas an inverse in C ~ ; this in turn can be proven in 
close analogy with the case of self-adjoint operators in ,;Y. 

The existence of the Cayley transform V for some fjJ­

self-adjoint operator of C '/ has some interestJng implica­
tions, when it is considered as an operator in g;. Notice that 
the operator T considered as an operator in .[J; cannot be self­
adjoint; in fact, in this case its closure in .[J; would agree with 
T, and therefore."2i would be complete and C , would coin­
cide with B lW1 (see Ref. 5, Lemma 2.2). Hence T is, as an 
operator in g, symmetric and its Cayley transform in f};, by 
the general theory, should be isometric but, not necessarily, 
unitary. The above theorems allow us to state the following. 

Theorem 2.9. A symmetric operator S in a Hilbert space 
.;Y'such that for some !.J) , dense in )Y', the operator 
S r 'i = T belong to C/ and such that iEp., (T) has a uni­
tary Cayley transform in ,;Y' and therefore it is self-adjoint. 

Proof It is sufficient to prove that the Cayley transform 
of Sin ,;Y' is the continuous extension U to .W' of the Cayley 
transform Vof Tin !YJ and that U is unitary in .;V'. 

In fact, by the continuity of the scalar product and that 
of the operators Vand V + , the adjoint U * of the operator U 
in .r is the continuous extension to .)Y' of the operator V + 

and, further, Uis unitary in .W'. If Wis the Cayley transform 
of the operator S in .)Y" 

W = (S - iI)(S + iI) - I 

from the fact that T - iI and (T + iI ) - I are invariant in ,q; , 
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W t '/' = V results, and by the principle of extension of iden­
tities we have W = U in JY. 

From the above theorem one can deduce that a !iJ -self­
adjoint operator TEC,/, such that iEp'l (T) admits a self-ad­
joint extension. Besides 

Corollary 2. 10. A !iJ -self-adjoint operator T such that 
iEp!fl (T) admits a unique self-adjoint extension to ~ . 

We prove only the uniqueness. 
LetSbe another self-adjoint extension of Tto ~; to it a 

unitary Cayley transform U is associated in ~ . 
If we call V the Cayley transform of Tin !iJ, because 

T = S t 'l '/p t '7' = V results and therefore U = V; this im­
plies that T = S. 
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This theorem was recovered, in another way, in Ref. 
(Prop. 11). 
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The maximal kinematical algebra of the Schrodinger equation 
{Jxx + 2iJ, - 2g2(t)x2 - 2g\(t)x - 2go(t) 1 W(x, t) = 0 is known to be the Schrodinger algebra, 
Y''t. The kinematical symmetries are realized as first-order differential operators in the space and 
time variables. A subalgebra ~ of ./"\ is chosen and from ~ and its invariants a complete set of 
commuting observables are constructed. The solution space of the Schrodinger equation is 
identified with the appropriate irreducible representation space of ~. The wave functions, 
simultaneous eigenvectors of the compatible observables, are computed as explicit functions of 
space and time. The properties ofa system with a potential V(x, t) = g2(t)x2 + gl(t)x + go(t) are 
discussed. 

PACS numbers: 03.65.Fd, 02.20. + b 

1. INTRODUCTION 

For quantum-mechanical systems in one spatial dimen­
sion with a Hamiltonian of the form 

dY(x, t) = - ~Jxx + V(x, t), (1.1) 

the time-dependent Schrodinger equation can be solved ex­
actly only for a limited number of potentials V(x, t). Two 
such cases are the time-dependent harmonic oscillator I 
where 

V(x, t) = u/(t )x2/2, ( 1.2) 

and the harmonic oscillator subject to a purely time-depen­
dent force 2 for which 

(1.3) 

In Eqs. (1.2) and (1.3) respectively, w(t) and/(t) are arbitrary 
real functions of time while in (1.3) w is a real constant. The 
time-dependent harmonic oscillator has been used as a mod­
el to describe the behavior of the charged particle in a time­
varying magnetic field Ib or in quantum electronics to study 
parametric amplification and quantum noise. 3 The second 
case, Eq. (1.3), serves as a model ofa vibrating diatomic mol­
ecule in the presence of a temporally-fluctuating force. In the 
sequel we shall investigate the generalization of these two 
models to systems governed by the time-dependent 
interaction 

(1.4) 

where the functionsgi(t), 1<i<3 are arbitrary, real, and de­
pend only on time. Our main objective is to solve the Schro­
dinger equation,4 

QIf/(x, t) = ( - 2,:W" + 2iJ,)If/(x, q = 0 

= ! Jxx + 2iJ, - 2g2(t )x2 

- 2g l(t)x - 2go(t)} If/(x, t) = 0, (1.5) 

with Hamiltonian (1.1) and potential (1.4) and examine some 
of the properties of its solutions. A remarkable feature of our 
analysis is the independence of the form of the solutions from 
the specific nature of the functions gi(t), 1 <i<3, in (1.5). 
Another is that a system described by such a Schrodinger 
equation remains in a sense quantized. These points and oth-

ers will be discussed in further detail in later sections. 
In our approach to solving (1.5) we shall construct a 

complete set of commuting observables and determine their 
simultaneous eigenvectors and eigenvalues.s The observa­
bles will be elements of the algebra of the constants of the 
motion and its invariants. The constants of the motion are 
members of a Lie algebra called the kinematical or space­
time symmetry algebra for (1.5). In the first paper in this 
series (denoted by 1),6 time-dependent Schrodinger equa­
tions were classified according to their maximal kinematical 
algebras 7.8 in which the generators of the space-time symme­
tries were realized as differential operators in the variables x 
and t. In particular, we showed that the Schrodinger equa­
tion (1. 5) had the maximal kinematical algebra 
Y 1= sl(2, JR.)OWI' where Y I called the Schrodinger alge­
bra, is the semidirect sum of the Lie algebra sl(2,JR.) of the real 
special linear group in two dimensions8 and the Lie algebra 
WI' the Heisenberg-Weyl algebra in one dimension. 7

•
9 In 

Sec. 2 we choose an appropriate subalgebra ~ of Y I and 
determine its Casimir operators. R Then from ~ we select one 
generator and with the Casimir operators obtain a maximal 
set of commuting observables. The remaining two gener­
ators in ~ act as ladder operators. 

We outline in detail in Sec. 3 the different irreducible 
representations of ~ and demonstrate the relationship be­
tween the normed solution space of (1.5) and the irreducible­
representation spaces of ~ . Further we show that the impo­
sition of a norm on the representation spaces restricts us to 
the irreducible representation of ~ corresponding to that 
one in which the diagonalized observable from ~ has a dis­
crete spectrum bounded below. The basis of eigenvectors for 
this irreducible representation of ~ is then a basis for the 
solution space off 1.5). The ladder operators in ~ step from 
one eigenvalue to another and in Sec. 4 we use them to con­
struct the eigenfunctions as explicit functions of the space 
and time variables x and t. 

The system is quantized with respect to the observables 
we have chosen to be diagonal in this representation. Except 
in the case of the time-independent oscillator where the dia­
gonalized generator is the time-translation operator, the Ha-
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miltonian is not a constant of the motion. Therefore the ei­
genvectors of the compatible observables will not be 
eigenvectors of the Hamiltonian JY'(x, t) and the energy will 
have a time dependence. In Sec. 5 we express the Hamilton­
ian and other properties in terms of the generators of :g and 
calculate their expectation values. We conclude the paper in 
that section with a discussion of the features of time-depen­
dent systems described by a potential of the form (1.4). 

2. THE SYMMETRY ALGEBRA ,C<J 

The generators of kinematical symmetries have the gen­
eral form 

L=A(x,t)a, +B(x,t)ax +C(x,t) (2.1) 

and they are symmetries of the Schrodinger equation ( 1.5) if 
they satisfy the operator relation 

[Q, L J = A (x, t )Q, (2.2) 

where A (x, t) is a function of the variables x, t and Q is the 
differential operator defined by Eqs. (1.5). The symmetry L 
transforms solutions of (1.5) into solutions.6

•
7

,9 

In I we have shown that the maximal kinematical alge­
bra for the differential equation (1.5) is the Schrodinger alge­
bra Y I = sl(2, JR)Ow I' The generators \0 

BI = - XI(t lax .: iXI(t).x.- iC(; I(t )'} 

B2 = X2(t lax - lb(t)x + lC(; 2(t), 

E=i 

(2.3) 

form a basis for the Heisenberg albegra WI' The functions of 
time X I (t ) and X 2(t ) are two real, linearly independent, nontri­
vial solutions of the homogeneous second-order differential 
equation 

(2.4) 

The solutions X I and X2 have constant Wronskian6 and have 
been chosen so that Wltl,X2) = Xt¥2 - Xlb = 1. Thefunc­
tions C(; I(t) and C(; 2(t) are defined by 

C(;,,(t) = f'gIX", a=I,2. (2.5) 

Because the Wronskian of X I and X2 is unity, the generators 
(2.3) satisfy the commutation relations 

[B I, B2l = E, [B I, E 1 = [B2, E 1 = 0, (2.6) 

and furthermore 

[Q,E]=[Q,B,,]=O, a=I,2. (2.7) 

The generators which form a basis for the sl(2, JR) algebra are 

L j = flJA + (~~jX + dj)ax - (iI4)cPjX2 - id~x + !~j 
+ igcIPj + if/fl j , l<i<3. (2.8) 

The functions ({Jj(t), 1<i<3, are functions of time only and 
are linearly independent, nontrivial solutions of the third 
order, homogeneous differential equation 

.4'+ 8g~ +4g~ =0. (2.9) 

In I we showed that the functions flJj which have constant 
Wronskian may be chosen as follows6

: 

({J1=xi, flJ2=xL ({J3=2XIX2' 

in which case 
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(2.10) 

d l = - XIC(; I, d 2 = - X2C(; 2' 

'#3 = -ltlC(; 2 + X2'G' I), 
£0 1 = -!C(;i, f/fl2= -!C(;L 

(2.11a) 

(2.llb) 

where the X" are the solutions of(2.4) and the ,{,' (7' a = 1,2, 
are defined by (2.5). The L j have the commutation relations 

[LI,L2J=L3' [L 3,L IJ= -2LI' [Lj ,L2J=2L2, (2.12) 
and furthermore satisfy 

[Q, L j ] = ~jQ. (2.13) 
The commutation relations between the generators of the 
sl(2, JR) and WI algebras are6 

[LI,Bll =0, [L 2,B l l =B2, 

[L I, B2l = - B I, [L 2, B2l = 0, 

[L 3,B l l = -BI ,} 

[L 3 , B2l = B 2 · 

(2.14) 
Now, let ,7 Q denote the solution space of the Schro­

dingerequation(1.5), thatisiff(x, t )EY Q' thenQf(x,t) = O. 
We shall require that the functions in Y Q be square integra­
ble with time-independent, bounded normS,11 

° <t+oc
oc 

f*(x, t )f(x, t )dx < 00, for allf(x, t )E,Y- Q' (2.15) 

The first inequality follows from the definition of a norm and 
equality holds only for the trivial solutionf(x, t) = 0. Fur­
thermore, let A be some linear operator defined on .'7 Q' 

Then (A ), the expectation valueS of A, is 

(A ) = tf OC

OC 

f*(x, t )Af(x, t) dx. (2.16) 

Although the operator A may not have an explicit time de­
pendence, (A ) may depend on time. 

The general equation giving the time dependence of the 
mean value of a linear operator A is 5b 

i.:!.- (A ) = i (aA ) + ([A, H ]). 
dt at 

(2.17) 

If d (A )Idt = 0, then A is said to be a constant of the motion, 
that is if (A ) is the expectation value of a linear operator A at 
some point in time then this expectation value remains un­
changed in the course of time. By (2.7) and (2.13), for 
fix, t )EY Q' we have d (L)ldt = 0, l<i<3 and 
d (B,,)ldt = d (E )Idt = 0, a = 1,2. So on the solution 
space Y Q' all the generators of Y I are constants of the mo­
tion. Notice that the Hamiltonian (1.1), when it has an ex­
plicit time dependence, is not a constant of the motion. 

Let us choose now a subalgebra of Y I consisting of the 
symmetries I L 3 , B I,B2,E I and denote this subalgebra by :g. 
The commutation relations of the generators of :g are given 
by (2.6) and (2.14). The Casimir operators of :g are l2 

(2.18) 

where [C, L3J = [C, B I ] = [C, B2] = [C, E] = O. Since on 
Y Q' the elements of :g are constants of the motion, the 
Casimir operator C will be also. Using the appropriate ex­
pressions from (2.3) and (2.8) for the generators of :g we can 
derive the relation 

(2.19) 

The motivation for our choice of the subalgebra :g becomes 
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clear. If/is any member of Y Q' then C/ = ( - i/2)/ and 
E/ = if and so the Casimir operators act as multiples of the 
unit operator on elements of Y Q' This implies a direct rela­
tionship between the solution space Y Q oft 1.5) and the irre­
ducible representation spaces r of the Lie al,gebra ~ as we 
shall show more rigorously in Sec. 3. 

Before we construct the irreducible representation 
spaces r it is necessary to choose the compatible observa­
bles we shall simultaneously diagonalize. We pick the Casi­
mir operators C and E and the generator L3 from ~. Now to 
be observables these linear operators must be made Hermi­
tian with respect to the norm (2.15). Furthermore, it would 
be convenient to have the remaining generators in ~ Hermi­
tian conjugates. One way to do this is to define new solutions 
to (2.4) by taking the linear combinations of the real func­
tions X I and X 2' 

t (t) = (2 -1/2)(x.(t) + iX2(t )), 

t *(t ) = (2 - I 12)(x I(t) - (b(t)), (2.20) 

that is, we take the complexification of the solution space of 
(2.4). These new solutions have the Wronskian 

WIt, t *) = # * - tt * = - i. 

If we repeat the analysis in I, then we have 

f/JI = t 2, f/J2 = (t *):, f/J3 = 2tt * 

and 

.of l = - tC(;', d 2 = - t*C(;'*, 

d 3 = - (tC(;' * + t * '6'), 

where 

(2.21) 

(2.22) 

(2.23a) 

(2.23b) 

(2.24) 

Note that f/J3' d 3, and f::iJ 3 are all real functions and the new 
operator L3 defined by (2.22) and (2.23) is skew-Hermitian. 
Therefore, if we take M3 = iL3' M3 will be Hermitian. The 
generators of ~ will be of the form 

M3 = it f/Ja, + (~~x + ,of)ax - (iI4)tPx2 

- is/x +!~ + igof/J + if::iJ j, 

J+ = -t*ax +it*x-iC(;'*, 

J _ = tax - itx + iC(;', 

E= 1, 

(2.25a) 

(2.25b) 

(2.25c) 

(2.25d) 

where we have dropped the subscript 3 from the time-depen­
dent functions f/J3' d 3' and !iJ 3 in (2.25a) for future conve­
nience. These linear operators satisfy the commutation 
relations 

[J_,J+l =E, [M3,J+l =J+, [M3,J_l = -J_. 

The Casimir operator Cis 

C=J+J_ -M3E= - ~(f/JQ+ 1). 

(2.26) 

(2.27) 

Both C and E are Hermitian operators; the linear operators 
J + and J _ are Hermitian conjugates, i.e., 

Jt_ = J +. (2.28) 
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The set of commuting observables we shall simulta­
neously diagonalize are the invariants C and E and the gen­
erator M3from ~. The Hermitian conjugatesJ + andJ _ will 
act as ladder operators, stepping the eigenvalues of M 3• 

The time independence of the norm (2.15) will be guar­
anteed by requiring the Hamiltonian to be Hermitian, 5b 

hence the requirement that thegi(t) be real-valued functions 
oftime in (1.4) and (1.5). 

3. REPRESENTATIONS OF ;§ 

The irreducible representations of ;§ have been com­
puted by Miller l2 and we reproduce briefly his analysis here 
to provide a framework for the remaining work. Also, we 
shall see that because of the imposition of the norm (2.15) on 
Y Q and our identification of Y Q with the irreducible repre­
sentation spaces of the Lie algebra ~, not all of the irreduci­
ble representations are pertinent. 

We proceed by outlining pointwise the computation of 
irreducible representations of ;§ . 

(i) From Sec. 2 we have that ;§ consists of the generators 
! M3,J +,J _, E I where these are realized as differentialoper­
ators in space and time variables in (2.25). Their commuta­
tion relations are given by Eqs. (2.26). The Casimir operators 
are 

(3.1) 

The operators C, E, and M3 are Hermitian operators in our 
Hilbert space and so must have real eigenvalues; since they 
commute we can define a set of states which are simulta­
neously eigenstates of these three observables. 

If r is a representation space then it is sufficient l2 to 
consider only those irreducible representations in which M3 
has non degenerate eigenvalues and in which the representa­
tion space ')/ has a countable basis consisting of eigenvectors 
ofM]. 

(ii) If S is the spectrum of M 3, then S is countable and 
there exists a basis for 7/ of vectors.t: such that 

M3.t: = s.t:, for all sES. (3.2) 

Choosing any sES, 
(a) [M3' J +J = J +:=?M3J +.t: = (s + l).l+.t:. So either 

J +.t: = as + I .t: + I , where a, + I is a nonzero constant for 

s + lES, or J +.t: = O. 
(b) [M3' J -1 = - J _:=?M3J -.t: = (s - 1).1_.t:. So ei­

ther J -.t: = 1]s.t: _ I' where 1]s is a nonzero constant for 
s - I in S, or J -.t: = o. 

(c) [E, M3J = o:=;'E.t: = J-ls.t:, for some real constantJ-ls' 
(d) [C, M 3] = o:=;'Cj, = As.t: for some real constant As' 

Since the representation is irreducible the spectrum of Sis 
connected, i.e., if s lies in S, then 

S=!s+n:nE'l suchthatn l <n<n2J, (3.3) 

where 'I.. is the set of integers and we do not rule out the 
possibility that n I = - 00 and n2 = + 00. 

(iii) For any sin S such that s + I lies in S, 
(a)[E, M+J = O:=;,[E, M+1.t: = Os+ ILus+ I -J-lslis+ I 

= 0:=;'J-l, = J-ls + I = J-l, and so E = J-lI, where I is the unit 
operator on r. In our case, because of (3.1), J-l = 1. 
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(b) [C, M+l = O:::>[C, M+l/' = ()s+ I (As+ I -Asif-+ I 

= 0:::>,1, + I = As = A, and C = AI on r, where A is a real 
number. 

If C is given by (3.1), then the action of C on!" for sES 
yields the relation 

(),7/, = A + sf-l = f-l(a + s), (3.4) 

which is valid for all s or s - 1 in S and for convenience we 
set A = f-la. The number a will of course be real. 

(iv) Since each/,E}V' for sES is simultaneously an eigen­
vector of C, E, and M3 with eigenvalues A, f-l, and s, respec­
tively, we could label/, with all three eigenvalues. However, 
since A and f-l are the same for each sEM3, the extra labels are 
in a sense redundant and have been omitted. 

We can always define a new basis [I; l for r by means 
of the set of nonzero constants [Ys:sES l suchthat/; = y,1s 
for each s in S. In this new basis, we have 

CI: =,1/:, EI; =f-ll;, Md; =sl:,} 

J _ I; = 7/.:1.; - I , 

(3.5) 

where 

(),=YS-I() , Ys 
., s' 7/, = --7/" 

y, Ys-I 

assuming ()s + I = ° if s + 1 is not in Sand 7/s = ° if s - 1 
does not lie in S. The constants ();, 7/; must satisfy ();7/; 
= f-l(a + s) for eachsin S. So, for allsESsuch thats - lES, it 

is possible to select the constants 7/s arbitrarily and define the 
constants ()s by (3.4). Thus the irreducible representation of 
~ is uniquely determined by the eigenvalues A and f-l of C 
and E, respectively, and the spectrum S of M 3• The constants 
()s and 7/s are not unique and may be selected arbitrarily 
subject only to (3.4). 

(v) Every representation of ~ which satisfies (i) above 
and for which E #0, is isomorphic to one of the following 
representations: 

(a) The representations R (a, so, f-l) defined for all real a, 
so, and f-l such that f-l # 0, ° < So < 1, and a + So is not an 
integer. The spectrum S = [so + n: nEZ l. 

(b) The representations T a." defined for all real a and f-l 
such that f-l # 0. The spectrum S = [ - a + n: nEZo+ l where 
'lo+ is the set of positive integers including zero. For this case 
a + SE'lo+' 

For (a) and (b) there exists a basis for r consisting of 
vectors/, defined for each sES such that 

/, = f-la !" 

J+/, = f-l/' + I' 

E/, =f-l/', M3/' =s!,,} 

J _ /, = (s + a)Js _ I' 
(3.6) 

(c) The representation t a." defined for all real a and f-l 
such thatf-l #0 ands + a is a negative integer. The spectrum 
S = [ - a-I - n: nEZo+ l. For each representation there is 
a basis for r of vectors/, defined for all s in S such that 

Cis =f-la/" E/, =f-l/" M3/' = Sis,} 

J + I, = (a + s + 1 if- + p J -Is = f-l/' - I' 

(3.7) 

The representations T a." are bounded below; the representa-

46 J. Math. Phys .• Vol. 23. No.1. January 1982 

tions t a ." are bounded above, and R (a, So, f-l) is unbounded. 
Now we shall explore more thoroughly the connection 

between the representation space r of ~ and the solution 
space Y Q of the time-dependent Schrodinger equation (1.5). 
Let/be any function in Y Q' Then Qf = ° and we have 

CI= - ~(q?Q + 1)1= - U and EI=/ 

Since f-l = 1, A = f-la = - ~ and/is an element of the vector 
space, the representation space r. Conversely, let/, be any 
basis vector in r. Then 

C1s = -!(q?Q+ 1)1, =f-la /" E/, =f-l/, =/" 
and1s is in.r Q" for some Q', where 

Q' = J xx + 2iJ, - 2g2(t )x
2 - 2g l (t)x - 2gb(t) 

and 

gb(t) =go(t) - (2a + 1)12q? 

In particular, if a = -!, then1s is in Y Q' i.e" gb(t) = g(M), 
This implies that we can use the structure of the Lie algebra 
~,a symmetry algebra of the Schrodinger equation (1.5), 
and the irreducible representations of ~ to define the solu­
tion space Y Q' 

Now, the requirement that our space Y Q be normed 
imposes restrictions upon which of the three irreducible re­
presentations R ( - !, so, 1), T _ 1.1 , and t _ 1.1 are acceptable 
in defining the solution space Y Q' Since -

f+ '" 
0,;;; _ 00 I: /, dx < 00, for any s in S,/,in r, (3.8) 

then for sand s - 1 in S, 

t+ 0000 I: J +J -Is dx = f-+ 00'" (J _1s)*(J + 1s) dx 

f
+= 

= 7/:7/ s _ 00 I, - I /, - I dx > 0, 

(3.9) 

where the first equality follows from (2.28), the second from 
(ii)(b) above, and the inequality because of(3.8). Alternatively 

f+ 00 foo 
_ 00 I: J +J - /, dx = ()s 7/s 00 I: Isdx>O, 

by (ii)(a), (ii)(b), and (3.9). Because of equations (3.4) and (3.8), 

f-l(a + s) = (a + s»O. (3.10) 

Since (a + s»O, we can eliminate the representations t _ j.I 
and R ( - !, So, 1) from further consideration at this point 
since for both of them (a + s) < ° for certain choices ofs. This 
leaves only the irreducible representation T _ \.I ' which is 
bounded below. 

Since a = -!, Eq. (3.11) implies that the eigenvalues of 
M3 satisfy the inequality s>!, and the spectrum S of M3 is 
[n + !: nE'lo+ l. Then by (3.6), the irreducible representation 
space r and the solutions space Y Q of (1.5) are spanned by 
the set of eigenvectors satisfying the identities 

Cln+l12 = -!In+1I2' Eln+1/2 =_In+I12' } 

M31n + 112 = (n + !)In + 112' 

J+ln+1I2 =In+312' J-In+l12 -nln-I12' 
(3.11) 

This choice of basis is not the most convenient and so making 
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use of (iv) we can choose a new set of normalized eigenvectors 
relabelled with the quantum number n rather than the eigen­
value n + !. We denote the new normalized eigenvectors by 
h n . Let h ~ = In + 112 and assume that ho = h b is normalized. 
Then h ~ = J n+ ho. We choose a set of real constants 
( Yn: nEZo+ I such that hn = Yn h ~ and, 

(3.12) 

Using (2.28) and the commutation relation [J _, J +] = Ewe 
find that Yn = (n!)-1/2. In the new basis, the relations (3.11) 
become 

Chn = - ~hn' 

M3hn = (n + 1)hn 

J +hn = (n + 1) 1/2hn + I' 

Since M3 is Hermitian, the eigenvectors hn at the same 
time are orthogonal, that is, 

J
+ 00 

-00 h!(x, t)hn(x, t)dx =0, m#-n. (3.14) 

Another important feature is that any time-dependent sys­
tem which can be described by Eq. (1.5) is quantized; the 
quantum numbers arise naturally when we diagonalize the 
constant of the motion M3 a generator of a space-time sym­
metry of (1. 5). We shall discuss these points further in the 
concluding Sec. 5 and only mention them out of interest 
here. 

We remark that the representation space i _ 112.1 of so­
lutionsY Q defined by (3.13) is equivalent to that obtained by 
Lewis and Reisenfeld Ib for the restricted case 
V(x, t) =u/(t)x2/2. 

4_ EXPLICIT SOLUTIONS OF THE SCHROOINGER 
EQUATION Qf = 0 

For many properties which can be expresses as polyno­
mials in momentum and position operators we can rewrite 
them as polynomials in the ladder operators J ± and M3 and 
use the relations (3.13) and (2.16) to calculate expectation 
values. However, in other cases, and especially when we wish 
to explore the behavior of the system at different times, it 
would be advantageous to know the wave functions as ex­
plicit functions of the space and time variables. In this sec­
tion we shall make use of the realization (2.25) for the gener­
ators of [f and the properties (3.13) to obtain h n as a function 
of x and t. We can do this regardless of the form of the time­
dependent functionsg;(t), I <i<3 in (1.5) by making good use 
c.fthe identities (2.22), (2.23), (2.24), and the Wronskian 
(2.21). 

We begin by solving the eigenvalue problem 

M)h n = (n + !)hn • 

Substituting (2.25a) for M J yields a first order partial differ­
ential equation for hn (x, t ): 

q;hn,( + (!~x + d)hn,x + ( - (i/4)tPX2 - id'x + !~ 
+ igoq; + i.g; + i(n + !))h n = 0, (4.1) 

which may be solved by integrating the subsidiary equations 
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( - (i/4)<pX2 - idx + l~ + igcIP + i!iJ + i(n + mhn 
(4.2) 

Details of this calculation are supplied in Appendix B. 
Hence 

hn(x, t) = q; -112 exp i(X2~ 14q; + xd Iq; - A - Go 

-(n+!)ct>lan(q;~/2 -3?J), (4.3) 

where the function an is, for the moment, an arbitrary func­
tion of its argument, the new variable X/q;tl2 - 3?J. Recall 
that q; and crY' are defined by (2.22), where q; = q;3 and by 
(2.23a), where d = crY'3 and 

II d 
3?J-- q; 3/2 ' 

(4.4) 

ct>= r ~, (4.5) 

Go = r go, (4.6) 

A= -+ -, 
I

I ,rY'2 II!iJ 
q;2 q; 

(4.7) 

where!iJ is given by (2.23b) with!iJ = !iJ 3' Note that all the 
quantities in (4.4) through (4.7) are real-valued functions of 
time. 

Let {; = X/q;112 - :?iJ and define the operators 

which satisfy the commutation relations 

[Z, Z +] = E. (4.9) 

Then we have the relationships 

J +hn (x, t) = q; - 1/4 

xexPi{x:; +x; -A-Go-(n++)ct>} 

S *1/2 
X --Z+a S n 

=q;- 1/4 

xexPi{:; +x; -A-Go-(n+ ~)ct>} 
XZ +a". (4.10) 

where we have used the identity (see Appendix B) 

4> = (i/2)ln{s * IS). (4.11) 

For J _hn (x, t) we obtain 

J +h" (x, t) = q; - 1/4 

{ 
X2~ X rf } S 1/2 

xexpi --+-' - -A - GO - (n + !)ct> --Za 
4q; q; 2 t* " 

=q; -1/4 
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2 . 

X exp i{ x cp + x.if - A - Go - (n - ~)q> }za . 4qJ cp _ n 

(4.12) 

We have made use of(4.11) in arriving at Eq. (4.12). 
Now, from (3.13) we have J _ho = 0 which implies 

Zao(S) = O. The latter condition gives the following ordinary 
differential equation for ao: 

dao r 
-+~ao=O ds 

which has the solution 

(4.13) 

where N is a real constant. We can fix N by normalizing 
ho(x, t): 

t+ ='" h ~(x, t )ho(x, t )dx 

f
+OC d f+oo 

=N2 ~2e-;1=N2 dSe-;1=N 2rr Il2 =1. 
-00 cp -00 

Thus N = rr- 1/4 and the eigenfunction for n = 0 is 

ho(x, t) 

( )-1/4 .{x2q; xsf' G I } = rrcp expl --+---A - o--q> 
4cp cp 2 

(4.14) 

We obtain hn (x, t) by repeated application of J + to 
ho(x, t). Sincehn(x, t) = (n!)-l/2J"+ ho(x, f), 

hn(x,t) =(n!)-1/2cp-1 /4 

xexPi{:; +x: -A-Go-(n++)q>} 

X(Z +)"ao(S) 

= cp-1/4 

X exp i {:; + x: - A - Go - (n + + ) q> } 

xan(S), 

where we have again made use of (4.11). Thus we get the 
relationship 

an(S) = (n!)-1/2(Z +)"ao(S) 

= rr-1/4(n!)-1122 -nIZ( -)" (:S -S )"e- nz 

(4.15) 

= rr-1/4(n!)- 1/22 - n/2Hn (S)e - !;1!2. (4.16) 

Equation (4.15) follows from the definition (4.8) of Z +. To­
gether Eqs. (4.15) and (4.16) imply that 

Hn(S) = (_)ne!;'12(:s _s)"e-';-l12, 

(4.17) 

where we have used the operator identity 

(:S - S)" = e!;l12 :snn e!;'!2. 
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Equation (4.17) is the Rodrigues formula 13 for the Hermite 
functions, a class of orthogonal polynomials. Thus the wave 
function hn (x, t) has the form 

hn (x, t) = (rrcp)-1/4(n!)-1/22 - n!2 

. X cp X.w I 
{

2' _// ( 

X exp I 4qJ + ----;- - A - Go - n + '2 ) q> } 

XH (~ _ .'/,lJ) -(xl,/, '10 -- _%i)'/2 
n 1/2 70 e . 

cp 
(4.18) 

These functions form a complete set of orthonormal solu­
tions to the Schrodinger equation (1.5). 

We remark here that if we evaluate the relation 

J +J _hn = nhn 

we get the second-order ordinary differential equation for 
antS) 

d 2an 
--2 + (2n + I - S2)a n = 0, ds 

which is the parabolic cylinder equation9
.
13 which has nor­

malized solutions (4.16) with Hn(S) defined by (4.17). That 
(4.18) is indeed a solution to the Schrodinger equation (1.5) 
may be confirmed by substitution. 

We mention too that solving the first-order equation 
(4.1) is equivalent to finding a separable coordinate system9 

for the time-dependent Schrodinger equation (1.5). The new 
variables (x/cp 112 - f!jJ, f) permit R separation9 oft 1.5) yield­
ing the solutions (4.18). 

5. DISCUSSION 

In nonrelativistic quantum mechanics, time is a param­
eter and the equations of motion and their solutions have a 
parametric time dependence. 5 In particular, the Schrodinger 
equation 

(5.1) 

gives the evolution of the wave function or state vector 
I[/a (x, t) which corresponds to the state a at any time. The 
set of solutions I[/a (x, () of (5.1) form a Hilbert space; each 
state vector I[/a (x, () corresponding to a state a has a definite 
direction in the Hilbert space of solutions at each point in 
time.5 The relative orientations of the state vectors may 
change then during the evolution of the system. 

For nonconservative systems, V (x, ( ) is time dependent 
and the directions of the state vectors in Hilbert space shift 
with time. The possibility exists then for transitions between 
states. The probability that the system, in state a at time (I' 
will be in state (J at time t2 is given by the square of the 
modulus of the probability amplitude, IIaf3 (t l , f 2W, where 
the probability amplitUde is given by5 

J
+OO 

I,,?(f l , ( 2) =. = I[/~(x, fIiI[/{3(x, (2) dx. (5.2) 

On the other hand, for conservative systems, the Hamilton­
ian is a constant of the motion and the system will be in a 
particular energy eigenstate, 1[/ a (x, t ), where5 
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V(x,t) 

--------~--------~+_---------------------x 

FIG. I. Schematic diagram of the potential function 
V(x,t 1= g2(t Ix2 + g,lt)x + go(t I at two different times t, and t2. The actual 
surface is three dimensional. We show only a two-dimensional projection. 

lfIa. (x, t) = /""'t/Ja (x). 

If the Hamiltonian is Hermitian, the t/Ja.(x) may always be 
chosen to be orthogonal5 and 

laf3(t" t2) = 0, a=:j:./3. 

So for conserved systems, the direction of the state vectors in 
Hilbert space is fixed and no transitions between energy ei­
genstates occurs. 

In the specific case where the potential has the form 
(1.4), then the evolution of a state is governed by the coeffi­
cientsg;(t) in the potential. In Fig. 1 we show schematically, 
the appearance of the potential at two different times t, and 
t2• Both the position of the minimum and the curvature may 
vary, and the state vectors, the solutions of(1.5) will reflect 
this alteration in the potential. Now these solutions, hn (x, t) 
are given by (4.18) and are simultaneous eigenvectors of the 
complete set of commuting observables C, E, and M3 which 
are symmetries of the Schrodinger equation (1.5). The state 
vectors hn (x, t) have, in general, a complicated time-depen­
dence. They are generally not energy eigenstates since the 
Hamiltonian is not a constant of the motion. Since the prob­
ability amplitude 

f
+ 00 

lnm(t" t2) = _ 00 hn *(x, t,)hm(x, t2 )dx 

does not vanish [see Appendix B(3)], transitions between 
states can occur. Why this is so, is suggested by the potential 
energy curves in Fig. 1. 

For the time-independent harmonic oscillator [see Ap­
pendix A( 1 )], the symmetry M3 is proportional to - ia, the 
energy operator. The Hamiltonian is a constant of the mo­
tion and the energy is conserved. Since M3 is the diagona­
lized generator from the Lie symmetry algebra f:1 and so the 
energy is quantized with 

'1? n = (n + 1)w 

and the system is in a definite energy eigenstate. Further-
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more, the system remains in that state since the transition 
probability vanishes due to the orthogonality of the Hermite 
polynomials. We emphasize that it is the generator M3 which 
is quantized in both the time-dependent and time-indepen­
dent cases and only in the latter does M3 correspond to the 
energy operator. It is in this sense that both cases, the time­
dependent and the time-independent oscillators, are 
quantized. 

Both sets of solutions, I hn (x, t ):n = 0, 1, ... J for the 
time-dependent oscillator and IlfIn (x, t ):n = 0, 1, ... J for the 
harmonic oscillator (Appendix AI), form complete sets by 
hypothesis. We can expand the hn in terms of the lfIn accord­
ing to 

hn(x,t)= I cnm(t)lfIm(x,t), (5.3) 
m=O 

where the lfI[ (x, t ) are given by (A9). The coefficients C nm are 
time dependent, 

(5.4) 

and are evaluated in Appendix B(4), Eq. (B 18). In form, they 
bear a close resemblance to the probability amplitudes 
lnm (t" t2)' In fact, ICnm (t W is the probability that, at time t, 
the system under the influence of (1.4), will be found in the 
oscillator energy eigenstate lfI m with energy g' m 

= (m + !)w. 
Now we shall turn our attention to the computation of 

other properties for systems with potentials (1.4). In particu­
lar those properties which can be expressed as polynomials 
of position and momentum operators are of interest. 

We can express the momentum and position operators 
in terms of the raising and lowering operators J + and J _, 

x = SJ + + S *J _ + i(S'G' * - S *'G'), (5.5a) 

Px = iax = tJ + + t *j _ + i(tct' * - t *'6'), (5.5b) 

where we have used the definitions (2.25) and the Wronskian 
(2.21). With the help of(3.13) and the orthonorma1ity of the 
eigenvectors hn (x, t) we have 

(x> = i(S'G' * - s *'G'), 

(Px> =i!t'G'* -t*'G'), 

(5.6a) 

(5.6b) 

their expectation values. Consistency with Ehrenfest's Theo­
rems can now be established. Taking the time derivative of 
(x> and using the definitions (2.24) for 'G' and ct' * we obtain 

d ~;> = i(tcG' * - t *'G') = (Px >. 
Secondly, the force is the derivative of the momentum 

d (Px> = 2ig2(s*ct' _ s'G'*) -gl(t) = _ (av). 
dt ax 

This means that the expectation values ( x> and (Px > are 
good representations of the corresponding classical varia­
bles. Finally, because of the commutation relation 
[J _,J +] = Eand the Wronskian (2.21), we have the Heisen­
berg uncertainty relation 

Lix·Lipx >1' 
The Hamiltonian 
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cW'= - ~Jxx +g2(t)x2 +gdt)x +go(t) 
corresponds to the total energy of the systemS and can be 

expressed in terms of the ladder operators through (5.5). In 
this realization we get 

cW' = !(<PI + 8g2IPI)J2+ + !(<P2 + 8g2IP2)J2_ + !(<p + 8g2IP)(J +J - +~) + il~(<pI + 8g2IPtl'G' * - !(<p + 8g2IP)'G' - iglS lJ + 

+ iU(<p + 8g2IP )'G' * - !(<P2 + 8g2IP2)'G' - ig IS * JJ - + !(<PI + 8g2IPI)9' I + !(<P2 + 8g2IP2)9' 2 - McP + 8g2IP )9' 
+ igl(S'G'* - 5 *'G') + go· (5.7) 

Clearly the Hamiltonian is not diagonal in the representation i _, I of:5, which is consistent with the fact that the Hamilton­
ian is not a constant of the motion. However we can calculate th~ average energy, 

~. = (cW') = t+ 0000 h ~(x, t )cW'h.(x, t )dx = !(<p + 8g2IP)(n +!) + ~(cPl + 8g2IPI)9' 1 

+ !(<P2 + 8g2IP2)9' 2 - ~(<p + 8g2IP)9' + igdS'G' * - 5 *'G') + go, (5.8) 

where we have used (5.7) and the properties (3.13) of the 
orthonormal eigenvectors of i _ p . It is interesting that the 
average energy ~ depends upon both the quantum number n 
and the time t in such a way that the "level" separations 
.J ~ = ~ • + 1 - ~. = !(<p + 8g2IP ) are equally spaced at 
each instane4 but the spacings themselves vary with time. 
Also, we note that .J ~ is always a positive quantity since 
!(<p + 8g2IP) = tt * which is positive definite. 

Finally, the special cases with potentials (1.3) and (1.2) 
are worked out in Appendices A(2) and A(3), respectively. 
They have been included for completeness. 

APPENDIX A 

(I) Time-independent harmonic oscillator. In this case, 
the functionsg2(t) = Ul2/2 andg I(t) = go(t) = 0, where UI is a 
real positive constant. We choose the real solutions of(2.4) to 
be 

1 
XI(t) = -- cos Ult, 

VUl 

Wlxl' Xz) = 1. 

) 
1 . 

X2(t = -- sm Ult, 
VUI 

According to the definitions (2.20) 

(AI) 

f;-(t) - 1 e iwi and f;-*(t) - 1 e-i,ul (A2) 
~ - (2U1)1I2 ~ - (2UJ)1/2 

with the Wronskian 

W(S, 5*) = - i. (A3) 

Hence 

I J' 1 IP = IP3 = -;;; and <I> = q; = wt. (A4) 

Sinceg l = 0, 
'G'=dj=O, I.;;;j.;;;3 (AS) 

and the Lie algebra :1 is realized by the differential 
operators 

M i J J 1 - iwi (J ) 3 = - " + = --1/-2 e - x + UlX , 
UI (2U1) 

J = _1_ e iwi (J + UlX), E = 1. (A6) 
- (2UJ)1/2 x 

Note that the diagonalized operator M3 is a multiple of the 
energy operator - iJ, . Because of this, the Hamiltonian 
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(A7) 

is a constant of the motion and the energy is quantized and is 
a constant having the value [see Eq. (5.8)] 

go n = (,;y') = (n + !)UI. (A8) 

The solutions for the harmonic oscillator Schrodinger equa­
tion can be obtained from (4.18) 

tJI. (x, t) = (n!)-I /2(:) -1/42 --.12 

Xexp [-iW n tJH.(OJ I /2x)e-,,,X'12, 

n = 0, 1, .... (A9) 

The functions h. (x, t) are eigenfunctions of both M3 and the 
Hamiltonian (A 7). As a consequence of (A 7) and the form of 
(1.5), the Schrodinger equation is separable in the Cartesian 
coordinate system (x, t ). 

(2) The Harmonic oscillator subject to a time-dependent 
force. 2 Now g2(t) = Ul2/2 as in A(I) aboveandgdt) is an arbi­
trary real function. We takego(t) = 0. Thus the potential has 
the form (1.3). We can use the values for the functions 5 and 
5 * we found in (A2) and so IP and <I> are given by (A4). From 
(2.24) we obtain 

u y 1 J' iws T? =--/-2 gle, 
(2U1) 1 

1 J' . 'G'* = (2UJ)1/2 gle-
uu

,. 

(AlO) 

According to the Eqs. (2.23a) we have 

The 9' functions are given by (2.23b). 
The generators of the symmetry algebra, ,Cfj have the 

form 

1 {. J' .} (AI2) 

J _ = --- e"'" (J + UlX) + i g e'w., 
(2U1)1/2 x I' 

E=1. 
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The simultaneous eigenvectors of C, E, and M3 are given by 
(4.1S) 

hn (x, t) = (n!)- II2(1T/m)-1/4Z - n12 

X exp i[ xmd - A - (n + ~)mt J 

XHn (m l / 2x - :?J)e - IW"
2X 

- aJ)212, (A 13) 

where 

:?J = m
3

/
2 r d, } 

A = m
2 r d 2 + m r YJ. 

(AI4) 

Form (5.8), the average energy is given by 

g' n(t) = m(n + ~) - ~mYJ + (g/m):?J, (AI5) 

where!iJ = !iJ 3 is defined by (Z.Z3b). 

The probability amplitude can be computed by a proce­
dure analogous to that in B(3).15 

Inm(l, Z) = AMB 

[n+ j -2rj 
m II) --2- (_ pm -j+ rq; m -j(n + j - Zr)!i" +j 

X j~O r=O s~o (m - j)!(n - r)!(n + j - Zr - 2s)!r!s! 

xHn +j_ 2r- 2s(i/3 /vZ), (AI6) 

where 

A = (n!m!)1/2Z -In + m)/2, 

M = exp itA (1) - A (Z) + (n + ~)mtl - (m + !)lUt2 

+ !(:?J(Z) - :?J(I))(d(I) - d(2))), 

B = exp[ - /3/3*/4), 

/3 = (:?J(l) - :?J(Z)) + im l
/

2(d(l) - d(Z)), 

a = :?J(I) - :?J(Z). 

The functions A, :?J, and d = d 3 are given by (AI4) and 
(All). 

(3) The time-dependent harmonic oscillator. 1 For this 
case g(t) = go(t) = 0 and g2(t) is an arbitrary differentiable 
function and the potential is given by (1.Z). Sinceg2 has not 
been specified the functions Sand S * are defined in terms of 
the X 1 and X 2' real solutions to (Z.ZO). However, some simpli­
fication results since 

CC3=CC3*=O. (AI7) 

Therefore, YJj = d j = 0, 1 <j<3, and the generators of the 
Lie algebra f§ have the form 

M) = if q;a, + !q;xax - (iI4)rPx2 + l<p I, 
J + = - s *ax + it *x, 

J_ = Sax -it*x, 

E=1. 

(AlS) 

The basis vectors for r _ !.I' simultaneous eigenvectors of the 
observables C, E, and M are given by a modified form of 
(4.1S), 

hn(x, t) = (nl)-1/2(1Tq; )-1/4Z - n/2 

X exp if X2<p 14q; - (n + ~)cf> J 

xHn(xlq; 1/2)exp( - x 2/q;), (AI9) 

were cf> is defined by (4.5) with (4.11). 
The average energy may be obtained form (5.S) and is 

given by 

g' n (t) = !(rP + 8g2q; )(n + !). (AZO) 

Since!(rP + Sg2q;) = tt *, the energy g' nIt ) is always positive. 
The probability amplitudes 

Inm(I,Z)= t+",,"" h:(x,tdhm(x,t2)dx 

may be obtained as follows using the wave function (A 19). 

(mI2) (- )km! f"" 
Inm(I,2)=AMB I .9mdp) dy 

k = 0 (m - 2k )1 "" 

xexpf - Zry2IHn(YlHm_2k(Y)' (A21) 

where 

y = xlq; (1)1/2, 

A = 1T-I12(n!ml) -In + m)12, 

M = exp it (n + !)cf> (1) - (m + ~)cf> (2)), 

B=pl/2= [q; (l)lq; (2)] 1/
4

, 

2y2 = ~ (1 + q; (1)) + ~ [q; (l)<p (Z) - <p (11]. 
2 q; (2) 2 q; (2) 

Note that Rey2 = !(1 + q;( 1)lq;(2)) > 0 since q; is positive 
definite. The function .9 mk (p), a polynomial inp is given by 
(BI5) in Appendix B. The integral in (AZl) is a standard 
integral 16 and so we obtain 

m12 ( )k' m + n - 2k 
I (1 2) =A 'MB I - m . .9 mdp)2 -12k+ 1J/2y -m-n+2k-I(l_ Zr) 2 r(m + n; 2k + 1) 

11m , k = 0 (m - Zk )! 

( 
I-n-m+2k 

X 2FI - m, - n + 2k; 2 

where Rer > 0 and m + n even. The function 2FI (a, b; c; z) is 
a hypergeometric function. 1).16 The coefficient A 'is defined 
by A' = (1Tn!m!)-t!2. 

APPENDIXB 

(1) We wish to integrate the subsidiary conditions (4.2) 
in order to obtain the.wave function (4.3), solution to the 
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partial differential equation (4.1). The conditions (4.Z) are, 

dt dx 

q; ~<px + s1' 

( - (i/4)rPX2 - i.srlx + !<p + l'goq; + i!iJ + i(n + !J)hn 
(BI) 
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By appropriately rearranging the first equality we obtain the 
inhomogeneous differential equation, 

dx 1 cP crf 
- - --X=-
dt 2 <p <p' 

which when integrated yields a solution 

x -----.--n - ,'d} = C I' 
<p 

where C 1 is an arbitrary constant and 

8?J(t) = II ~, 
<p 3/2 

(B2) 

(B3) 

Taking the first and third terms we can recast them into the 
differential equation 

{
-irp2'.# lcP' ,fiJ -4-q;X -1q;X +4q;+ Igo + Iq; 

'( 1) I } - dh n 
+1 n+- - dt=--

2 <p hn 

(B4) 

for hn • We can eliminate the x dependence in (B4) by substi­
tuting Eq. (B2). Integrating the resulting expression and sub­
stituting (B2) for the constant CI we obtain 

hn exp[ - iX2cP /4<p + ixA 1+ iA + iGo + i(n + ~)<1> I 
(B5) 

where C2 is an arbitrary constant. Go and <1> are defined by 
(4.5) and (4.6), respectively, and 

A I = (q?~!2 - ~ r rp~ - r (d /<p 1/2))/<p 1/2, 

A=( -: cP~2_: rrp~2+~rd/<p1/2 

- r d ~ /<p 112) + (~/2)r rp~ + r fiJ /<p ). 

Both A I and A may be simplified. For A I we obtain after 
integrating by parts and some algebra 

AI=(1/<P)[r(~ cPd -<Pd)/<p3/
2
]. (B6) 

By repeatedly integrating by parts we can reduce A to 

A = - r (d /<p3/2)j' (~ cPd - <pd )/<P 3/2 + r fiJ /<p. 

(B7) 

Again integrating by parts the common term in (B6) and (B7) 
we have 

r (+ cPd - <pd )/<P 3/2 = - d /<p 1/2. (B8) 

Substituting (B8) into (B6) and (B7) yields 

Al = - d/<p, A = r d 2/<p2 + r fiJ/<p. (B9) 

Hence (B5) becomes upon substitution for A I 

hn exp[ - iX2cP /4<p - ixd /<p + iA + iGo + i(n + ~)<1> I 
= C2• (BIO) 

Now (B2) and (BIO) are two functionally independent 
solutions of the system (B 1) and so we have a general 
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integral,17 

hn <p1/4 exp[ - X2cP /4<p - ixd';<p + iA + iGo + i(n + !)<1> I 
= an (x<p 1/2 - ,%'), 

or 

hn (x, t) = <p-1/4 exp[ iX2cP /4<p + ixsi /<p - iA 

- iGo - i(n + ~)<1> I 
xan(x/<p 1/2 - ~). (Bll) 

(2) There are a number of useful relationships which 
simplify many calculations: 

5 * 'i: - 5'i: * _ . u: 
1/2 -/~, (BI2) 

<p 

(B13) 

In (BI2), 5 is given by (2.20) and 'i: by (2.24). Equation (BI2) 
is obtained by integrating by parts and using the Wronskian, 
W (5, 5 *) = - i. 

The second relation follows from the definition of <p and 
the Wronskian, W(5, 5 *) = - i: 

r ~ = + r 5: * = ~ r 5t *5-; 15 * = ~ In 55* . 
(3) Using the specific form of the wave functions (4.18) 

we can compute the probability amplitudes 

Inm(tl,t2) =lnm(I,2)= r+=oo h~(x,tdhm(x,t2)dx 

where 

=AMB r+ooao dxexp[ -a'x2-fJ'xl 

XHn(x/<p 1/2(1) - ~(1)) 

XHm(x/<p 1/2(2) - ~(2)), 

A = 1T'-1/2(n!m!)-1/22 -In + m l12, 

M = exp i[A (1) - A (2) + Go(l) - Go(2) 

+ (n + !)<1>(1) - (m + !)<1>(2)1, 

B = (<p (1)<p (2))-1/4 exp[ - (~2(1) + ~2(2))l21, 
,_ 1 [1 1] i [cP (2) cP (1) ] 

a -"2 <p (1) + <p (2) + 4 <p (2) - <p (1) , 

, .(d(l) d(2)) (~(1) ~(2) ) 
fJ = I q;(l) - <p (2) - <p (1)1/2 + <p (2)1/2 . 

Note thatfJ' is complex since all the quantities, <p, d, ~ are 
real. Furthermore, Rea' > 0 since <p = 255 * is real and posi­
tive. We now perform a variable transformation 

y = x/ <p 1/2( 1) - ~ ( 1), 

which gives 

f
+ 00 

Inm(l, 2) = AMB' _ 00 dyexp( - ay2 - fJy) 

XHnly)Hm(Py + u), 

where 

a = a'<p(I), 

fJ = fJ '<p1/2(1) + 2a~(I), 
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p = [qJ(I)1qJ(2)]l/2, 

U = &J(lp - &J(2), 

B' = pl/2 exp[ - (! - a)&J 2(1) - &J(I).8 - !&J 2(2)). 

The integral in the expression on the right l6 is 

J+OO (tr)1I2 (/3
2) 

_ 00 dy exp( - ay2 - /3y) = ~ exp 4a ' 

Employing identities for Hermite polynomials l3 we obtain 

[mn(l, 2) =AMB' 
whence 

L+ 0000 dyexp( - ay2 - /3y)HI(Y) X f. III",ji2kl m!n!2m -)+rg;jk(p)u"'-i 

j=Ok=O r=O (m-j)!(n-r)!(j-2k-r)!r! 

X f-+ 0000 dy exp( - ay2 + y)Hn+)_ 2k - 2r(Y)' 
(BI4) 

= (~)112 (112J (- )/+kl!2/-2k (~)/-2k ex (~) 
a k~O k !(/- 2k )! a/3 p 4a . 

where (n,j - 2k) indicates the upper limit to the sum is the 
smaller of the two numbers. The function &jdp) is a poly­
nomial in the variable p: 

If we use the Rodrigues formula for Hermite polynomials; 
then 

J
+ 00 

_ 00 dy exp( - ay2 - /3y)HI(y) k p)- 21 

&jdp) = I?O /!(k -I)! . 

To solve the integral in (BI4) we note that 
= (~)I12 (II lUi (a 1 )(I-2k I12 

a k = 0 k !(I - 2k )! 

f-+ 0000 dyexp( - ay2 - /3y)HI(y) 
XH (~) eP'/4a. 1-2k 2ya 

= HI ( - a) J+ 00 dyexp( - ay2 - /3y). 
a/3 - 00 

Therefore 

II2J 1".i-2kl (I" +)-2k- 2r)l21 i" +)( - )r2m -
j + r(n + j - 2k - 2r)!u'" -)&dp) 

[ (1 2) =A 'MB" L L L J 
nm , )=0 k =0 r=O 5=0 (m - j)!(n - r)!(n + j - 2k - 2r - 2s)!(j - 2k - r)!r!s! 

(
.!.)In + j - 2k - 2r - 25112 H (....!L) 

X a n + ) - 2k - 2, - 25 2 ya ' (BI5) 

where 
1/2 

A' = [n!m!2 -I" + mlpn, B" =.e...- exp[/32/4a - (! - a)&J 2(1) - &J(I){3 - ~&J2(2)]. 
a 

(BI6) 

(4) Ifwe expand the functions (4.18) in terms of the time-dependent harmonic oscillator as in (5.3), then the coefficients 

J
+ 00 

C"/(t) = _ 00 IJIr(x, t)h,,(x, t)dx, (BI7) 

where the solutions to the time-independent oscillator are given by (A9) in Appendix A( 1). The integral (B 17) may be evaluated 
in the same fashion as the probability amplitudes computed in (B3) above. We quote only the result here. 

m I{; I InJ - 2k ) (In +)- 2k - 2')12)( - )" + j+ '2m -j +ri" +)(n + j - 2k - 2r)!&J m -j&dp) 
C"m(t)=AMB L L L L J 

j = 0 k = 0 ,= 0 s = 0 (m - j)l(n - r)!(j - 2k - r)!(n + j - 2k - 2r - 2s)!"'.s! 

X (J.)I" +) - 2k - 2, -sl/2 H . (~)eP' 14a 
a n+J-2k-2,-2s 2ya ' (BI8) 

where ACKNOWLEDGMENTS 

A = (n!m!)1/22 -In + m1/2, 

a = .!.(1 + _1_) _ i<{y , 
2 WqJ 4w 

- &J id 
/3=--,- --(wqJ ) 1 /2 Wi 12qJ , 

_ (_1 )1/2 p- , 
WqJ 

B = (~ yl2(: )114 exp( _ &J2/2). 
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The number operator a*a, where a is an annihilation operator, plays a fundamental role in the 
statistics ofbosons and fermions. However, it is possible for other statistics to have the same 
number operator. We have previously shown that for one degree offreedom there is a type of 
statistics having this number operator corresponding to each p which is a positive integer or 00. 

Fermions are obtained when p = I and bosons are obtained when p = 00. No state can have more 
than p particles. In order to treat many degrees offreedom it is necessary to first consider the case 
of one degree of freedom differently. We show here that for more degrees of freedom a similar 
situation occurs but for each case other than bosons and fermions there is a positive integer q, such 
that no state can have more than q particles, even when the number of degrees of freedom is 
infinite. Thus these statistics are probably not physically realizable except in an approximate way. 

PACS numbers: 03.65.Fd, 02.30.Tb 

1. ONE DEGREE OF FREEDOM 

This work is an extension of work done for one degree of 
freedom (Ref. I). In order to extend to many degrees of free­
dom, the earlier work must be looked at differently. 

In keeping with the notation introduced in the next sec­
tion, C will represent a creation operator and its adjoint C· 
will be the corresponding annihilation operator. The state­
ment that n = CC· is a number operator can be expressed by 
the commutation relation 

[n,C] = C. 

Since C and n may be unbounded operators this relation may 
only be satisfied on a certain dense domain. This domain 
should contain the vacuum vector v which should have zero 
particles and thus satisfy C·v = 0. The vacuum should be 
essentially unique; that is, there should be only one zero­
particle state. The domain should also include the result of 
creating and then annihilating any number of particles from 
the vacuum. These are the hypotheses of Theorem 1. We 
start with a definition. 

Definition: Let d be a collection of operators on a Hil­
bert space K. Poly (d) will be the set of all polynomials 
formed from operators in d. I» OO(d) will denote the set of 
all vectors in K which are in the domain of all elements of 
poly (d). If vEI» OO(d) then Kv(d) = I Bv: BEpoly(d) J. If 
Kv (d) is a dense subset of K then v will be called a cyclic 
vector of d. 

In the following if p is a positive integer we set Np 
= 10, I ,2,3, ... p J and let N 00 denote the nonnegative integers. 

Theorem 1: Suppose Cis a closed, densely-defined oper­
ator on a complex Hilbert space K,d = poly( I C,C· J), 
n = CC·, there is a unique (up to scalar multiple) unit vector 
vEK such that C·v = 0, this v is a cyclic vector for d, and, 
for wEKv(d), 

[n,C]w = Cwo (1.1) 

Then for some p, the set 

IVk = (k!)-1/2C kV:kENpJ 

is an orthonormal basis for K and 

C·vk =kl/2Vk_l,kENp, ki=0. 

Remark: It is an easy computation to show that all non­
negative integral values of p are possible and give operators, 
C, which satisfy the hypotheses of the theorem. The case 
p = ° corresponds to C = 0 identically and so to avoid trivia­
lities in the following we assume that C is not identically 
zero. If p = 1, C is just the fermion creation operator (in this 
case K is two dimensional) and p = 00 gives bosons. 

Pro%/Theorem I: LetK' =Kv(d). Ifw,uEK', Eq. 
(1.1) gives 

([n,C]u,w) = (Cu,w), 

(u, - [n,C·]w) = (u,C·w), 

0= (u,[n,C·]w + C·w). 

Since this holds for all uEK' and K' is dense, if wEK ; 

[n,C ·]w = - C ·w. (1.2) 

From Eq. (1.1) and (1.2) and nv = ° it follows that if a 
monomial in C and C· acts on v, the result is an eigenvector 
of n (if it is nonzero) with eigenvalue equal to the difference 
between the number of creators and annihilators. In particu­
lar if the number of annihilators exceeds the number of cre­
ators the result is zero since n is a nonnegative operator. 
Also, if the number of annihilators equals the number of 
creators the result is proportional to v since v is the essential­
ly unique vector such that nv = 0. 

Lemma 1: If C kV i= ° then 

(1.3) 

and 

(1.4) 

Pro%/Lemma 1: C·kCkV =av, where a = IIC kvll2. 
Successively applying C to this gives 
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CC *kC kV = aCv, 

nC*k-ICkV = aCv, 

C*k -ICkV = aCv, 

CC*k-ICkV = aC 2v, 

nC *k-- 2C kV = aC 2V, 

2C *k -- 2C kV = aC 2v. 

Continuing, we get 

(k - l)!C*C kv = aC k - lV, 

and 

( 1.5) 

(1.6) 

Since Ckv,t:O, Eq. (1.6) gives a = k! and Eq. (1.5) reduces to 
Eq. (1.3). 

Equation (1.3) implies that all annihilation operators 
can be eliminated from any element of d when it acts on v 
and so the set 

[Ckv:k = 0,1,2, ... J 

spans K. This is an orthogonal set since 

nCkv = kCkv 

and n is self-adjoint. This completes the proof of Theorem 1. 

Remark: The condition that n is a number operator can 
be stated in a mathematically more rigorous way than Eq. 
(1.1) which must explicitly give a domain to make sense when 
C is unbounded. Equation (1.1) is formally equivalent to 

eilnCe - iln = eilC 

for real values of t. Since eiln is unitary when n is self-adjoint 
this equation is meaningful even when C and n are unbound­
ed. This enables us to state that n is a number operator when 
we don't have a particular domain in mind. This is the situa­
tion when the vacuum vector is not explicitly given. In fact, 
when the number of degrees of freedom is finite a vacuum 
vector must necessarily exist and thus does not have to ap­
pear in the hypotheses of the theorem. First we must make a 
definition which will allow us to replace the condition in 
Theorem 1 that K v (.af) is dense in K by a condition that does 
not involve the vacuum. This irreducibility condition states 
that 110 nontrivial subspace of K is invariant under both C 
and C * but is applicable even when C is unbounded so that 
the domain of C need not contain the entire subspace. 

Definition: Let C be a closed densely-defined operator 
on a Hilbert space K. Let M be a closed subspace of K and let 
P be the projection onto M. We say that M (or P ) reduces C if 
CP-:JPc. Such a subspace is called nontrivial ifit is neither 
the zero subspace nor all of K. 

If follows from the general theory that if M reduces Cit 
also reduces C *. 

Theorem 2: Suppose C is a closed, densely-defined oper­
ator on a complex Hilbert space K such that no nontrivial 
subspace of K reduces C and the operator n = CC * satisfies 

(1.7) 

for all real values of t. Then C satisfies the hypotheses of 
Theorem 1. 

Pro%/ Theorem 2: Let n = S J.E (dJ. ) be the spectral 
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resolution of n. 
Lemma 2: If ..1 is the closed interval [0,,8] and 

E (..1 )w = w then 

E[O,P - 1]) C*w = C*w; (1.8) 

C *wEDom(n k) for each k and 

(1.9) 

In this lemma we interpret a closed interval [O,a] with a < 0 
to be empty . 

. . Pro%/Lemma 2: SinceE (..1 )w = w, wEDom(C *). The 
adJomt of Eq. (1.7) gives 

eilnC *e - iln = e - irC *, (1.10) 

which implies that 
eiln _ 1 eil(n - I) _ 1 
---C*w=C*----w. 

it it 
( 1.11) 

Now (eil(n - I) - l)wEE(..1 )K and C * is bounded by p on 
E (..1 )K so as t~, the right side of Eq. (1.11) approaches 
C *(n - l)w and so C *EDom(n) and 

nC*w = C*(n - l)w 

or 

(n + l)C*w = C*nw. 

This establishes (1.9) for k = 1. Arguing by induction, if 
(n + 1 )kC *w = C * nkw then since nkwEE (..1 )K, 
(n + l)kC*wEDom(n) and 

(n + I)C*n kw = C*nk t-Iw, 

(n + l)k+ IC*W = C*n k+ IW. 

This establishes Eq. (1.9). Equation (1.8) will follow from the 
following general fact about self-adjoint operators. 

Lemma 3: Let Tbe a self-adjoint operator with spectral 
resolution T = SJ.E (dJ. ). Suppose E ([0, 00)) x = x and for 
each positive integer k, xEDom(Tk). Let 
b = limk_+ oo IITkXlllIk and 
a = b - limk~oo II(b - T)kX II Ilk. Then [a,b] is the smallest 
closed interval such thatE ([a,b])x = x. The proof of Lemma 
3 is straightforward and is similar to the proof that on a finite 
measure space the L p norms of a function approach the L 00 

norm. Here we need only the calculation of b. 

II(n + l)kC *w11 2 = IIC *n k wl1 2 

Thus 

= (CC*nkw,nkw) 

= link + l!2w I12. 

II(n + l)kC*wll = Iln kn l/2wll· 

SinceE(..1 )n 1/2w = n1/2w, if 

b = lim Ilnknl/2wllllk, 
k~oo 

then b<;p. Thus 

lim Ii(n + WC *wllllk<;p 
k --"'00 

so E ([0, P - 1])C *w = C *w. This completes the proof of 
Lemma 2. 

Combining Eq. (1.7) and (1.10) gives 
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eitnC .Ce - itn = C *C 

and so C·C commutes with n. Let ii = C·C and let 
ii = S AF(dA ) be the spectral resolution of ii. 

Lemma 4: If nw = aw then weDom(ii) and 
nCw = (a + l)Cw. Also, there exist WI and W2 such that 

W=W I +W2' 

nW I = aWl' nwz = awz, 

iiwl = (a + l)WI' iiwz = 0. 

Proof of Lemma 4: Note that if nu = au and uEDom( C), 
then 

eitn_1 eitln+'I_l eitla+II_1 
---Cu=C U= CU. 

it it it 

As t--40 the right side approaches (a + 1) Cu, so 

nCu = (a + I)Cu. 

Now suppose b > ° and F((b - E,b ])w#O for ° < E < b. 
Let E be given, ° < E < b and let u be a unit vector parallel to 
F((b - E,b ])w. Since nand ii commute, nu = au and since 
uEDom(il), uEDom(C). Let x = (b - ii)u. Then Ilxll <;;;E and 

IICxl12 = (iix,x) <;;;b IlxI1 2<;;;bc, 

IICul12 = (iiu,u»(b - E)liu11 2 = b - E, 

nCu = Ciiu = bCu - Cx, 

(a + I)Cu = bCu - Cx, 

Cx = (b - a - I)Cu, 

bc>(b - a - W(b - E), 

which is a contradiction if E is smaller than both 
!Ib - a - II and !b. Thus b = a + 1. This shows that 
F (.1 )w # 0 only when Li contains 0 or a + 1. The lemma fol­
lows with W2 = F([O))w and WI = F([a + I ))w. 

Let.:::1 be any bounded interval such that E (.:::1 ) #0. Then 
for some W # 0, E (.1 )w = w. Applying Lemma 2 repeatedly 
gives that for some nonnegative integer k, C *kW#O but 
C·k + IW = O. Let v be a unit vector parallel to C *kW. Then 
C ·v = 0 and so nv = 0. 

Lemma 5: If C *v = ° then for each k, O<;;;k < 00, 

vEDom( C k ) and either 

iiCkv = 0, 

or 

iiCkv = (k + I)Ckv. 

Proo/a/Lemma 5: Let P = F([OJ). The proof is by 
induction. 

k = 0: By Lemma 4, since nv = 0, vEDom(ii) and 
v = VI + vz, where VI = Pv, CVI = Oandiivz = v2. Butv , = 0 
since otherwise nVI = 0 (since n commutes with iii and 
iivl = 0 so the one-dimensional space spanned by VI would 
reduce C; and therefore be all of K making C indentically 
zero. Thus v = V2 and iiv = v. 

Next assume that the lemma is true for 0, 1,2, 3, ... , 
k - 1. If for somej < k, iiCjv = 0, then Cj+ IV = ° since 

IICj + I vl12 = (iiCjv, Cv). 

Thus we may assume that 

iiCjv=lj+ I)Cjv, for l<i<k. 
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Since nCkv = kCkv, CkvEDom(ii) and Wk = PCkv sat­
isfies CWk = 0, nWk = kwk. If Wk = 0 then 
iiCkv = (k + I)Ckv and we are done. Assume wk #0. By 
Lemma 2, wk EDom(C OJ) for all}. Let wk _ j = C Ojwk . Then 
nWk _j = (k - j)Wk _j forj<;;;k, 

and Wk _ j #0 whenj<;;;k since 

Ilwk _ j ll Z = (COjWk' COjwk ) 
= (nCOj- lW

k
, COj-IWk ) 

=(k-j+ lllIC'j-1wkIl Z 

=(k-j+ 1)llwk _ j + 1 11 2
• 

Thus we have 

CWj =CC*wj + 1 =Ij+ l)wj + l , O<i<k, 

CWk = 0, 

C*wo = 0, 

C*wj = Wj-I' I <i<;;;k. 

These equations show that the space spanned by I WO, WI' WZ' 

... , W k J reduces C. Since W k #0 this must be all of K. Since 
n(1 - P)Ckv = k (I - P)Ckv, (I - P)Ckv is orthogonal to 
each ofwo,wl"",wk _ I and since it is also orthogonal to Ckv, 
it is zero. Thus PC kV = C kV and iiC kV = (k + l)C kV. 

Ifp is the smallest integer such that CP + IV = 0, where 
we set p = 00 if C kV is never 0, then the span of the set 

[Ckv:kENp J 

reduces C and thus is all of K. Thus v is a cyclic vector for 
.if = poly ([ C, C * J ). All vectors w with nw = 0 are parallel 
to v since nw = 0 implies that w is orthogonal to C kV for 
k> I. Lastly, Lemma 4 implies that if WE Kv (.if) then 

[n, C]w = Cwo 

This completes the proof of Theorem 2. 

2. MANY DEGREES OF FREEDOM 

In order to set a mathematical framework, suppose we 
have d annihilation operators aI' a2' ... , ad and correspond­
ing creation operators ar ,aT , ... ,a:. Let H be a complex d­
dimensional Hilbert space with orthonormal basis 

[e.,e2, .. ·,ej ). IfzEHandz = ~aiei we define C(z) = ~aiai*' 
Then C (z) is a creation operator and formally 

C(z + y) = C(z) + C(y), 

C (az) = aC (z), 

for z, YEH and a complex. When there is an essentially 
unique vacuum vector, H is isomorphic to the I-particle vec­
tor states and is referred to as the single particle Hilbert 
space. The single particle space need not be finite-dimension­
al and in the physically important case H is a separable infi­
nite-dimensional Hilbert space. 

The key structure is that of a Fock space in which there 
is a vacuum vector from which all other states can be built. 
This is given in the following definition. 

Definition: An irreducible clothed quantum structure 
over H is a collection I H, C, K, v I where Hand K are com­
plex Hilbert spaces, C is a map from H into the set of closed 
densely defined operators on K and v is a unit vector in K 
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such that if 

.r! = [C (z), C *(z):zEllj , 

then vEl) 00 (.at), v is cyclic for .if, v is the only vector in K up 
to scalar multiples such that C *(z)v = ° for all zEll and for 
wEK,,(.at), z,yEll and complex a we have 

C(z + y)w = C(z)w + ClY)w, 

C (az)w = aC (z)w. 

K' will be used to denote K" (.at). 
The equation C *(z)v = ° indicates that particles cannot 

be annihilated from v, that is, v has no particles. Such a vec­
tor is called a vacuum. The condition that an operator n(z) is 
a number operator for (the state) z is expressed formally by 
the commutation relation 

[n(z), ClY)] = (y, z)C(z). 

This states that n(z) commutes with C lY) wheny is orthogonal 
to z and it reduces to the commutation relation (1.1) wheny 
and z are equal unit vectors. We will require that this formal 
relation is satisfied on K '. 

Our main result is that ifC (z)C *(z) is a number operator 
for z then the cases other than bosons and fermions give 
statistics with essentially a finite number of particles. For a 
finite number of degrees of freedom the fermion Fock space 
also has a finite number of particles but when the dimension 
of the single particle space is increased the number of possi­
ble particles also increases. This is not true in the other cases. 
To make this precise requi~es ,~ few more definitions. 

A A A 

If [H, C, K, v J and [H, C, K, OJ are two irreducible 
A A A 

clothed quantum structures then lH, C, /f.., OJ is said to be an 
extension of lH, C, K, v J if HCH, KCK, v = 0 and for all 
zEll, C (z) C C (z). To express the notion of the number of par­
ticles we will use the total number operator. A self-adjoint 
operator Non K will be called a total number operator for 
! H, C, K, v J if Nv = ° and for wEK' and zEll, 

[N, C (z)]w = C (z)w. 

We denote by K m the closed subspace of K generated by 
those elements ofK , which have the form C (zdC (zz)···C (zm )v. 
Such an element will be called elementary. Ko is just the one­
dimensional space spanned by v. From the definition of N, 
each nonzero element of Km is an eigenvector of N with 
eigenvalue m so that K m is a space of m-particle states. If :?jJ 

is an orthonormal basis for H, K m (YJ ) will denote the (not 
necessarily closed) linear space generated by the elementary 
elements of Km which involve only creation operators C (z) 
with zEYJ. 

Theorem 3: Suppose [H, C, K, v 1 is an irreducible 
clothed quantum structure over H such that if z, yEll, 
n(z) = C (z)C *(z) and wEK " then 

[n(z), C lY)]w = (y, z)C (z)w. (2.1) 

Then [H, C, K, v 1 has a total number operator N and if 
! ea :aElj is an orthonormal basis for H then ~a n(ea w con­
verges to Nw for all wEK '. Also, one of the following holds: 
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i) ! H, C, K, v j is equivalent to the free boson field, 
ii) ! H, C, K, v 1 is equivalent to the free fermion field, 
iii) liN II < 00 and if! fi, C, K, OJ is an ext~nsion of lH, C, 

K, v J satisfying Eq. (2.1) for all z, yEll and wEK' and 
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N 1s the total number operator for! ii, C, i, OJ, then 

IINII=IINII· 
ProofofTheorem 3: Let.::Il = ! e" :aElJ be an orthonor­

mal basis for H and define ((; (.w) = ! C(ea):aElJ and 
't';' *(.%') = ! C *(ea ):aElJ. As in the proof of Theorem 1, the 
adjoint of Eq. (2.1), 

[n(z), C*lY)wj = - (z,y) C*(z)w, for wEK', yEll (2.2) 

also is satisfied and together with the hypothesis that 
C *(z)v = ° for ail zEll it follows that if E; E't: (.::Il )u(t';' *(.:%1), 
i = 1,2, ... ,k and DE't' (:?jJ) then EIEz ... E k v (if it is not zero) is 
an eigenvector of DD * with eigenvalue equal to the number 
of the E;'s which are equal to D, minus the number which are 
equal to D *. Thus the eigenvalue is an integer. 

Lemma 6: SupposeD; E({,' (M), i = 1, 2, ... ,k.1f 1 <J<k, 
DjD; " I ... Dk V of-° and aj is the cardinality of the set 

ID;: j<i<k andD;=DjJ, 

then 

D tDjD;+ I .. ·Dkv = ajDj + I .. ·Dkv, 

and if Dpz,,·Dkvof-0, 
k 

IIDP2 .. ·DkVI1
2 

= II a;. 
j --1 

(2.3) 

Furthermore, if a is a permutation on k elements, there is a 
scalar, f3, with 1f31 = 1 such that 

D ID2,,·Dk V = f3D,,1 Da2 .. ·D"k v. 

Proof of Lemma 6: Since for any zEll, 

C *(z)D tD t _ I· .. D fD ID2 .. ·Dkv = 0, 

there is a scalar a such that 

DtDL 1 .. •D fD ID2· .. Dkv=av, 

DkD tD t _ I .. ·D fDIDCDkV = aDkv, 

DL 1 .. ·DfDIDz .. ·Dkv=aDkv. 

(2.4) 

Applying Dk _ I ,Dk _ Z , .. ·D2 similarly, we get positive inte­
gersf3" . I ,f3k 2, .. ·f3Z such that 

f3k lf3k 2 .. ·f32DfDID2,"·,Dkv=aD2D3,"·,DkV. 

Thusa l =a/f3k lf3k2 .. ·f32. ApplyingDI to 

D f D ID2 .. ·Dk V = a P2D3· .. Dk v, 

we get 

DP fD ID2,,·Dkv = a IDP2· .. DkV. 

Since DP1 .. ·Dk v, if it is not zero, is an eigenvector of DID f 
with eigenvalue equal to the number of the D;'s which equal 
DI,a l has the value stated in the lemma if DP2· .. DkVof-0. A 
similar argument applies to a j • The statement about the 
norm of D ID2 .. ·Dk v follows from 

IID ID2• .. Dk vl12 = (D f D ID2• .. Dk v,D2• .. Dk v) 

= aIIID1D3· .. DkVlll. 

Now letw =DIDz .. ·Dkv and U=DaIDaz .. ·DakV. 
There is a scalar y, such that 

D~kD ~k _ I) .. ·D ~2D~1 w = yv. 

As above, applying Dak,Dajk _ 11, .. ·,DazDul we obtain posi­
tive integers Yk 'Yk _ I ''''YI such that 
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YkYk-l"'Y1W = yD<rlD<rz· .. D<rkV = yu. 

Thus, w = (3u where(3 = yIYk'''Yl' This shows thatifu = 0, 
then w = 0 and the converse follows from a similar argu­
ment. If both wand u are zero then w = (3u with (3 = I and 
the proof is complete. If w;60 then the definition of the a;'s 
above shows that 

IID1D z· .. D kvII 2 = IT (Aa!), 
aEI 

where Aa is the number of the Di 's which are equal to C (ea)· 
Note that all but a finite number of terms in the product are 1 
so it is well-defined. This formula shows that IIDpz· .. Dk vii is 
independen t of the order ofthe terms so II w II = II u II and th us 
1(31 = 1. This completes the proof of Lemma 6. 

The subspaces Km ,m = 0,1,2,3, ... are mutually orthog­
onal. If wE!( " there is an orthonormal basis, YJ, of H such 
that w can be expressed as a linear combination of a finite 
number of terms in the form E fE2 .. .Ek v, where 
EiE'6'(YJ)u'6'*(&f), but Eqs. (2.3) and (2.4) imply that those 
EiE'6'~(YJ) can be eliminated. ThusK = ei;;; =0 Km· 
K = ei;;;=o Km· 

Lemma 7: If z is a unit vector in H then on 
Km'C(z)C *(z) is bounded by m and C*(z)C(z) is bounded by 
m+1. 

Proof of Lemma 7: Any elementary vector in K m can be 
written as a finite linear combination of vectors in the form 
w = D,Dz".Dmv with each Dj E'6' (YJ), where YJ is an orth­
onormal basis containingz. Each of these is an eigenvector of 
C (z)C *(z) with eigenvalue less than or equal to m. Thus 
C (z)C *(z) is bounded by m on K m, and Km is spanned by 
eigenvectors ofC(z)C*(z). Since by Lemma 6, each such ei­
genvector can be written as a sum of eigenvectors of both 
C (z)C *(z) and C *(z)C (z), these also span K m' Suppose 

and 

thus 

C(z)C*(z)w = yw 

C *(z)C (z)w = /3w, 

C (z)C *(z)C (z)w = /3C (z)w, 

(y + I)C(z)w = (3C(z)w. 

So either C (z)w = Oinwhichcase/3= OorC(z)w:fOinwhich 
case /3 = r + 1 <,m + 1. Thus C *(z)C (z) is bounded by 
m + Ion Krn. 

Let .W be an orthonormal basis for H and define 

r = min [j:Dpz···Djv = 0 for some DiE(G'(.%'), I <,i.;Jl, 

s = min [j:D ,D2 .. ·Dj V = 0 for some distinct 

DiE'G' (.%'), I <,i.;Jl, 

where we take r = 00 or S = 00 if the set is empty. Clearly 
s>r. We will show that if r = s = 00 we get bosons and if 
r = 2, s = 00 we get fermions. If 2 < r < 00, then 
C (Zf)C (zz)· .. C (z,)v = 0 for all Zi EN whereas if r = 2 and 
s < 00 then C (z dC (Z2)'''C (z,)v = 0 for all z, ED. 

Supposer = s = 00, that is, suppose Dpz· .. Djv:fO and 
every choice of DiEce (.%1), I <,i<j. Then this is true for every 
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orthonormal basis as can be seen from the following argu­
ment. Suppose YJ' = ! e~ :aElj is another orthonormal basis 
for H. Let D ; = C(e~) and Di = C(ea),1 <,i<J. Let 

H' = span{ea ,ea , ... , ea , e~ ,e~ , ".,e~ J. 
I 1 j I J j 

If U is a unitary operator on H' then by Lemma 6, 

IIC (Uea,)C (Uea , )· .. C (Uea)vllZ 

is an integer and since the unitary group of H' is connected, it 
is independent of U. First taking U to be the identity and 
then a unitary operator such that Uea ; = e~;, we see that 

I/D fD 2 .. ·Dj vI/ 2 = liD; D 2 · .. D ;vl/z. 

Now suppose that z is any unit vector in H and let YJ be 
an orthonormal basis containing z. If w is an elementary 
vector of K m (YJ) then for some scalar /3, 

C (z)C *(z)w = /3w. 

From Lemma 6 since C(z)w¥O by assumption, 

C *(z)C (z)w = IfJ + 1 )w. 

Thus, for wE!(m (YJ), 

[C*(z),C(z)jw = w. (2.5) 

Since by Lemma 7, [C*(z),C(zjJ is bounded onKm and since 
Km (S) is a dense subset of K m, Eq. (2.5) holds for all wE!(m 
and thus all wE!( '. Polarization of Eq. (2.S) shows that for 
wEK', 

[C *(z),C(y)]w = (y,z)w. 

This gives the boson field. 

Next suppose r = 2, s = 00 and that D i v = O. Then for 
all zEN, C(zfv = o since IIC(z)vUZisanintegerwhenzisaunit 
vector and as above the connectedness of the unitary group 
implies that it is independent of z. Similarly, since s = 00, 

Dpz· .. Djv:fO for distinct DiE'6'(YJ) and this holds for any 
orthonormal basis YJ. Also, since I/D,Dz· .. Djvll is indepen­
dent of the order of the terms, this is zero unless the Di's are 
distinct. 

Suppose z is a unit vector in Hand YJ is an orthonormal 
basis containing z. Let w be an elementary vector in 
Km(.%'),w = D,Dz· .. Dmv, with w:fOso that theDi's are dis­
tinct. If C (z) is distinct from all of the Di's then C *(z)w = 0 
and C *(z)C(z)w = w. If C (z) is equal to one of the Di 's, then 
C (z)C *(z)w = wand C (z)w = O. In either case 

[C*(z),C(z)]+w = w. 

This holds for all wE!( m (q;) and thus for all wE!( , and polar­
ization gives that for wE!( " z,yEN, 

[C*(z),C(y)j+w = (y,z)w, 

and this gives fermion field. 
We will next show,that if r> 2,EiE'C(:~n and 

E,E2· .. E,v = 0, then if DE'6'(.'%l), we have E,DEJ· .. Erv = O. 
Since the order of the creation operators does not affect the 
norm this implies that each of the Ei'S can be replaced by 
arbitrary elements DiE'G'(YJ) and that D,D2• .. D,v = O. 

Polarization of Eq. (2.1) gives that for x, y, zEN and 
wEK', 

[C(x)C*(z),C(y)]w = (y,z)C(x)w. (2.6) 
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If E, =/=Ez then this gives 

[DEfE,]w=O. 

Thus, 

DE fE, (EzEJ···E, v) = EPET(E2E, ... E,v) 

and if E,Ez,,·E,v = 0, then 

EPETEzErE,v = O. 

By Lemma 6, 

E TEzEJ·"E,v = aE,·"E,v, 

where a =/=0 since EzEJ· .. E, v =/=0 by the definition of r. Thus 
E,DE 3 ···E, v = O. 

If E, = Ez, then rearrange the order of theE; 's, ifpossi­
ble, so that Ez is unmoved but the first E; is not equal to Ez. 
The above argument can then be used. If no such rearrange­
ment is possible, then all oftheE,'s are equal and it is neces­
sary to show that if E 'v = 0 then DE' - 'v = O. We will as­
sume that D =/=E, for otherwise there is nothing to prove. 
From Eq. (2.6), for wEl(', 

so 

[DE*,E]w = Dw, 

DE*E(E'-'v) - EDE*(E'- 'v) = DE'- 'v, 

- EDE*E'- 'v = DE'-'v, 

- (r - I)EDE'- Zv = DE' 'v. 

Assume for the sake of contradiction that DE' - 'v =/= 0 so 
that EDE ,- Zv =/= O. From Lemma 6 there exists a scalar a 
such that 

E *DE'- 'v = aDE'- 2V, 

EE*DE'-'V = aEDE' - Zv, 

(r - I)DE'-' v = aEDE'- Zv 

-(r-lfEDE,-zv=aEDE'-zv, 

so a = - (r - If and 

E*DE'-'v= -(r-IfDE'-zv. 

Thus 

(E*DE'-'v,DE'-Zv) = (DE'-'v,EDE'-Zv), 

_ (r - l)zIlDE'- 2vll z = - IIDE'- 'vllz/(r - I), 

(r -ifllDE'- zvllz = IIDE'- 'vllz. 

On the other hand, 

II DE '- 'vll2 = (D *DE'-'V,E'-- IV), 

IIDE'- 'vlIZ = IIE'- 'vI1 2
, 

since D *DE'- IV = E'- 'v because DE ,- 'v=/=O. Similarly, 

IIDE'- 2vllz = IIE'- zvllz. 

Lastly, 

IIE'-'vI12 = (E *E'- lv,E'- Zv) 
=(r_I)IIE ,-zvI12. 

Thus, 

60 

IIE'-lvI12 = IIDE'-'vI12 = (r - 1)31IDE,-zvll2 
=(r_I)3I1E,-zvI12 
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and so (r - I)" = (r - I) which contradicts r> 2. Thus we 
haveDE,-lv = O. 

We have shown that for r> 2, DrDz"'~v = 0 for aU 
D;E<G'(&6'). The same argument applies if IH, C, K, OJ is an 
extension of I H, C, K, v j. If i?J is an orthonormal basis for ii, 
with.q) ci?J, then DrDz· .. D,v = 0 for D;E<G'(i?J). Ifr = 2 
and s < 00, then a similar argument shows that 
D,D2,,·D,v = 0 for all D,E<G'(,q)) or D;E<G'(i?J). 

The existence of a total number operator, N, satisfying 
the hypotheses of the theorem is well known for bosons and 
fermions. For the other cases there is an integer q such that 
D,D2· .. Dq +, v = 0 for all D;E<G' (&6'). In fact, from the con­
nectedness of the unitary group, q is independent of the basis 
used and 

C(Z,)C(Z2)",C(Zq + I)V = 0, 

for all Z ,,z2, ... ,zq + ,EH and so Kj = 10 j ifj> q. The same is 
true for any extension of I H, C, K, v j. Thus, 

K=Ko f3jK,f3j ... f3jKq 

since the spaces Kj are mutually orthogonal and the opera­
tors C (z) are bounded. Define N as the operator which has 
the valuej on K j ,O<j<q. Then N is self-adjoint, Nv = 0, and 
if wEl(j'C (y)wEl(j+ I so 

[N,C (y)]w = C (y)w. 

Let &6' = lea :aElj be an orthonormal basis for Hand 
suppose wEKj • Let E > 0 be given. We can write 
w = W, + w2, where w,EI(j(&6') and IIw211 <€I2/ LetJbe a 
finite subset of I such that W, is a finite linear combination of 
terms of the form D,Dz· .. Dj v withD;EI C (e a ):aEJ j, I <i<j. If 
J' is finite set containing J, then 

In(ea)w l =jw 1 
(lEJ' 

and 

II In(ea )w2 11<jllw2 11, 
(tEl' 

so 

II I n(ea)w - Nwll < II I n(ea )w, - Nwll + II I n(ea )Wzil 
aeJ ' aEJ ' aEJ ' 

<Iliw, - jwll + jllw2 11 
<2jllw2 11 < E. 

Thus ~a n(ea )w converges to Nw. This completes the proof of 
Theorem 3. 

As in Theorem 2, when H is finite-dimensional the exis­
tence of the vacuum vector need not be assumed. Equation 
(2.1) can be replaced by a formally equivalent relation, (2.7), 
which does not have an explicit domain condition. When no 
convenient domain is given, it is necessary to replace the 
linearity conditions on C (.) by ones which do not refer to any 
particular domain and the irreducibility condition must also 
be modified. 

Definition: A quantum structure over H is a collection 
i H, C, K I, where Hand K are complex Hilbert spaces and C 
is a function from H into the set of closed densely defined 
operators of K such that for all z,yEH and nonzero complex 
numbers a, 
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C(z + y)::JC(z) + C(.v), 

and 

C (az) = aC (z). 

A quantum structure is called irreducible if no nontrivial 
subspace of K simultaneously reduces all C (z) for zER. 

There are at least two distinct methods for generalizing 
the boson and fermion fields. One method, generalizing the 
commutation and anticommutation relations, leads to para­
bosons and parafermions. For these, as for bosons and fer­
mions, irreducible systems have unique vacuums. [See Ref. 
2, Theorems 3-6]' The method of generalization discussed 
here in terms of the number operator does not have this 
property. 

Even though a vacuum vector must exist when H is 
finite-dimensional, it need not be unique even when I H, C, 
K] is irreducible. An example of this for which 
n(z) = C (z)C *(z) is the number operator is given in the next 
section. 

Let 

V = I wEK:C *(z)w = 0, for all zER ]. 

Vis called the vacuum space of K. We must assume that V 
does not have dimension greater than one. 

Theorem 4: Suppose {H, C, K J is an ireducible quan­
tum structure whose vacuum space, V, has dimension zero 
or one, such that if z is a unit vector of Hand P is the projec­
tion onto the one-dimensional space spanned by z, then 
n(z) = C (z)C *(z) satisfies 

ej/n(Z)C (.v)e - iln(z) = C (ej/Py) (2.7) 

for all sufficiently small real values of t. If v is a unit vector in 
V, then I H, C, K, v J satisfies the hypotheses of Theorem 3. If 
H is finite-dimensional then V contains a unit vector. 

Proof of Theorem 4: First assume that H is finite-dimen­
sional and let gJ = I ej : 1 < i <d I be an orthonormal basis for 
H, let Cj = C(ej) and nj = n(e;). Then from Eq. (2.7), 
In; : 1 <i <d ] is a set of mutually commuting self-adjoint op­
erators on K. Let nj = SA.Ej(dA. ) be the spectral resolutions. 
There is a nonzero vector wEK and a bounded interval 
.:1 = [0,/3] such that E j (.:1 )w = w for 1 <i <d. Thus 
wEDom(Ci). By using the method of Lemma 2, it follows 
that C iWEDom(n:), 

(n) + 8ij)kCiw = Cin:w, 

and 

E}([O,/3 - 8ij ])Ciw = Ciw. 

By applying C i the appropriate number of times we obtain a 
unit vector vEK such that C IV = ° for 1 <i <d. Thus 
C *(z)u = ° for all zER, and V contains a unit vector when His 
finite-dimensional. 

Now suppose H is arbitrary and that v is a unit vector of 
V. Let gJ = lea :aEl] be an orthonormal basis for Hand 
define Ca = C (ea ),na = n(ea ) and na = C *(ea)C (ea ). Anal­
ogously to Lemma 4, we have that if na w = yw, then 
wEDom(na ) and 

(2.8) 

IfvEV, then nav = ° so vEDom(Ca) and by induction every 
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eJementary vector in K (gJ) is an eigenvector of each na and 
thus in the domain of each na and na' Since this is true for 
any basis, vEl) ""(d). 

Let z be a fixed unit vector in H. From Eq. (2.7) it fol­
lows that U = e21Tin

(Z) commutes with each C (.v). Thus, each 
spectral projection of U reduces C (.v) so the irreducibility 
implies that Uis a scalar. Since n(z)v = 0, Uis the identity and 
thus the spectrum of n(z) contains only nonnegative integers. 
Let 

Km (z) = I wEK:n(z)w = mw I 
sothatK = ffi;;; ~oKm(z). FromEq. (2.8) it follows that C(z) 
maps Km (z) into Km + 1 (z) and C (z) is bounded on Km (z). Let 
K ;" (z) be the closure of Km (z)nK '. Then C (z) mapsK ;" (z) into 
K;"+I(z). 

Suppose wEK '. For some orthonormal basis f!4 contain­
ing z,wEK '( gJ). Each elementary vector in K '( gJ) is in some 
K ;" (z) and so WE ffi ;;; ~ oK ;" (z). Thus, the closure of K ' is 
K = ffi;;; ~ oK;" (z) and the following lemma shows that this 
subspace reduces C (z). 

Lemma 8: Suppose C is a closed densely defined opera­
tor on a complex Hilbert space K,K; are mutually orthogo­
nal closed subs paces of K such that K = ffi r~ 1 K;, 
K; C Dom(C )nDom(C *) and CKj CKj + I' Let Q; be the pro­
jection onto K j. Then 

a) wEDom( C) if and only if ~CQj w converges 

and 

b) wEDom(C *) if and only if ~C *Qjw converges. 

Furthermore, suppose that for each i, M; is a closed subspace 
of K; such that CM; CM, + I' Let M = ffi M; and P be the 
projection onto M. Then PCC CP and PC * C C * P. 

Proof of Lemma 8: If uEK, and wEK}, then 
(C*u,w) = (u,Cw). This is zero unless i =} + 1 so 
C *Kj CK; _ I' Now suppose only that wEDom(C) and uEK. 

(Q;+ICW,U) = (Cw,Qj+lu) = (w,C*Q;+IU) 

= (w,Q;C*Q;+!u) = (Q;w,C*Q;+!u) 

= (CQ;w,Q;+! u) = (CQ;w,u) . 

Thus Qj+ I Cw = CQjw so ~CQjW converges. If~ CQjw 
congress, since ~Q;w converges to wand C is closed, 
wEDom(C) and Cw = ~CQjw. This gives a), and b) is done 
similarly. 

Now suppose CM; CMj + ! so that as above, 
C * M j C M j _ ! . Let Pj be the projection onto M j. Let 
L j = M tnKj If wELj, then CwEKj + ! . If uEMj + ! , 

(Cw,u) = (w,C*u) =O,soCwEL;+! andthusCLjCLj+! 

and similarly C *L j CLj _ !. 

Next suppose only that wEDom(C). Then ~CQjW con­
verges. Since 

CQ;w = CPjw + C(Q; - Pj)w, 

and CP;wEMj+! while C(Qj - Pj)wEL j+ I' 

IICQjwll 2 
= IICPjwW + IIC(Qj - P;)wW· 

Thus II CPjwll < II CQj wll and so ~CPjW converges and 
PwEDom(C). SincePj+ I Cw = CP;w, 

CPw = ~CQjPW = ~CPjW = ~Pj + I Cw = pew. 

Steven Robbins 61 



                                                                                                                                    

Thus PCC CP and similarly or by general theory 
PC * C C * P. This completes the proof of Lemma 8. 

Thus the closure of K ' reduces each C (z) and so by the 
irreducibility, K' is a dense subset of K and v is cyclic for d. 
From Eq. (2.8) and the linearity of C (.), Eq. (2.1) is satisfied 
for wEKm (z) and thus for wEK '. The proof of Theorem 4 is 
now complete. 

3. EXAMPLES 

As already noted in Theorem 3, r = 00, S = 00 corre­
sponds to bosons and r = 2, S = 00 corresponds to fermions. 
All examples except for bosons have C (z) as a bounded opera­
tor. The simplest example has r = S = 2 but this has only 
one-particle states so it is of little interest. We first give a 
simple finite-dimensional example to show that for more 
than one degree of freedom there are statistics other than 
bosons and fermions which satisfy the hypotheses of Theo­
rem 3. 

Example 1: Let H be a three-dimensional Hilbert space 
with orthonormal basis [e I, e2, e3l. Let K be a seven-dimen­
sional Hilbert space with orthonormal basis [v, UI, U 2' uJ ' 

W12 , W 13' w23l. If Z = ae l + /3e2 + ye3, let C (z) be the opera­
tor on K defined by 

C (z)v = au I + /3u 2 + yu 3 , 

C(z)u l = -/3W I2 -yw IJ , 

C (z)u 2 = aW 12 - yw2J, 

C (z)u J = aW I3 + /3w2J, 

C(Z)WIZ = C(z)WIJ = C(Z)W2J = O. 

If n(z) = C (z)C *(z) and x,yEll the following relations are 
satisfied: 

[n(z),C(y)] = (y,z)C(z), 

C(zf =0, 

C (z)C (y) = - C (y)C (z), 

C(z)C (y)C (x) = o. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Thus, C (z) behaves like a fermion creation operator until we 
get to states with three different particles (which do not ex­
ist). We next extend Example 1 to the case in which His 
infinite-dimensional. 

Example 2: Let H be a separable Hilbert space with 
orthonormal basis &J = [ej : 1 <j < 00 l. Let K be the separa­
ble Hilbert space with orthonormal basis 

[v,uj ,wij:l.;;i<j< 00 l. 
Define bounded operators Ck , l.;;k < 00 on K by 

Ckv = Uk' 

ri if k<j, 

Ckuj = - ;jk if k>j, 

if k=j, 

CkW ij = O. 

LetK '( &J) be the subset of K consisting of finite linear combi­
nations of the given basis vectors of K. Ifz = 'I-akek and 
wEK '(&J), then ~akCkw converges. Let C (z) be the operator 
with domain K '(&J) such that C(z)w = ~akCkw, C(z) is 
bounded with bound IIzll and so can be extended to all of K. If 
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n(z) = C(z)C*(z), then Eq. (3.1)-(3.4) are satisfied on K '(,:%J) 
and therefore on all of K. Examples 1 and 2 correspond to 
r = 2, s = 3 in Theorem 3. 

Example 3: Let H, ,0/) and z be as in Example 1 and let K 
be a lO-dimensional Hilbert space with orthonormal basis 
[v, U I, Uz, u3, WI2' W 13 ' W 23' W II ' w22 , W33l. LetC(z) be defined 
by 

C (z)v = au I + /3u z + yu3, 

C(z)u l = /3w IZ + yWu + a(y/2)w ll , 

C (z)u z = aWI2 + yWZ3 + /3 (Y/2)W220 

C (z)u J = aWn + /3W ZJ + y(y/2)w", 

C(z)wij =Oifl.;;i<j.;;3. 

Equations (3.1) and (3.4) are still satisfied but (3.2) and (3.3) 
are not. This example can easily be extended to the case in 
which dim(H) = d with 3.;;d.;; 00 . 

Example 4: We can obtain an example of r = 3, S = 00 

by considering the subspace Ii of H spanned by e I and ez and 
thesubspaceK ofK spanned by [v, U l , uz, w IZ , WI I' wnl. [H, 
C, K I of Example 3 is then an extension of the irreducible 
clothed quantum structure thus obtained. 

For parabosons and parafermions a theorem similar to 
Theorem 4 is obtainable without having to assume the 
uniqueness of the vacuum [Ref. 2, Theorems 5, 6]. The next 
example will show that this extra assumption actually is nec­
essary. Let r' be defined by 

r' = minI k:CICZ"'Ckv = 0 for some CiE(t'(,o/J) and 
some VEV I. 

Note that the definition of r' differs from that of r in Theorem 
3 only in that we allow any vacuum v instead of a particular 
one. The following example has r' = 2 but is a mixture of 
r = 2 and r = 3 without being decomposable into a direct 
sum. 

Example 5: Let H be a two-dimensional Hilbert space 
with orthonormal basis [e I' e zl. Let K be a 12-dimensional 
Hilbert space with orthonormal basis 

[v, v', U I'U; , u2,u;, WI2,W;2, WI I' W22' XIZ' X211· 

The vacuum space V will be spanned by v and v', with v 
having r = 3 and v' having r = 2. The unprimed vectors are 
built up from v while the primed vectors are built from v'. Let 
z = ae I + /3e2 and define C (z) by 

C (z)v = au I + /3u z, 

C (z)v' = au; + /3u;, 

C(z)u l =a(Y/2)wII +/3W I2, 

C(z)u; = - /3w;z' 

C(z)u z = wa\2 +/3 (Y/2)W22, 

C (z)u; = aW;2' 

C(Z)WI2 = - ~a(Y/2)x21 - ~/3(Y/2)XI2' 

C(Z)W;2 = ~a(Y/6)x21 - ~(y/6)x12' 

C(Z)WII =/3X21 , 

C (z)wn = ax IZ' 

C(Z)XI2 = 0, 

C(Z)X21 = O. 
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Thus, C (z)C (z)v' = 0, butC (z)C (y)v =/= 0. Equation( 3.1 )issatis­
fied as can be seen by a tedious calculation which is simpli­
fied by the fact that n(e l ) and n(e2) are diagonal. 

This is in fact irreducible. Since any nontrivial invariant 
subspace of K must contain a vacuum vector, it is sufficient 
to show that if VEV and V=/=O then no proper subspace con­
taining v is invariant under all C (z) and C ·(z). To do this it 
suffices to show that both v and v' can be obtained from vby 
suitable application of creation and annihilation operators. 
Let C. = C(e.) and C2 = C(e2) and assume v =Av + Bv'. 
Then Cr2CTv = 2Av so if A =1=0, v can be obtained while if 
B =1=0, v' can be obtained from Bv' = v - ~Cr2Cw It re-
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mains to be shown that v can be recovered from v' and that v' 
can be recovered from v. These follow from 

CrC !CrCfC2v = ~v + !(v3)v' 

and 

IS. Robbins, "A Generalization of the Canonical Commutation and Anti­
Commutation Relations," Proc. Amer. Math. Soc. 7185-88 (1978). 

2S. Robbins. "A Uniform Approach to Field Quantization," 1. Funct. 
Anal. 29 23-36 (1978). 
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Ground state energy bounds for potentials Ixl v 
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A theory is developed from which both upper and lower analytic bounds on Schrodinger. 
eigenvalues can be obtained. We propose a recursion algorithm with which ground energies for 
certain potentials can be rigorously bounded to arbitrary precision. These analytic and numerical 
methods, together with existing techniques, are applied to the ground state problem for power 
potentials lxiv, v>O. 

PACS numbers: 03.6S.Ge, 02.30.Hq, 02.60.Lj 

I. INTRODUCTION 

For many potentials the one-dimensional Schrodinger 
equation can be solved only with approximation methods. 
The well-known WKB method l

•
2 was introduced as a semi 

classical theory, and as such gives relatively weak estimates 
for ground state energies. The method of Rayleigh3 and 
Ritz4 is effective for ground states but provides only upper 
bounds. These bounds have nevertheless enjoyed wide suc­
cess in the domain of atomic and chemical physics.5

,6 Re­
cently, Bamsley7 extended the work of Barta8 and of Duffin9 

to develop a method for obtaining lower bounds on eigenval­
ues. Both the Rayleigh-Ritz and Bamsley methods require 
carefully chosen test functions for good precision. We shall 
describe a theoretical approach, valid for certain potential 
functions, which yields both upper and lower bounds with­
out the use of test functions. 

Recent interest in the specific problem of power poten­
tials V(x) = Ixl v has been stirred by Turschner lO who 
claimed a remarkable closed formula for all bound-state ei­
genvalues. Subsequently, Crowley and Hillil showed that 
the formula is incorrect, but that the Turschner approach 
may be a new approximation scheme of considerable power. 
Since numerical counterexamples figure strongly in the 
Crowley-Hill rebuttal, the present authors attempted to 
work out means by which rigorous bounds on eigenvalues 
can be computed to arbitrary precision. Such bounds, it was 
felt, could then be used to efficiently test old and new ap­
proximation methods. 

The Schrodinger equation is taken to be (in units for 
which fi2 = 2m) 

- ¢"(x) + V(x)¢(x) = E¢(x). (1) 

When bound states exist we denote by El,;I the nth bound 
state egenvalue for the potential V, with n = 0,1,2, .... In 
what follows we shall always assume that Vis a member of a 
class of potentials denoted by M. This is the class of all sym­
metric, nonnegative, unbounded potential functions which 
vanish at the origin and possess the following growth proper­
ty for x>O: 

d 2 d 
-logV<O< -logV, 
dx2 dx 

"IWork performed in connection with thesis research. 

where the relevant derivatives are assumed continuous on 
(0,00 ). It is evident from the growth condition that any VEM 
is strictly increasing, and V' I V strictly decreasing, on (0, 00 ). 

Every power potential V (x) = Ix I v for v> 0 is in the 
class M. The class also contains functions not of polynomial 
growth, for example the potential V(x) = sinhvlxl is in the 
class M whenever v> O. 

In Sec. II we initiate the theoretical development by 
establishing theorems which pertain to a nonlinear equiv­
alent of the Schrodinger equation (1). Particular attention is 
given to the case E = E~I, the ground state energy. In Sec. 
III we describe an algorithm for computing rigorous bounds 
on E~I, and tabulate numerical results for various power 
potentials. In Sec. IV analytic upper and lower bounds are 
derived for Egxl'I, v> 2, using the methods of Sec. II. For 
v < 2, analytic bounds are easier to generate from the Ray­
leigh-Ritz and Bamsley methods. Such bounds are derived 
in Sec. V. Finally, the problem of estimating higher states is 
discussed in Sec. VI. 

We first observe that ground energies E gxl 'I for some v 
can be given exactly using standard techniques. 12 The simple 
harmonic oscillator and absolute-linear well cases, v = 2,1 
respectively, are given by 

EIt'I=I, 

Egxl' = WI = 1.01879297 ... , 

where WI is the first positive zero of the Airy derivative 
Ai'( - Z).13 We also expect on somewhat intuitive grounds 
that 

lim Egxl'l = 1, 
v----+o+ 

lim Egxl'l = r/4. 

The former limit is that of a progressively thinner potential 
well of essentially unit height, and the latter is the infinite 
square well limit. We shall eventually be able to prove that 
both limits are correct, as the relevant upper and lower ana­
lytic bounds will converge to the values indicated. 

II. THE TRAJECTORY EQUATIONS 

Central to the present treatment is a certain transforma­
tion ofthe Schrodinger equation (1). For a state ¢ of energy 
E> ° (not necessarily bound) and even parity we assign 

64 J. Math. Phys. 23(1), January 1982 0022-2488/82/010064-07$02.50 @ 1982 American Institute of Physics 64 



                                                                                                                                    

YE(Z)=tan- l [ -t//(z/ffij. (2) 

JE tP(z/~E) 
The trajectory Y E will satisfy the transformed Schrodinger 
equation 

y~(z) = 1 - [V(z/.jE)lE] COS
2YE(Z), 

together with the boundary condition 

YE(O) = O. 

(3) 

(4) 

Odd-parity states can be handled in the same way, except 
that the boundary condition is then replaced by 
YE(O) = - 1T/2. When E is so large that an even-parity state 
of energy E possesses zero-crossings, we allow tan - I to pass 
continuously through any required number of intercepts 
(2n + 1)1T/2. Equivalent to (3) for even-parity states is the 
integral equation 

YE(Z) = z - (t/E)f v( jr) COS
2
YE(U) duo (5) 

For any given VEM, we next consider the collection of 
all E-indexed trajectories defined by (3) and (4). This collec­
tion possesses a remarkable topological property, namely, 
no two distinct trajectories can intersect for positive Z. This 

behavior stands in sharp contrast to that of the E-indexed 
even-parity wave functions whose graphs interlace in a com­
plicated manner. 

To prove the nonintersection property, we first investi­
gate the behavior of any pair tPE(X),tPF(X) of even-parity (non­
trivial) wavefunctions, where the energies satisfy E > F> O. 
It is a result of standard Sturm-Liouville theoryl4,15 that if 

Xn,xn + I are consecutive zeros oftPF(x), then tPE(X) possesses 
a zero in the open interval (xn 'Xn + I)' It is a matter of simple 
combinatorics to show from this that tPE and tPF cannot have 
acommonjth positive zero. Define G (z) = YE(Z) - YF(Z) and 
assume for some z I > 0 that G (z I) = O. Then from (3) and the 
monotonicity of V, we have either G '(zd > 0 or 
COS

2YE(zd = O. The latter alternative is ruled out since it im­
plies, by definition (2) and our extension of the tan -I func­
tion, that Y E' Y F have a common jth zero. Thus G has positive 
slope at z I and at any other of its positive zeros. Such a func­
tion cannot be positive at any point in the interval (O,zl)' 

However, the integrand in Eq. (5) is V(u/~E )[1 - O(fe)] 
for small Y E' so the monotonicity of V forces Y E > Y F' that is, 
G> 0, on some open interval (0,8 ) of the z axis. This contra­
diction stems from the assumption that a positive zero z I of G 
exists. Thus G is positive definite on (0,00) and we conclude: 

Theorem 1: Let E> F> O. Then, for all positive z, 
re(z) > YF(Z). 

The nonintersection property embodied in Theorem 1 
is depicted in Fig. 1 for the quartic potential V(x) = X4. It can 
be shown that for any VEM, each trajectory is asymptotic to 
some multiple n1T/2, where n is one of the integers - 1 1 3 
5, .. ·. Even-parity bound state energies are precisely th~s: Ii 
for which the relevant asymptote is approached from below. 
These remarks also hold for odd-parity states subject to suit­
able modification of condition (4). 

It is now apparent that the monotonicity restriction on 
the members of the classM enables us, by way of Theorem 1, 
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FIG. I. Computer-generated plot oftrajectories r E(Z) for the quartic poten­
tial X4. Each trajectory corresponds to a different E. The manually inserted 
dashed curves are even-parity bound state trajectories. 

to bound eigenvalues by the method of bounding trajectories 
themselves. We shall presently focus our attention on the 
ground state trajectory Y E,,' Through a series of theorems it 
will be shown that this trajectory is monotone increasing, 
convex downward, and asymptotic to 1T/2. 

Since the ground state wavefunction tPo(x) will have no 
zeros, 14it follows that I YE.,(Z) I < 1T/2for all realz. Using stan­
dard techniques 15 it is straightforward to show that for posi­
tive x, tP~ (x) has itself no zeros. These observations and Eq. 
(2) dictate the possible range of YEo' 

Theorem 2: For z > 0, 0 < ye,,(z) < 1T /2. 
This theorem in turn places restrictions on the deriva­

tive y~" (z). We can show that this derivative is positive for all 
positive Z. Note that, on the basis of (3), y~" (0) = 1, so it is 
enough to show that Y~o has no positive zeros. The second 
derivative is 

Y;,.Iz) ~ II - y:;,{2Y:" tany,,, - i.lz/1Ji), (6) 
EoV(z/ Eo) 

valid for positive Z. Now assume that Y~o (z I) = 0 for some 
Zl > O. Since 10gVhas positive derivative, we have from (6) 

that y~.,(zd < 0, hence for some Z2 >Zl' Y~.,(Z2) is negative. 
This in turn implies, on the basis of(3) and the monotonicity 
properties of V and of cos2, that YEo must have some zero 
Z3 > Z2' This contradicts Theorem 2, so the assumption that 
z I exists is untenable. This establishes the following: 

Theorem 3: Y E" (z) is monotone increasing for positive Z. 
We have shown with Theorems 2 and 3 that the ground 

state trajectory is monotone increasing and bounded. From 
the fact that V diverges we infer by Eq. (3) that re has the 
limit 1T /2 as Z--+ 00 . A concise summary of the gro~nd state 
trajectory is the following: 

Theorem 4: SUPYE (z) = 1T/2, infy (z) = O. 
z>o I) z>o Eo 

Theorems 1 and 4 can be combined to give Theorem 5. 
Theorem 5: If for some positive z,ydz) > 1T/2, then 
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E> Eli). If for some positivez'YE(z) < 0, then E <Eli). 
This result means that if for some E the trajectory Y E 

can be rigorously (either by numerics or by analysis) bound­
ed below by some function that eventually exceeds 1T /2, then 
E is an upper bound on Eli). A lower bound is obtained in a 
similar fashion. The behavior of the trajectories for energies 
E near the ground state energy is schematized in Fig. 2. 

In order to develop an effective computational algo­
rithm we must know a little more about the behavior of the 
derivative y;',,' It can be shown from (6) that the ground state 
trajectory is in fact concave downward. Observe first that 
from (3), y;'" (z) < 1 for z > O. Thus any positive zero, say z I' of 
YE" must be a zero of the second factor in Eq. (6). But V'IVis 
monotone decreasing, so the existence of such a z I implies 
that for all z > z p y;'.,(z);;. YUz d. This contradicts Theorem 2, 
and we have established the following: 

Theorem 6: y~" (z) is monotone decreasing for positive z. 

Corollary: V (zl J Eo) cos2y E" (z) is monotone increasing 
for z> O. 

The corollary follows directly from the theorem and 
Eq. (3). 

III. RECURSION ALGORITHM 

Numerical estimates on the integral (t > 0), 

lIz,!) = f+'V(UIJEo) cos2Ydu)du, 

will prove useful for obtaining bounds on Eli). From the 
corollary to Theorem 6 we have 

l(z,t);;.tV(z/~) COS
2YE.,(z). 

From Theorem 3 and the monotonicity of V we infer 

l(z,t)<tV((z + t)lJEo) cos2Ydz). 

Now from the integral trajectory equation (5) we write 

o -f-------- ~_--L. .~-.- -+ 

z 

(7) 

(8) 

(9) 

FIG. 2. Plot of two trajectories for energies near the ground energy, show­
ing the inequalities resulting from Theorem 5. The actual potential used for 
this plot is V (x) = x'. The two energies differ from the true ground energy by 
only ± 0.01 %. 
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YEn(z + t) = YE(Z) + t - I (Z,t )lEo. (10) 

From (8), (9), and (10) it is evident that the ground state tra­
jectory can be bounded with appropriate recursion relations. 
Theorem 5 gives a test on the appropriate sequences of real 
numbers to be computed, and we have the following: 

Theorem 7: Choose E, t> 0 and define sequences G k ,H k 

by 

Go=Ho=O, 

Gk + I = Gk + t - tE ~ 'V(kt I~E) COS
2Gk , 

Hk+1 =Hk +t-tE~'V((k+ l)tIJE)cos2Hk • 

If some Hn exceeds rr/2, then E> E lil. If some Gn is nega­
tive, then E <Eli). 

One feature of Theorem 7 is its validity for any initial 
increment t. If the chosen E value happens to lie very close to 
the true ground energy, then only for very small t will one of 
the inequalities Hn > rrl2,Gn < 0 be true for some n. 

In actual machine implentation, the function cos2 must 
be itself rigorously bounded, preferably with rational 
bounds. The t,E 2 can be chosen rational, and the recursion 
relations can be iterated with integer arithmetic. 

Values for various bounds on Egxl'l are tabulated in 
Table I. Some potentials have more precise bounds simply 
because more machine time was allocated to them. For the 
purpose of testing the analytic methods of the next sections, 
more bounds are plotted in Fig. 3. 

The exact result for v = 1 is the Airy zero WI as dis­
cussed in Sec. I. Table I entries for the quartic (V = x4

) po­
tential are consistent with an independent, non rigorous esti­
mate submitted to the authors by M. A. Penk, who 
computed 

E';")-:::::, 1.060 363 090 4841820 ... 

This number is plausibly (though not yet provably) correct to 
14 decimals, since Penk's numbers for known cases were that 
accurate. 

In Fig. 3 there is apparently an absolute minimum at 
v-:::::, 1.8. This is consistent with standard perturbation theory 
as applied to the oscillator ground state 
tPo(x) = N exp( - x 2/2). The derivate 

JE11xl') fro 
-0-IV~2 = tP~(x)x210gxdx 

Jv ~ 00 

= (1I2F)r '(3/2) 

being positive, is consistent with Fig. 3. 

IV. ANALYTIC BOUNDS FOR V = lxi', v> 2 

The recursion algorithm embodied in Theorem 7 is ap­
plicable only to isolated values of v in the power potential 
problem. However, continuous bounds on E gxlV) can be ob­
tained from a more detailed analysis of the ground state tra­
jectory. Let v> 2 and define a function h (z) by 

tan2YE" (z) = ZV Ip + h (z),(ll) 

where p = [Eo((XI'I] 1+ "/2. Then h satisfies the differential 
equation [here and elsewhere the (1I2)-power denotes posi­
tive root] 
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TABLE I. Bounds on ground energies Egxll, various v, obtained with the 

algorithm of Theorem 7. All implied inequalities are strict ones, except for 
the solvable cases v = 1,2. 

v Lower bound Upper bound 

0.05 1.0498 1.0508 
0.1 1.0687 1.0689 
0.2 1.0798 1.08 
0.22 1.080078 1.080127 
0.24 1.080029 1.080078 
0.3 1.0771 1.0773 
0.5 1.0595 1.0597 
I w, w, 
1.5 1.0011 1.0013 
1.7 0.9991 0.9993 
1.8 0.9989 0.9991 
1.9 0.9992 0.9994 
2 I I 
2.1 1.0009 1.002 
3 1.022 1.024 
4 1.060 3618 1.060 3624 
5 \.102 \.1026 
6 \.144 \.146 
7 \.186 \.187 
8 1.225 1.227 
9 1.263 1.264 
\0 1.298 1.3 
16 1.472 1.474 
32 1.743 1.744 
64 1.9819 1.9825 
128 2.291 2.292 
256 2.333 2.334 
\024 2.439 2.44 

(12) 

subject to the condition h (0) = o. It is easy to show from 
Theorem 3 that h (z) > - 1 for all positive z. These observa­
tions will now be used to show that h is positive on (0,00). 

First, since v> 2, lim h 2/r = lim [YE Izj2 = I, so his 
v-----.o+ v-----.o+ 0 

,.01 j 
'.07 ~ 

1.0'· " 

I.Of . - ,I 

I.O~ 

'.03 

I .... 

1.0' 

0.1t 

, ' 

[TTT'l fTT-TfTTTl rrr n r-T-rTT1 

1 1 4 

FIG. 3. Plot of rigorous upper and lower bounds on ground energies for 
V = Ixl v. Error bars appear for various v. In some cases, such as v = 4, the 
bars appear as dots (see Table I). 
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positive on some interval (O,E). Let 
F(z) = (zvlp)1I2 - VZV

- tip. If h has any positive zeros, then 

there must be one such, say Zt with h '(z.) = F(z.)<O. But as 
v> 2, Fhas itself just one positive zero to the right of which F 
is negative. Thus for allz>zt,h (z)<O, and furthermore (12) 
thus dictates that h '(z)<F(z) on (Zt' (0). But this contradicts 
the fact that h (z) > - 1 for positive z. Therefore h is positive 
on (0,00 ) and we have the following: 

Theorem 8: Let V(x) = lxiV, v> 2, and 
p = [Eg x l'l)1 + v12. Then for all positive z, tan2YE

o 
>zv Ip. 

This theorem amounts to a bound on the ground state 
trajectory sufficiently tight to establish the upper bound: 

E(olx l,< -sin- ,v>2. 
[

V 1T ] 2v/(v + 2) 

2 v 
(13) 

The argument runs as follows. The result of Theorem 8 can 
be paraphased 

(14) 

which together with Theorem 4 and the integral equation (5) 
gives 

1T L'" dz -> 
2 0 1 + zVlp 

(15) 

The integral can be evaluated and the result is (13). 
The bound (13) is exact in both limits v-+2 + and v-+ 00 . 

It is evident from (13) that for all v> 2, 

(16) 

It will be seen in Sec. V that (16) also holds for a < v < 2 so 
that the infinite square well ground energy r/4 is an abso­
lute upper bound for the power potential problem, positive v. 
It should be remarked that even though the infinite square 
well is in some sense a geometrically extreme case, the abso-

o·s 

o ·~T' ----, 
o , ;z , 4 Ii , 'T 11 , '0 " ,.. .. ,.. 

-v 

FIG. 4. Continuous bounds on Egx l ·). (a) is a Rayleigh-Ritz bound [Eq. 

(22)]; (b) is a Bamsley bound [Eq. (24)]. The bounds (c) and (d) arise from the 
trajectory theory [Eqs. (13) and (18), respectively]. All four bounding seg­
ments are exact a their endpoints, which read, from left to right, v->O+, 
v = 2, V->oo. The dotted curve represents the exact ground energy. 

R. E. Crandall and M. H. Reno 67 



                                                                                                                                    

lute bound "r / 4 is not obvious, since any positive power of 
Ixl is sometimes less and sometimes greater than any other 
positive power. 

A lower bound for v > 2 can also be derived on the basis 
of Theorem 8. The theorem can be paraphrased 

E gxl 'I> [zv coer E.,(Z) ]2/lv + 21 (17) 

for allz> O. It is clear from Eq. (5) that rEo (z) is less thanzfor 
z> O. A simple lower bound can thus be written (see Fig. 4): 

Egxl'l;;;. sup [zv cot2Z] 21lv + 21, (18) 
O<z<7T/2 

It is straightforward to show that this bound is correct in the 
limits v ....... 2 + and v ....... 00 • It is possible to obtain better bounds 
by strengthening the inequality rl:..,,(z),;;;z. For example, the 
factor coez in (18) can be replaced with 

cot2(Z- ~fUVCOS2UdU). (19) 

where use has been made again ofEq. (5). Though the num­
ber p appears implicitly in (19), it can be replaced itself with 
any good upper bound such as that arising from (16). 

In the spirit of completeness we now turn to the prob­
lem of establishing continuous bounds for the region 
0<v<2. 

V. EXISTING METHODS FOR v < 2 

Owing to the failure of Theorem 8 for v < 2, the meth­
ods of the last section cannot be applied directly for these 
small v, Existing techniques give reasonable bounds over the 
finite interval 0 < v < 2. We include these here in order to 
complete our search for continuous upper and lower bounds 
for all positive v. 

A Rayleigh-Ritz bound on E~I can be obtained from 
the inequality 

E~I.;;;f~ 00 tP,HtP, dx, (20) 

where tP, (x) is a normalized, real test function and H is the 
Hamiltonian operator - d 2/dx2 + V. For V(x) = lxiV, a 
particularly effective choice of test function is 

( 
-Ixll +V/2) 

tP,(x) = N exp - ~2v , 
v+2 

(21) 

where N is a v -dependent normalization factor. The upper 
bound from (20) is 

E Ilxl'l.;;; [ v(v + 2)V ]2/IV + 21 r (v/(v + 2)) 
o 22v+1 r(2/(v+2)) (22) 

This bound is exact for v = 2 and in the limit v.......o+. For 
large v, however, the bound is weak, owing to the failure of 
(21) to well-approximate the infinite square well (cosine) 
ground state. The bound (22) is plotted in Fig. 4. 

Barnsley's method can be used to find lower bounds for 
small vas follows. Let tP, satisfy the criteria (a) tP, is positive­
definite, symmetric, (b) tP, is twice-differentiable. Then 
Barnsley's theorems state effectively that 7 

E ~I;;;. inf HtP, . 
x>o 'l/Jl 

(23) 
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The test function (21) gives a bound when 0 < v < 2 as 

E gxl'l;;;. [ ; ]V/IV+ 21( I + ;). (24) 

This bound is exact in both limits v.......o+ and v ....... 2 -, as indi­
cated in Fig. 4. 

In attempting to apply the Barnsley method to cases 
v> 2, we found that an extension of said method greatly 
improves its applicability. In many instances a test function 
tP, closely approximates the true eigenstate over some finite 
region, but the overall infimum (23) is weak, or even trivial 
(negative). Success is more likely if the domain of the infi­
mum can be collapsed to a finite interval. Assume, for exam­
ple, that there happens to exist a point y > 0 at which tP; is 
negative but 

d 2 

dx210gtPI' 

vanishes. Consider the function tP, defined on the nonnega­
tive real axis by 

x.;;;y, 

x>y, 
(25) 

and summarized for negative x by tP,(x) = tP,( - x). Then it is 
easy to show that tP, itself satisfies the Barnsley criteria, and 
moreover that 

E~I;;;. inf HtP" (26) 
O<x<y tPt 

so that the infimum need only be computed over a finite 
region. A good example of this extended method is provided 
by the quartic potential V = X4. Choose 

tP,(x) = exp( - x 2/2 - x4/12 + x6/90). (27) 

This sort of test function arises naturally if we attempt to 
transform the Schrodinger equation (1) by tP,(x) = 
exp [ - f((g(u) du] and perform a Taylor expansion on g to 
several terms. Note that the standard Barnsley infimum for 
the function (27) is negative infinity. However, there is a for­
tuitous choice: 

y = I ~ll + ( i) 112]]1/2 
such that the test function (25) gives the bound 

E~'I> 1. 

From Table I we have the value 1.060 ... for the energy, show­
ing that this extended method can yield tight bounds. 

It is difficult to produce analytic bounds for v> 2 using 
even the extended Barnsley method. It was for this reason 
that the trajectory method was developed. 

VI. CONNECTION WITH WKB THEORY 

The WKB approximation of the nth energy eigenvalue 
El,;I is taken to be that solution E ofl6 

(n + 1/2)1T/2 = {'(E - V(u)) I12du, (28) 

where Xc satisfies V (xc) = E. For power potentials V = Ix I v, 
E can be obtained in closed form. II The resulting 
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expression is relatively poor for the ground energy (n = 0), 
and it can be shown by methodical comparisons with Fig. 3 
that the WKB value is generally too large for v < 2 but too 
small for v> 2. Furthermore, the WKB ground energy does 
not have the proper limit as v __ 00. Nevertheless, for large n 

the WKB approximation will be asymptotically valid, and 
serve as a test of any alternate approximation theory for high 
quantum numbers. 

We shall now establish a connection between the trajec­
tory theory and WKB theory. Let Y E. (z) be the trajectory for 
the nth bound-state energy, n even (see Fig. 1). Denote by Zj 
the z coordinates of the intercepts 

YE.(Zj) =/1r/2, j=O,I, ... ,n. 

For comparison with the WKB integral (28) we also set 

Xj = zjl ~En' We invoke a key integral identity 

1r 1 {'Tn dy 
2(I-D)I/2=Jo I-Dcos2y' (29) 

valid for D < 1, and integrate over anyone of the n regions 
between lines y = 1rjI2, Y = 1r(j + 1 )/2, j < n, to get the 
inequality (E = En): 

[E-V(Xj+I)]1/2< 1r <[E-V(xj)r/2, 
2(xj+ I - Xj ) 

(30) 

where use has been made of(3) and the monotonicity proper­
ty of V. If we denote.J j = Xj + I - Xj and perform the appro­
priate summation over regions, we obtain 

n - I n1r n - I L [E- V(Xj+I)] I12.JXj < -< L [E- V(Xj)] 1I2.JxF 
j=O 2 j=O 

(31) 

This is the difference analog of (28) and presumably has ap­
plications to the problem of bounding higher energy eigen­
values for VEM. 

The natural approximation implied by (31) is that solu­
tion E of 

(32) 

Equation (32) and inequalities (31) do not explicitly involve 
the classical turning point Xc' Instead, knowledge of the in-

tercepts Xj = Zj I ~ E is required; in particular it would be of 
interest to determine the last intercept X n , corresponding to 
the last right-hand critical point of the nth bound-state wave 
function. We shall presently sketch an argument whichjusti­
fies the asymptotic equivalence of(32) and the WKB integral 
(28). 

Observe the last segment ofthe trajectory, defined by 
n1r12 < YE < 1r(n + 1)/2, which did not figure into the in­
equalities (31), is just a rigid translate of the ground state 
trajectory for the potential 

(33) 

It follows from the trajectory equation (3) that Xc and X n are 
related implicitly by 

V(xc) = V(xn) + Ebw1 . (34) 

This equation is exact but generally extremely difficult to 
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solve for X n • It is possible, however, to use (34) to give an 
estimate of the integral 

J= f'[E- V(u)]1I2du. (35) 

It is evident that the WKB integral and the integral of (32) 
differ by the magnitude ofJ - 1r14. From (34) and the mono­
tonicity properties of V it is possible to show that 

J<jA [V'(xn)IV'(xc)]312[V(xc)IV(xnW, (36) 

where 

(37) 

Ifwe now estimate W (x) - x V '(xn ) forlarge n, finite x> 0, we 
have from the scaling properties of the absolute-linear poten­
tial that A - W 1

312, where WI is the Airy zero discussed in Sec. 
I. We also infer from (34) that V(xn)- V(xc)' so that 

(38) 

Evidently the approximation (32) can be written for large n 

n1r12 + J = f'[E - V(u)] 112du. (39) 

It is interesting that J is so close to 1r 14, the equivalent WKB 
value in (28). The last step in achieving (39), namely that 
A _w~12, is heuristic since we do not yet have a rigorous 
procedure for bounding Ebw1 • However, for VEM it is possi­
ble to prove J = o(n), which establishes the asymptotic 
equivalence of (32) and (28). 

It would be fruitful to extend the trajectory method so 
that rigorous error terms on the WKB approximation could 
be obtained. Likewise useful would be a refinement of the 
algorithm of Theorem 7 for application to higher states. The 
main obstacle to such a refinement is that the integrall (z,t ) of 
Eq. (7) cannot be easily bounded by simple terms when n > O. 

Finally, the present methods should be extended to 
higher-dimensional cases, and also to a wider class of poten­
tials. Such a class might include, for example, the quarkon­
ium potentials of recent interest. 17.18 
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The mathematical analogy of the three magnon bound-state equation with other momentum­
space integral equations is studied. It is shown that a variable transformation, similar to Wick's 
transformation in the Bethe-Salpeter equation, leads to alternative methods of complete analytic 
solutions of this equation. 

PACS numbers: 03.65.Ge, 03.65.Db, 75.90. + w 

I. INTRODUCTION 

The solution I of the three magnon bound-state equa­
tion in one dimension provides an interesting example of a 
solvable nontrivial three-body problem in quantum mechan­
ics, where the homogeneous Faddeev equations have been 
shown to be analytically tractable. It is worth while to ex­
plore its connection with other equations arising in physical 
problems and to analyze the mathematical features that may 

I 

be of more general applicability. In this paper we shall point 
out its similarity and differences with two other well-studied 
equations in momentum space-the hydrogen atomZ and the 
Bethe-Salpeter3 (BS) equations. In particular, we shall show 
that transformation analogous to Wick's transformation for 
the BS equations can be used to obtain alternative methods 
of solution of the three magnon bound-state equation. 

The equation for the three magnon bound state is 

t/J(ptl = 2 COS2!PI (1 _ L) -I ~ I1T [a COS!PI - cos(K - !PI - P2)] cos(K - PI - !P2) t/J(P2) dP2 
a - cos(K - PI) d 1T -1T H - a + cos(K - ptl + cos(K - P2) + cos(K - PI - Pz)] 

(1 ) 

with 

a = a/a, 

a = 3 -E, 

/ = a - cos(K - ptl- 2a COS2!PI' 

d = [[a - cos(K - PIW - 4 cos2 !PI J 112. 

(2) 

(3) 

(4) 

(5) 

E is the eigenvalue, a is the longitudinal anisotropy param­
eter, and K is the momentum of the center of mass of the 
three-body system. Equation (1) is an integral equation in 
momentum space, linear in the wavefunction but highly 
nonlinear in the eigenvalue E. 

Consider now the hydrogen atom equation 

C/>( ) - me
2 I dp' C/>(') (6) 

p - 1Tfz(p2 + aZ) Ip _ p'l z p, 

with the eigenvalue E given by a2 = 2m IE I. Let us also take 
the BS equation, as in Wick's paper,3 

C/>(p) = A. I d
4

k C/>(k).(7) 
~(p2 + m~)(p2 + m~) (p _ k)2 + K2 

Let C/> be a function of p2 only. On carrying out angular 
integration and substituting 

C/>(p) = u(s), 

we get 

u 
u(s)=-----

(s + m~)(s + m~) 
f~ tu(t) dt 

X Jo {s + t + K 2 + [(s + t + K 2f _ 4st ] 1/2} . 

(8) 

(9) 

I Note that all these Eqs. (1), (6), and (7) have some factors 
in front of the integral-these depend on the variable of the 
left hand side, and arise from free particle motion 
(1 - cosptl,p2/2m, and (p2 + m2) for the three cases, respec­
tively. There is, however, an important difference. In (6) and 
(7), the nonseparable part of the kernel arises from the inter­
action potential. In (1) the two-particle t-matrix gives only 
separable terms-the nonseparability comes from the three­
particle Green's function. However, the two-particle t-ma­
trix gives the complicated branch cut [the square root term d 
ofEq. (5)] in Eq. (1). 

II. WICK'S TRANSFORMATION 

For Eq. (9) Wick introduced the transformation 

x =/(s), y=/(t), 

x /(s)= . l' ds' 

o (s' + m;)(s' + m~) 
(10) 

We express sand t in terms of x and y, and writing 
Sl /2 (s + m~)(s + m~ juts) = u(x), we get the simpler equation 
from (9): 

U(x) = A. f K (x,y)u( y) dy, (11 ) 

with e = /( 00). To see the efficacy of the transformation, con­
sider thes-wave solutions of the hydrogen atom; C/> (p) is then 
a function of the magnitude p only. Measuring momenta in 
units of a and carrying out the angular integration, we get 
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p(/> (p) = 2m;2 LX dp' In I P + P' I p'(/> (p'). 
1rafl(p + 1) 0 p - p' 

Now, similar to (10), we take the variable 

x _ LP 
dp' 

2 - 0 p'2 + 1 
or 

p = tan~x. 
Putting u(x) = p( p2 + I)(/> (p), we obtain 

u(x) = 2me
2 

(" dy ~ In I s~n~(x + y) I u( y). 
1Tafl )0 sm~(x - y) 

( 12) 

( 13) 

(14) 

Now4 

~ In I s~n~(x + y) I = f sinnx sinny , 
2 sm!(x - y) n ~ I n 

( 15) 

and the eigenvalues are 2n/1T, so that the hydrogen atom 
eigenvalues E = - me4 /2fz2n2 are reproduced. Let us note 
that here Wick's method is one way of generating symmetric 
kernels out of polar kernels. In (15), the completeness of the 
eigenfunctions is obvious. In the problem of the three mag­
non bound states we shall not find such complete resolution. 

Rationalizing the denominator in front of the integral 
in (1), we write 

¢(ptl = d (d + f)/{2 COS!Pl [a - cos(K - pt\)[aa - 1 - ~~) - cosPtla cosK + !~) - a sinK sinpl]} 

1 fTT ( f ) X- dP2 - 1 cos(K - PI - !PZ)¢(P2)' 
1T ~ 11' a - cos(K - pd- cos(K - pz) - cos(K - PI - pz) 

( 16) 

Several transformations are suggested. For example, we 
take the term a - cos(K - PI)' and put 

X= -1T+(a2-I)1/2 

f
P

' dp' 
X I. 

~ 1T a - cosK cosp; - sinK sinp; 
(17) 

The factors are chosen so that the inversion gives the rela­
tively simple expression 

tan!PI = [sinK + (a2 - I)I/Z tan!x]/(a + cosK). (18) 

Similarly, 

tan~p2 = [sinK + (a2 - 1)1/2 tan!y]/(a + cosK). (19) 

A second transformation can be worked out with the 
other factor in the denominator in front of the integral: 

x= f
P

' 

- 1T + U ~ 1T [(aa - 1 - ~~) 

- (at + !~) cos P; - a sinK sinp; ] ~ 1 dp; 

or 

tan!Pl = (a sinK + u tan!x)/(aa - 1 + at), (20) 

with 
t = cosK (21) 

and 

u = [a2~ - a(2a + if) + 1 - ift ]I/Z. (22) 

One could have considered both factors together. The 
difference between (18) and (20) is only marginal; the aniso­
tropy parameter also introduces nothing new in principle. So 
it will be enough to illustrate the details of the solution for 
(18) and the isotropic case a = 1. 

111. SOLUTION OF (1) WITH (18) AND (19) 

Introduce in (18) and (19) 
r = tanp:, s = tan~. 

Equation (1) becomes with (3), (21), and (23), 
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(23) 

rl-------------------------------------

¢(r) = _ 4(a + t) 
1T(a 2 - 1) 1/2h (r)3/2 ( I)--If'" 

1 - g _ 00 ds 

X ps - q (1 fh (s) ) 
(S2 + I)h (s) 1/2 - (a 2 - I)h (r)(s _ z)(s _ Z) ¢(s), 

(24) 

where 

f= (a2 - I)(r + I) - 2(a + t), (25) 

g = [(a2 - Ifr 4 + 2(a2 - I)(a2 
- 3)r 

- 8 sinK(a 2 - I)1/2r + a4 - ba2 - Sat - 3]1/2, (26) 

P = (a 2 - 1)3/2[ - r sinK - 2(a2 - 1)~ 1/2 

X (at + I)r + sinK], (27) 

q = (a 2 
- 1 )(at + I)r - 2(a2 - 1)3/2 sinKr 

- (a 3t - 3a 2 + 3at + cos2K), (2S) 

h (r) = (a2 - I)r + 2 sinK(a2 - I)1/2r + a2 + 2at + 1, (29) 

z = (p + i(a2 - 1)1/2(a + t )g]/(a2 - I)h (r), z = c.c. of 
z. (30) 

Now 

g2_/2=4(a2_I)(a-I +t)(r+mr+n), (31) 

with 

m= -2sinK(a2-I)~1/2(a-l+t)~I, (32) 

n= a
3
+a

Z
(t-2)-a(4t+l)-(t

2
+t+I). (33) 

(a 2 
- I)(a - 1 + t) 

The subsequent algebraic manipulations are analogous 
to those of Majumdar and Bose. 1 The Ansatz for the wave­
function ¢ is 

¢(r) = Co + clr + czr + c3r + c4r
4 + cs,s . (34) 

h (r)3/2(r + mr + n) 

Substituting it into (24), we get a rational function on the left. 
From the pole s = z on the right, we extract a term that is 
rational and free of the branch cut of g. Insisting on the 
equality of the rational parts of the two sides, we get the 
eigenvalue and a set oflinear equations for the coefficients ci -
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All other terms ofthe integration must vanish; hence, we get 
another set oflinear equations for ci • Not all these equations 

I 

are linearly independent, but we get just the right number to 
solve for the six quantities Ci • The results are 

a = (8 + t)/3, 

C5 = A (t + 5)1/2(t + 11)112 sinK (4t + 5)2[(t + 5)1/2(128t 4 + 2164t 3 + 11 lOOt 2 + 19 639t + 10 709)] 

_ (t + 11)1/2( 128t 4 + 1780t 3 + 8067t 2 + 13 492t + 7151)], 

C4 = -A (t - 1)(4t + 5)[(t + 5)1/2(2560t 6 + 51 840t 5 + 347 124t 4 + 1016 548t 3 + 1 534 959t 2 

+ 1 175 334t + 359 359) - (t + 11)112(2560t 6 + 44 160t 5 + 266 076t 4 

+ 740 083t 3 + 1082 343t 2 + 809 991t + 243 433)], 

C3 = A (t + 5)-1I2(t + 11)- 1/22 sinK [(t + 5)1/2( - 2048t 8 + 24 064t 7 + 1 332 928t 6 + 14069 404t 5 

+ 66 886 852t 4 + 168314 677t 3 + 227 622 199t 2 + 155 584 555t + 42 160321) 

- (t + 11)1/2( - 2048t 8 + 30 208t 7 + 1 204 384t 6 + 11 301 004t 5 

+ 50 143 141t 4 + 120486 538t 3 + 157977 328t 2 + 105734 128t + 28 233571)], 

C2 = - A (t + 5)-I(t + 11)-12(t - 1)[(t + 5)112(14 336t 9 + 600 384t 8 + 9 723 216t 7 + 79 283 580t 6 

+ 354774 792t 5 + 897 546 549t 4 + 1 290306 438t 3 + 1 033 154 364t 2 + 424 177 050t + 68413675) 

- (t + 11)112(14 336t 9 + 557 376t 8 + 8 331 648t 7 + 63 187 632t 6 + 267 109 809t S + 649 176 495t 4 

+ 909 213 114t 3 + 716461 674t 2 + 291673 347t + 46960765)], 

C I = A (t + 5)-3/2(t + 11)-3/2 sinK [(t + 5)1!2( - 6 144t 10 - 122 688t 9 + 2 784 672t 8 + 94038 804t 7 

+ 986 518 116t 6 + 5092599 411t 5 + 14503363 857t 4 + 24086488 374t 3 + 23 695 111 818t 2 
+ 12970403 331t + 3055 184865) - (t + 11)1/2( - 6 144t 10 - 104 256t 9 + 2 984 688t 8 + 83 835 180t 7 

+ 799 925 679t 6 + 3 870894 744t 5 + 10562562 981t 4 + 17048275 416t 3 + 16425705 609t 2 

+ 8 842 960 068t + 2054419155)], 

Co = - A (t + 5)-2(t + 11)-2(t - 1)[ (t + 5)1/2(18 432t II + 1 III 680t 10 + 25932 240t 9 + 313 740 324t 8 

+ 2 199 146 976t 7 + 9408284 919t 6 + 25 253 056 098t 5 + 43 162846 677t 4 + 46 639 268 748t 3 

(35) 

+ 30281 197 905t 2 + 10 368 780 642t + 1 319344 191) - (t + 11)1/2(18 432t II + 1 056 384t 10 + 23118 480t 9 

+ 262 396 584t 8 + 1 738051 047t 7 + 7101809 919t 6 + 18409978 593t 5 + 30659930 703t 4 

+ 32480524 341t 3 + 20 774 293 569t 2 + 7039664 307t + 892 063881)]. (36) 

A is an arbitrary normalization constant. 

IV. DISCUSSION 

The details of the transformation (20) are similar. With 
the anisotropy parameter a the method works just as well, 
the eigenvalue condition beingS 

a = (~t + 8)la(4 - ~). (37) 

Wick's transformation has thus provided alternative ways of 
solving the three magnon bound-state equation. However, 
the setting up of the solution involves an Ansatz, Eq. (34), 
and therefore, we have not found any method of proving 
rigorously that all the solutions of the equation can be found 
by the transformation. The existence ofthe two-body branch 
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cut and its cancellation from the three-body kernel distin­
guishes this equation from the hydrogen atom or BS 
equation. 
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On the basis of the Gell-Mann-Goldberger formula for M011er operators we introduce a natural 
splitting of the total scattering operator S into the pure Coulomb scattering operator SC plus a 
remainder 

S = Sc - 21TiTs", 

implying a decomposition of the total scattering amplitude/into the Coulomb scattering 
amplituder and a remaining partje 

/(k,w,w') = r(k,w,w') + !,C(k,w,w'). 

Concerning continuity properties, etc., ofjC, close similarities betweenjC and ordinary short­
range amplitudes are proved. In particular, we introduce transition operators t SC(z) and show how 
to obtain/sc by an appropriate on-shell limit, thereby avoiding the notion of so-called Coulomb 
transition operators and the difficulties associated with them. Possible extensions of this approach 
to charged three-particle systems are also sketched. 

PACS numbers: 03.65.Nk 

I. INTRODUCTION 

Since two-body off-shell data are an important input in 
the many-body problem for charged particles, much interest 
has been devoted to the off-shell behavior of two-body Cou­
lomb scattering quantities like Jost functions and transition 
operators and to the corresponding on-shell limits. van 
Haeringen, I following a renormalization approach due to 
Zorbas,2 introduced Coulombian asymptotic states IkE ± ), 
IkE ±) 
= T(l + iyl2H b/2 )-1(2Ho/E) ± ;YI2H!/'lk) A<± (Ho)lk), 

(1.1) 

where Ho = -.1, and Ik) abbreviates the plane-wave state 
with momentum kER 3 (Ii = 2m = 1). With the help of the 
usual definitions 

(z _Hc)-I = (z - HO)-I + (z - HO)-IT"(Z)(Z - HO)-I, 

(Z_H)-I =(Z-HO)-I + (Z-Ho)-IT(z)(z-Ho)-I, (1.2) 

and 

T(z) = T"(z) + pc (z), 

where 

He = Ho + yl lxi, H = He + gV(x), gEYf 

(1.3) 

[Va suitable short-range potential (cf. Sec. II)], he was able to 
perform an on-shell limit of the form 

= lim (kE -ITC(k 2 +iE)lk; + )llkl~'k'l~k 
E-->D , 

= - (1!2~IfC(k,w,w'), (k = k,w). (1.4) 

Herer(k,w,w') denotes the Coulomb scattering amplitUde 
(cf. Sec. III), and similar relations hold for T(z) and PC(z). If 
plane waves Ik) instead of IkE ± ) are used in (1.4), the on­
shell limit does not exist in the ordinary sense and yields zero 
in the distributional sense, I However, besides technical com­
plications [T (z) are unbounded operators and thus domain 

questions arise], there are conceptional difficulties associat­
ed with TC(z) and T (z) which sometimes culminated in state­
ments like "Coulomb scattering violates unitarity," etc. (see 
the discussion in Ref. 3 and the references cited therein). In 
order to illuminate some of these problems it suffices to treat 
the pure Coulomb case in a somewhat heuristic way (cf. Sec. 
III for precise statements): 

From Dollard's time-dependent definition4 of the Cou­
lomb scattering operator sc and the formula 

- 2,H,' _ 1 I d - 2iz' ( H ) - I e - - ze z-
21Ti r e , 

(r a suitable path in the complex plane) one immediately gets 

SC = s - lim Uj!)(t)e - 2iHJUj!)(t) 
, ·00 

= s - lim {exp [iyln(4Hot)1 H b/2
] 

'-00 
+ -21 . ( dze'- 2iztUj!)(t)(z - HO)-I 

lTlJr 
X T"(z)(z - HO)-I Uj!) (t I}, (1.5) 

where UD(t) denotes the modified free evolution operator 
according to Dollard,4 

UD (t) = exp [ - iHot - iyln(4Hot )/2H b/2
] 

-e - iHDI'I, t> 0. 

Ify = 0, i.e" no Coulomb interaction exists, then !1.5) leads 
to S = 1 or if H instead of He is used, to the well-known 
formula S = 1 - 21Ti T" where T' denotes the short-range 
transition operator. But for y'f0 the first term in (1.5), 
exp [iyln(4Hot)/H 612

], converges weakly to zero as t---+oo 
and thus has no strong limit. Since SC obviously exists, the 
second term in (1.5) also has no strong limit as t tends to 
infinity. In fact a part of the second term in (1.5) must cancel 
the oscillating term exp [iyln(4H ot )/ H 612

] in order to yield 
SC in the limit t---+oo. 

From these remarks we thus conclude that the T(z)-
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operator approach based on (1.2) and (1.3), although ex­
tremely useful in short-range (y = 0) calculations, is no long­
er an appropriate tool if Coulomb interactions are present. 
This statement may be further confirmed by the following 
observation of Gibson and Chandler5

: In the short-range 
case (y = 0) the scattering operator may be expressed in 
terms of spectral integrals over the resolvent (z - H)-I and 
thus is directly relate to P(z), whereas the S operator for 
Coulomb-type interactions involves spectral integration 
over a complex power of the resolvent5 and not the resolvent 
itself-a fact which is easily proved by looking at the associ­
ated M011er operators (see Prop. 3.2) and is in accordance 
with relativistic investigations. 6 Another point which also 
shows the inadequacy of (1.2) for long-range interactions 
consists in the failure of (1.4) when restricted to partial 
waves. It was recently proved by van Haeringen 7 that if the 
partial wave projected Coulomb transition operator and 
Coulombian asymptotic states are inserted into (1.4), the 

limit €_o+ gives T~(k) = (ihrk )/il5i1kl plus a nonconverg­
ing oscillating term [t5~(k) = argT (l + 1 + iy!2k) are the 
usual Coulomb phase shifts]. 

Having reviewed some of the difficulties associated 
with Coulomb-type T(z) operators based on (1.2), we now 
turn to the approach to be discussed in this paper. This ap­
proach relies on the Gell-Mann-Goldberger formulaH or 
more precisely, on the chain rule for wave operators (see Sec. 
II): 

n ± (H,Ho) = n ± (H,He)n ± (Hc,Ho ), (1.6) 

which suggests He (instead of Ha) as "unperturbed" Hamil­
tonian and thus results in the definition9 (cf. Sec. III) 

(Z-H)-I 

= (z - Hc)-I + (z - He)-II VI 1
/
2t se(z)1 VII/2(Z - Hc)-I 

( 1.7) 

instead of (1.2) and (1.3). The main advantage of this defini­
tion lies in the fact that it implies a natural splitting of the 
total scattering operator S into the Coulomb scattering oper­
ator SC plus a remainder denoted by - 2rri ,'c, 

S = SC - 2rriT'", 

and analogously for the total scattering amplitude 

l(k,OJ,OJ') = !"(k,OJ,OJ') + !,C(k,OJ,OJ'). 

(1.8) 

(1.9) 

In Sec. II we describe some relevant properties of the 
resolvents of Hand Hc and discuss the spectral and scatter-

ing theory associated with H. In Sec. III we study t SC(z) and 
Ise(k,OJ,OJ') and show their close similarity to the correspond­
ing short-range (y = 0) quantities t S(z) and!,(k,OJ,OJ'). In par­
ticular the on-shell pe(k ) operator [whose kernel is given by 
!,C(k,OJ,OJ')] is trace-class and continuous in trace-norm, and 
!,e(k,OJ,OJ') is uniformly continuous in all variables if k varies 
in compact intervals under appropriate conditions on V 
(Theorem 3.2). Similarly the on-shell limit €-D+ of 
t 'C(k 2 + i€) (according to the Gell-Mann-Goldberger for­
mula between Coulomb wavefunctions) immediately yields 
Isc (k,OJ,OJ') or the corresponding partial wave amplitude 
(Theorem 3.3). 

Quite recently the basic idea underlying the above for­
malism (namely to separate out the pure Coulomb interac­
tion) has been applied to the three-body problem of charged 
particles by Merkuriev 10 and to the N-body problem with 
repulsive Coulomb forces by Chandler and Gibson. II At the 
end of Sec. III we indicate how modified Faddeev equations 
for three-body transition operators tij(z) may be obtained. 
These equations avoid the notion of Coulomb-transition op­
erators for two-particle subsystems and only contain two­
particle ti (z) operators of the type (1. 7). 

11. SPECTRAL AND SCATTERING PROPERTIES OF H 

In the Hilbert space 2"2(3P3
) we introduce the Coulomb 

Hamiltonian He: 

He=Ha+YVe, D(He)=D(Ha), Ve (x)=1!lxl, ye3P, 
(2.1) 

where Ha denotes the usual self-adjoint realization of -.:1 in 
2"2(3P 3

). In addition to He we introduce the total Hamilton­
ian H as the form sum of He and g V, 

H=He +gV, ge3P, (2.2) 

where the short-range potential Vbelongs to the Rollnik 
class l2 R, i.e., 

L/3X d 3x'l V(x)V(x')I/lx - X'12 < 00. 

Since various properties of (z - H) - I are basic to the whole 
subject treated in this paper, we summarize them in 

Proposition 2.1: Let VeR. 
(a) (He - z) -I is a Carleman type operator with kernel 

F(l +iY/2VZ)[(~_ ~)JI. a'lr . ] 
4rrlx - x'i da d/3 -IY/2VZ;I/2() -IY/2VZ;1/2(f3) la= -iVzx 

(3= -IVZX, 

(2.3) 

x± =lxl+lx'I±lx-x'l, 0<argz<2rr, Imvz> 0, 

z¥= - y/4n2, n = 1,2,3,··· if y<O, 

[here,-#' k;J.l (S) and 'lrk;J.l (S) denote Whittaker functions 13], and I V 11/2(Z - He )-1 V 112 is Hilbert-Schmidt for allzEp(H
c

)' [We 
recall V(X)I/2 = V(x)1 V(X)I- 1

/
2.] 

(b) Let zEp(H)np(He) and in addition VE2"I(3P 3 ) then 

(z - H)-l - (z - He)-I =g(z - He)-l V1I2[1 - glVll/2(Z - He)-I V/2]-1 

xlVl l/2(Z-He)-1 (2.4) 
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is trace-class. 
(c) If zEp(H), then I V 11/2(Z - H) - I V 1/2 is Hilbert­

Schmidt; iffurthermore, VE2" 1(~3), then IV 11/2(Z - H) - I 
and (z - H) - I V 1/2 are Hilbert-Schmidt too. 

(d) If Z = k 2 ± ie, e,k > 0, then in the limit e----+O +, 

I V 11/2(He - k 2 ± iO)-1 V I /
2 with kernel G~=FI(x,x',y,k 2) 

= lim Ge(x,x',y,k 2 ± ie) are Hilbert-Schmidt. In particu-
• .0. 

lar there are constants cy(k) such that 

41Tlx-x'IIG~=FI(x,x',y,k2)I<cy(k), k>O, (2.5) 

where 

limcy(k) = limcy(k) = 1. 
y--.Q k~oo 

(2.6) 

Proof Formula (2.3) which is due to Hostlerl 4 proves 
(a). For the proof of (b) we note that (2.4) certainly holds for Z 

negative and large enough. By analytic continuation (2.4) 
holds for zEp(H)0p(He)' If VE2"I(~3), then 

I VII/2(Z - Hcl- I = I VII/2(Z - HO)-I [(z - Ho)(z - He)-I] 

[and similarly (z - He )-1 V 1/2] is Hilbert-Schmidt which 
proves (b). (c) is a simple consequence of (b), and (d) follows 
from (2.5), which in turn is implied by (2.3). 

Next we give a short description of the non positive 
spectrum of H. Since for y < 0 there are obviously infinitely 
many negative eigenvalues of H, we concentrate our atten­
tion on the case y>O. By N(gV,y) we denote the number of 
bound states of H with bound state energy less than or equal 
to zero. As ususal we adopt the notation 
V ± (x) = [I V(x)1 ± V(x)]!2 and exclude the trivial case 
where V _ (x) = 0 a.e. Then we have 

Proposition 2.2: Let VER. Then the number of nonposi­
tive eigenvalues of H is bounded by 

N(gV,y) < - d 3x d 3x' -±"'[II(~2yx_)KI(~2yx+)]2 - ~ 2 
1 f x -- -- V (x) V (x') 

4r .>9" x_ Ix - x I 

<-I-f d 3xd 3x' V_(x)V~(:') <00, y>O, (2.7) 
16r .>9" Ix - x I 

[here Ip(z) and Kp(z) denote the modified Bessel functions 13 of order {J]. 
Proof Following the proof of Proposition 2 in Ref. 15 step by step (using the Hilbert-Schmidt norm instead of the trace­

norm) and noting 

lim Ge(x,x',y.A) = 1 ( x+ )1/2II(~2YX_ )Kt!~2yx+), 
).-+0 21Tlx-x'l x_ 

we arrive at (2.7). The finiteness ofthe right-hand side of(2. 7) 
simply follows from monotonic descrease of yK1(y) 
! (d Idy) [yKI (y)] = - yKo(y) < 0 for all y > 0 J and the 
bound 16 II(y)KI(y)<1I2. 

In order to treat the positive part of the spectrum and 
the scattering theory associated with H we introduce Lipp­
mann-Schwinger type equations of the form 

<p I=FI(k,x) = <p ~=FI(k,x) - g L,d 3x 'l V(x)1 II2G~=FI(x,x',y,k 2) 

X V(X')1/2<P I=FI(k,x'), k,XE~3, k = Ikl > 0 
(2.8) 

[we suppress the y and g dependence of <p I =F I(k,x)], where 

<p ~ - I(k,x) = lV(x)II/2(21T)-3/2e - 1TY/ 4kr (1 + iyl2k) 

Xe ik
.
x IFI( - iyI2k;l;i(kr - k·x)), (2.9) 

[IFI (a;h;z) denotes the regular confluent hypergeometric 
function 13] and 

<p I + I(k,x) = <p I - I( - k,x), 
(2.10) 

GI + I(x,x',y,k 2) = GI-I(x,x',y,k 2). 

Let us denote by /fl the set of k 2E[0, 00 ) such that the homo­
geneous equation associated with (2.8) possesses a nontrivial 
solution, including the point k 2 = O. Then we have 

Proposition 2.3: Let VE2" 1(~3)nR. Then /fl is a com­
pact subset of [0, 00 ) of Lebesgue measure zero. 

Proo/: Using (2.6) and the Riemann-Lebesgue lemma, 
one proves 
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lim II IVI II 2 (He -k 2±iO)-IV I/2
11 =0, (2.11) 

k--+oo 

which proves the boundedness of /fl. To prove that /fl is 
closed and of measure zero, one needs an improvement of the 
analytic Fredholm theorem (involving statements about the 
distribution of zeros of an hoI om orphic function on the 
boundary). 12.17.19 For y>O the usual proofl2 carries through 
without any change. For y < 0 one has to take care of the 
bound states of He on the negative real axis. 

Incidentally, relation (2.11) shows that under the condi­
tions of Proposition 2.3 the Boren series (Taylor series in g) 
for <p I =F I(k,x), obtained by iterating (2.8), converges for k 
sufficiently high (see also Ref. 15). Thus, if VE2"I(~3)nR 
and k 2~/fl, Eq. (2.8) is uniquely solvable in 2"2(~3). 

With the help of Dollard's modified free evolution 
operator4 

Uo(t) = e - iHoIt !, Ho(t) = Hot + e(t )yln(4Holt 1)/2H b12
, 

(2.12) 

we finally state 
Proposition 2.4: Let VE2"I(~3)nR. Then 
(a) (Tess (H) = (Tae (H) = [0,(0), 
(Tp(H)n[O,oo)C /fl, (Tse(H)C /fl. 
(b) The M011er operators 

n ± (H,Ho) = s - lim eiHtUo(t) 
I __ ± 00 

exist and are complete, 

~(n ± (H,Ho)) = cW'ac(H). 
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In particular the scattering operator 
S = n + (H,Ho)*n_(H,Ho) is unitary. 

(c) (n ± (H,Hc If)(x) 

= s - lim ( d 3klJl( ± I(k,xli~ ± I(k), 
R-ooJMR ,6 

6-.() , 

(n ± (H,Holf)(x) 

= s - 1~LRbd 3klJl( ± l(k,xl1(k), fE2"2(~3) 
6-.() • 

where 

<P (± I(k,x) = 1 V(x)1 1/2 1J1( ± I(k,x), 

M R ,6 = [kE~31Ikl,R, dist(lkI 2,1f»D J, 

and 

l(k) = s - lim (217)-3/2 ( d 3xe - ik,"!(X), 
R~", J1xl.;;R 

j~ ± I(k) = s - lim ( d 3X -IJI-~-± -I(k-,x-)f(x), 
R~",JIXI";R 

(2.15) 

(2.16) 

(2.17) 

Proof Eq. (2.13) and (b) immediately follow from, Prop. 
2.I(b) and the chain rule (see also Ref. 12, p.III). Equations 
(2.14) and (c) are proved in an analogous (but tedious) man­
ner as in the short-range case y = 0 12

•
18 (see also Refs. 19). 

Remark 2.1: (a) In realistic situations one expects 
If = [0 J. Actually the absence of positive energy bound 
states, although physically plausible, usually involves addi­
tional regularity assumptions on V (cf. Ref. 20 for an exten­
sive discussion). The absence of a singular continuous part in 
the spectrum of H was recently discussed by Enss21 using 
geometric methods (for other results in this direction see 
Refs. 18 and 20). If in addition V is spherically symmetric 
then O'sc (H) = 0' p (H )n(O, 00 ) = 0 by results of Weidmann. 22 

(b) If e*1 V(x)ER for some c > 0 then with the help of 
asymptotic expansions for the Whittaker functions one 
proves that 1 V 11/2(Z - Hc )-1 V 1/2 can be analytically con­
tinued in a neighborhood of the positive real axis and re­
mains Hilbert-Schmidt there. An application of the analytic 
Fredholm theorem then shows that If is discrete [and thus 
O'sc(H) =0]. 

III. THE STRUCTURE OF COULOMB· TYPE 
SCATTERING AMPLITUDES 

We start with an appropriate definition of t SC(z) (avoid­
ing unbounded operators), 

tSC(z) = g(sgnV)[1- glV II/Z(z - Hc)-I VI/Z]-1 

= g(sgnV)[ 1+ gl V11/2(Z - H)-I V 1/2], 
zEp(Hc)rp((H). (3.1) 

Then t SC(z) fulfills the equation 

(Z_H)-I 
= (z - Hc)-I + (z - Hc)-II VII/2tsc(z)1 V11/2(Z - Hc)-I. 

(3.2) 

Let.J = [a,b ], b > a > 0 be a compact interval on the real line 
and suppose .Jnlf = 0. Then the scattering operator S,j re­
stricted to the energy interval .J is defined by 

(3.3) 

where E,j represents the spectral projection of H associated 
with.J. Eq. (3.2) and the formula 

e- 2iH1E,j 

. 1 (i
b 

- iE La + ij , = S - hm -. + dz e - 2,zI (z - H) - I, 
E---+o.217l a-iE b+iE 

then imply 

S,j = S~ - 217iT';, 

where T'; is defined by 

T'; =s- lim _1_(ib-iE + r+i'dz e-2iZIU~(t) 
(--+00 4r a-IE Jb+IE) 
E---+O , 

(3.4) 

(3.5) 

X (Z - Hc )-11 VII/2tsc(z)1 V 11/2(Z-Hc)-IU~(t). (3.6) 

In order to get an explicit expression for T';, we turn to the 
time-independent approach and state 

Theorem 3.1: Assume VE2" 1(~3)nR, let.J be as above, 
and suppose ~, titEC(~3), supp ~ supp tit = 0. Then 

(IJI,S,j <P) = :17 L k Z dk 2 f dw f dw,/(k,w,w') tit (k,w)~ (k,w'), 

(3.7) 

where the scattering amplitudef(k,w,w') may be written as 

f(k,w,w') = fC(k,w,w') + fSC(k,w,w'), k 2elf, (3.8) 

r(k,w,w') = - lim r (I + iy 12k) 21 + iyl2k (4k zr - 1[1 _ cose ] E - I - iyl2k e = <t:(w,w'), 
E---+O, r(1 - iy/2k) , 

(3.9) 

FC(k,w,w') = - 2~g L/ 3X IJI~ + I(k,w,x) V(x)lJI( -I(k,w',x), k zelf. (3.10) 

Proof We first note that the representation of S~ in 
terms of(3.9) has been derived by various authors.5.23-25 The 
proof thatFC(k,w,w') is related to T'; by (3.7) parallels the 
arguments given in Ref. 12, p. 143 and Ref. 18, p. 107 for the 
short-range case (y = 0). 

Remark 3.1: (a) ThatS c (and thusS) is totally connected 
(i.e., SC contains no "no scattering" part) and SC (k,k') is 
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I 
more singular than 15 (k - k'), was proved by Herbst. 25 

(b) Since (3.9) defines a tempered distribution on 'y(~6) 
it is not hard to see that <P, IJIE 'y(~3)(without disjoint sup­
ports in momentum space) suffices in (3.7). Instead of 
.d = [a,b] and .dnlf = 0 one can use intervals of the type 
[a, 00), a> 0 if the integral overf(k,w,w') in (3.7) is interpreted 
as 
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lim f k Z dk zfdwfdoJ'j(k,W,W') if! (k,w)<P (k,w'), 
8- ....0 + N o ,6 

Na,li = [kz)aldist(kZ,W)D j, 

1/1 ( - I(k,w',x) _ (21T) - 3/2 {ei[k"x + Y In(kr - k'·xl/2k I 

ei(kr - yln(2krll2k I } 
+ (fC(k,w,w') + jSC(k,w,w')] r 

According to Remark 3.1(a) we define the Tand TC operator 
by 

S = - 21TiT, SC = - 21TiTc, 

in order to get 

T= TC + TSc. 

(3.12) 

(3.13) 

In analogy to the short-range case (r = 0) we introduce in the 
Hilbert space ,iPZ(S (21) (S (21 the unit sphere in [3p3) the on-shell 
pc operator TSC(k ) by 

(PC(k)cP )(w) 

= - 2~ f dw'jsC(k,w,w')cP (w'), cPE,iP2(S (21). (3.14) 

In order to circumvent the forward singularity off"(k,w,w') 
we define 

(P D, TC(k)P D, cP )(w) = - 2~ L,dW'X D, (w}fC(k,w,w')cP (w') 

cPE,iP2(SI21), XD,(W) = [~: :~:, (3.15) 

where fll' and ilz are disjoint subsets of SIZI separated by a 
positive distance, and P D

i
' i = 1,2 denote the projections 

onto fl i • The total on-shell Toperator T(k) is defined 
analogously. 

With these definitions we are ready to state 
Theorem 3.2: Let VE,iPl([3p3)nR. Then 
(a) If k 2EW, PC(k) as an operator in ,iPZ(S(ZI), is trace­

class and continuous in trace-norm. In particularj'C(k,w,w') 
is uniformly continuous (with respect to all variables) when­
ever k 2 varies in compact interval not intersecting W. 

(b) Let Co i = 1,2, be closed cones with vertices at the 
origin. Suppose ClnCz = [OJ and define 
fli = cinS (2), i = 1,2. Then the scattering cross section for 
scattering into Cz from an initial state having momentum 
support in C,' 

a(k,Cc-+Cz) = (1/41T) f dw f dw'l!(k,w,w'W, (3.16) 
Jn 2 Jill 

is finite and continuous in k whenever k 2f.W. 
Proof (a) We introduce operators 

A v(k ):,iP2(S (21)---+,iP2([3p3) and B v(k ):,iP2([3p3)---+,iP2(S (21) by 

and cP, I/IE..Y'([3p3). '2 
(c) Formal expansion ofl/l~ - I(k',x) and G ~ -1(x,X',y,k ,2) 

for x' fixed, Ik'i = k > 0, Ixl = r---+ 00 in (2.8) finally yields 
after some calculations 

w=xlr, k>O, w=/-w'. (3.11) 

(A v(k)<1> )(x) = L"dW V tl2(X)I/I~ - i(k,w,x)cP (w), 

cPE,iP2(S (21), 

(B v(k )1/1 )(w) = J/ 3X V '/2(X)I/I~ + l(k,w,x)l/I(x), 

I/IE,iP 2([3p 3), (3.17) 

and note 

PC(k ) = gB v(k ) 
X [1 -gl VI'/2(Bc - k 2 + iO)-' V'/2]-IA WI (k), 

k2f.W. (3.18) 

From I V 1'/2E,iP2([3p3), AWl (k) and Bv(k) are Hilbert­
Schmidt which proves that PC(k ) is trace-class in ,iP2(S (21). 
Since 111V1'/2(Bc - k 2 + iO)-' Vtl211 is continuous in k and 
A I v I (k ) and B v(k ) are continuous in k in Hilbert-Schmidt 
norm, TSC(k ) is continuous in trace-norm for k 2f. W. The con­
tinuityof 

j'C(k,w,w') = - 2rg(cP ~ + I(k,w,·),sgn VCP i-I(k,w',·)), k 2EW, 

follows from the fact that cP ~ ± I(k,x) and cP ( ± I(k,x) are 
strongly continuous in k for k 2f.W. 

(b) The finiteness of a(k,C1---+C2) follows from 
C,nC2 = [0 J; its continuity in k is clear from (a). 

Remark 3.2: (a) The finiteness of scattering cross sec­
tions between non intersecting cones for short-range poten-

tials (lV(x)1 - Ixl- a, a> 1), has been discussed in detail 
Ixl~oo 

by Amrein and Pearson. 26 For previous results including 
long-range potentials see Agmon. 27 

(b) In order to work entirely in Hilbert space we as­
sumed VE,iP'([3p3)nR. Following the methods employed in 
Davies,28 one can extend the above continuity results for 
potentials V obeying 
f7?,d 3X ' lV(x')l/lx - x'I' ± <.;;C (1 + Ixl)- < for some € > 0, 
xE[3p3, by working in suitable Banach spaces. 

Ifin addition V(x) is spherically symmetric, D/(k), the 
total phase shift associated with the angular momentum sub­
space indexed by I, can be split up into 

D/(k)=D~(k)+D~C(k), /=0,1,2,···, k>O, (3.19) 

where 

D~(k) = argF(/ + 1 + iy/2k) 

denote the Coulomb phase shifts. In this case PC(k ) may be 
decomposed into 

TSC(k)= $ $ nC(k), nC(k)=(i/1Tk)e2i.5)'(kl(e2ilil"lkl_l), 
1=0 m=-I 

(3.20) 
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and 

IITSC(klilp = .2.[!(21+ 1)lsinO~C(kW]I/P. 
1Tk 1=0 

p>l. (3.21) 

In particular 

lfSC(k.w.w') I , _1_ f (21 + 1)le2ilii"(kl _ 11_1_ 
1Tk ,=o 41T 

= _1 IIPC(k)III' (3.22) 
41T 

For a detailed description of the high-energy behavior of 
o~C(k) see Ref. 29. 

Since there is no obvious physical reason that W =1= [ 0 j 
(and thus [1 + gl V 11/2(He - k 2 ± iO)-1 V1/2] -I exists for 
k > 0). it is hoped that glV 11/2(Hc - k 2 ± io)-I V 1/2 has no 
eigenvalue - 1 if k 2 varies in (0.00). But the operator30 

R (k 2) = gl V 1112 [Re(Hc _ k 2 ± iO) - I ] V I 12 

clearly has an eigenvalue - 1 for certain values of k 2. In fact 
these k 2 correspond to maxima in II PC(k ) 112' which are asso­
ciated with resonance phenomena. For example. if V(x) is 

spherically symmetric, then an eigenvalue - 1 of R (k 2) oc­

curs at those values of k 2 where e 2jlif
(k I = - 1 (and thus 

I T/C(k)1 has a maximum) for some I. In the short-range case 
(r = 0) these values of k 2 are responsible for peaks in the 
partial wave cross section, i.e., for resonances (large time 
delay) and have been investigated by Rollnik31 (see also Ref. 
32). More precisely. we have 

Proposition 3.1: Let V€Y 1(~3)nR and suppose 

iR 

dr rlV(r)1 < 00 for some R > O. Then 

[1 + glVl'/2[Re(Hc - k 2 ± iO)-'] V 1/2 j-1 

does not exist [or equivalently the operator 
R (k 2) = gl VII/2[Re(Hc - k 2 ± iO)-'] V 1/2 has eigenvalue 
- I I precisely at those values of k 2€(0. 00 ) where 

e2i6t
(k I = _ 1 for some I. 

Proof After separation of variables the eigenvalue 
equation 

(R (k 2))<1> (x) = - <1> (k.x). k> O. <1>€y2(~3) (3.23) 

reduces to 

t/J,lk.r) = - g 1"" dr'lV(r)I'/2Re it(k.r.r.r'W'/Z(r')t/J,(k.r'). k> 0, t/J1Ey2(0. 00). 

where 

(3.24) 

1 '" I 
<1> (k.x) = - L L t/J,(k.r) Y1.m (wk) Y1.m (wx ). 

kTJ=om= -I 
(3.25) 

1 00 I 

G ~ =t= I(x,x'.r.k 2) = -, L L itt + k.r.r.r') Y',m (wx ) Y"m (wx ')' 
rr I=Om= _I 

Ixl = r. Ix'i = r'. (3,26) 

I 
[See Ref. 15 for an explicit representation of itt ± k. r.r.r') in terms of confluent hypergeometric functions.] On the other hand. 
if one expands 

A> ( - I(k) 1 ~ ~ ·1 i8{lk I 1 t/J I - I(k ) Y ( ) Y ( ) 
'P .x = - L L,e (;7 I .r I,m W k I,m Wx • 

kr,=Om=-1 YI(k.r.g) 
(3,27) 

<1> ~ - I(k,x) = J.-! i /ei
8{(k It/J ~ - IC(k.r) YI,m (Wk) YI,m (Wx). 

krl=Om~_1 
(3.28) 

where Ydk ) denotes the Jost function as introduced in Ref. IS. one obtains from (2.8) 

roo 
t/J) - I(k,r) = Y,(k)t/J) - le(k,r) - g Jo dr' I V(r)ll/zit( - k,r,r.r')V{r') I 12t/J } - I(k,r'). (3.29) 

Under our hypothesis on V (r). (3.29) is solved uniquely by iteration for all k > 0. 15 Since t/J ) - I. and t/J ) - Ie are real, we finally get 

t/J} - I(k.r) = [ReY,(k)]t/J) - IC(k.r) - g i'" dr' I V(r)11/2Reit(k,r.r.r') V(r')I/Zt/J) - I(k,r'). (3.30) 

Comparison of(3.30) and (3.24) shows that 
glVl'/2[Re(Hc -k~ ±iO)-']V '/2 haseigenvalue -lif 
and only if ReY, (ko) = 0 for some I, But since 's 

2ili;"(k) CT (k )1 q (k ) e = Y I .r.g v I .r.g, k > 0, 1 = 0.1.2,. ... 
(3.31) 

this is equivalent to 

e2i6,'(k,,) = _ 1 for some I • 

Remark 3.3: (a) At least in the spherically symmetric 
case discussed in Proposition 3. I we infer from (3.29) and the 
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I 
fact that Y I (k ) =1= 0 for k> 0 that W = [0 I. The condition 
rV(r)Eyl([O.R ])forsomeR > Omayberelaxed to VE7r. the 
so called 7r class33 [i.e., VEyl([R, 00)) for all R > 0 and 

W(r) = - i'" dr' Vir') fulfills WEyl(O, 00)] allowing for 

potentials that are singular and oscillating near the orgin. 29 

(b) Under the conditions of Proposition 3.1 the operator 

R (E) =glVl ,/2 [Re(Hc - E ± iO)-'] V I /2 (3,32) 

has remarkable properties: If for some Eo < 0 R (Eo) has an 
eigenvalue - I, then Eo is an eigenvalue of H. On the other 
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hand, ifR (E ,) has an eigenvalue - 1 forsomeE, > 0, thenE, 
corresponds to a maximum of T~C(k) at k 2 = E, for some I. 
In analogy to the short-range case (y = 0) these maxima give 
rise to peaks in II TSC(k )II~ (which for y = 0 is proportional to 
the total scattering cross section averaged over all initial di­
rections 17 u(k) = 1T'11 TS(k )II~). 

(c) Since lim IIR (E)II = 0 [cf. Eg. (2.11)] there exists 
IE I-~oo 

no eigenvalue - 1 of R (E) if IE I is sufficiently large. For 
E < 0 this simply means that H is bounded from below, 
whereas for E> 0 this is connected with the fact that Born 
expansions for </> (k,x) and!,C(k,w,w') [by iterating Eg. (2.8)] 
converge for k 2 sufficiently high (cf. Ref. 15 for estimates on 
the radius of convergence of various Born expansions in the 
spherically symmetric case). Next we turn to the on-shell 
limit of t SC(z): 

Theorem3.3: (a) Let VE2'\'3l'3)nR; then 

lim [</> ~ + I(k,w, ),t 'C(k 2 + iE)</> ~ - I(k,w',) ] 
E---+O. 

= - (1/21T2)fsC(k,w,w'), k 2eW. (3.33) 

(b) If in addition V(x) is spherically symmetric and 
rV(r)E2' '([O,R ]) for some R > 0 [cf. Remark 3.3a)], then 

lim (¢ 1- 'C(k,.),t t(k 2 + iE)¢ 1- IC(k,.)) = nC(k) 
E- .. O. 

= (i! 1Tk )e2i8ilk 1(/i8),lk I - 1), k> 0, 

where 

and 

1 

tSC(z) = ffi ffi U-ltt(z)U® 1 
I=Om= -I 

U: [2'2((0, 00 );rdr)_2' 2((0, 00 );dr) 
g(r)_h (r) = rg(r) 

(3.34) 

Proof (a) Formula (3.33) immediately follows from the 
strong continuity oft SC(k 2 + iE) as E-O+ and from Eq. (2.8): 

(t SC(k 2 + iO)</> ~ - I)(k,w' ,x) = g((sgn V) 

X [1 + glV 11/2(Hc - k 2 - iO)-' V 1/2] -I</> ~ - I)(k,w',x) 

= g(sgn V (x))</> ( - I(k,w' ,x), k 2eW , (3.36) 

fL(H,Ho) = s - lim iE ( dE (A )(Ho - ,,1,+ iE)-1 

and thus 

lim (</> ~ + I(k,w,),t 'C(k 2 + iE)</> ~ - I(k,w',)) 
E .. 0. 

= g L,d 3X </> ~ + I(k,w,x) sgn V (x)</> (-I(k,w',x) 

= - (l12r)fsC(k,w,w'), k 2eW. 

In order to prove (b), we note 

t ;"(z) = g(sgn V) [1 + glV 1'12(h ~ - Z)-I V 1/
2

] -I, (3.37) 

where h ~ denotes the Friedrichs extension of h~, 15.29 

h C d 2 I (I + 1) Y h' 
1 = - dr + r + 7' D( ~) = CO'(O,oo), 

and 

([I + gl V11/2(h ~ - k 2 - iO)-' VI/2]-1.7,(k)¢ 1- Ic}jr) 
= ¢ 1- I(k,r) (3.38) 

by (3.29). Finally, with the help of 

ik.;~(k ) L" dr ¢ 1- IC(k,r)sgn V(r)¢ 1- I(k,r) = (e2i8,'lk I - 1), 

(3.39) 

[cf. Eg. (3.44) in Ref. 15] (3.34) follows. 

Remark 3.4: We emphasize once again the naturalness 
of t SC(z). The on-shell limit may be performed without any 
complications (also in the partial wave subspaces). In Eg. 
(3.10) we only introduced the on-shell scattering amplitude 
!,C(k,w,w'). The definition of a corresponding half-shell am­
plitude and corresponding half-shell limits are clearly 
obvious. 

As mentioned in Sec. I we finally discuss the different 
connection between short- or long-range wave operators and 
corresponding resolvents: 

Proposition 3.2: Let VE2'I(~3)nR. Then 

E----O -+ J'N 
= -s-limfE(oo(H-A-iE)-'dEo(A) if y=O, 

12----0 t Jo (3.40) 

80 

il_(H,Hc) = s - .~iELdE(A )(Hc -A + iE)-IEac(Hc) 

= - s - lim iE (00 (H - ,,1,- iE)-'dEc(A), 
12--0, Jo 

fL(Hc,HD) = s - lim iE ( dEc (A )(4Ho)i1'/2H!/'e-try/4Hbl2 
E--o-t Jew 

XT(1 + iy12H 612)(Ho - ,,1,+ iE) - \- i1'12Hb
12 

_ I' '1 00
(4 ~ )i1'12A ," 11"1'/4A Of' - - s - ImlE /l, e 

12-+0+ 0 

xT(1 + iy/U \/2)(Hc - ,,1,- iE) - \- i1'12A '''dEo(A), 
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(3.41) 

(3.42) 
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where E (A ), Ee (A ), Eo(A ) abbreviate the spectral projections 
of H, He , and H 0' and E ae(He) denotes the projector onto the 
absolutely continuous spectral subspace of He. 

Proof It suffices to prove the first relation in (3.42): The 
Bochner integral 

flE, _ (He ,H D) = E [ 00 eXp(Et ) exp(iHe t ) exp{ - i [Hot - yln( - 4Hot )/2H b/2
]} dt 

clearly exists, and 

(3.43) 

(3.44) 

Thus 

fl E,_ (He,HD) = E[ 00 eXP(Et)JdEe(A) exp(iAt)exp{ - i[Hot - yln( - 4Hot)/2Hb12]}dt (3.45) 

and the boundedness properties of the integrand immediate­
ly allow the interchange of the t and A integration. 5 The first 
part of (3.42) then follows by computation of a simple r 
function 13 integral in (3.45). With these results in mind we 
conclude the two-body case by the following 

Remark 3.5: Whenever two Hamiltonians HI' H2 differ 
by a short-range interaction V [as in (3.40) and (3.41)], the 
corresponding M0ller operators fl ± (H2,HI ) are directly re­
lated to the resolvents of these Hamiltonians in the usual 
way. Since in this case the resovents may be related to a t 1.2(Z) 
operator by an equation of the type (3.2) there is a direct 
connection between fl ± (H2,HI) and t 1.2(Z). As we proved in 
Theorems 3.1-3.3 and Propositions 3.1 and 3.2 the t se(z) op­
erator indeed has almost all properties of an ordinary short­
range t S(z) operator. In addition to those properties we also 
note that the partial-wave expansion ofj'e(k,UJ,o/) converges 
in the ordinary sense and no distribution techniques34 or 
generalized summation procedures like Abel35 or Pade sum­
mation36 [which have to be introduced forj«k,UJ,UJ')] must 
be applied. On the other hand Eq. (3.42) indicates a phenom­
enon discussed by Gibson and Chandler.5 If two Hamilto­
nians HI' H 2 differ by a Coulomb potential then the associat­
ed modified wave operators are connected with a complex 
power of the resolvents of HI and H2 and not with the resol­
vents itself. This shows that the conventional approach 
based on (1.2), which contains the resolvents only linearly, is 
not sophisticated enough and thus leads to unpleasant prop­
erties (e.g., in partial wave subspaces) as described in Sec. I. 

t;(z) = gi(sgnVi)[1 + gil Vi 11/2(z - Hd- I Vi12], 

We finally conclude with some remarks concerning the 
generalization of this approach to more than two particles. 
We note that with quite similar ideas in mind, Chandler and 
Gibson II recently investigated the N-body problem includ­
ing repulsive Coulomb potentials, and Merkuriev lO dis­
cussed the three-body problem of charged particles. Here we 
consider the three-body problem and sketch how modified 
Faddeev equations may be derived: We introduce in the 
three-particle center of mass system the usual pair of coordi­
nates I X;'Yi J 

XI = ( 2m2m 3 )1/2(X(I) _ X(2)), 
m 2 +m3 

YI = ( 2m l (m 2 + m 3 ) )1/2( m2x
(2

) + m3x(3) _ X(I)), 
m I + m 2 + m3 m 2 + m3 

(3.46) 

where X Ii) and m i are the positions and masses of the parti­
cles. The other pairs I Xi,yi J, i = 2,3, are obtained by cyclic 
permutation. Let Vi (X,)Eyl(.%'3)nR and define 

- - - 3 Yi 
Ho = - Llx, - Ll y " He = Ho + I --, Yi E.%', 

i~ I IXil 

Hi = He + gi v" gi E.%', H = He + V 
(in the sense of forms), 

_ 3 

V= IgYi' (3.47) 
i= I 

Next we define 

tij(z) = gi(sgnVi)[Dij 1 + gj I V, 11/2(z - H)-I Vy2], i,j = 1,2,3, (3.48) 

and note that 

(z - H,)-I = (z - Hcl- I + (z - He)-II Vi It/2t i(z)1 Vi 11/2(z - He)-I, i = 1,2,3, 
_ _ _ 3 _ 

(Z - H)-t = (Z - He)-I + (z - He)-t I lVilt/2tij(z)1 Jij It/2(z - He)-t. (3.49) 
i,j= 1 

The modified Faddeev equation finally reads tij(Z) = Dijti(Z) + ti(Z) I I Vi It/2(z - He)-II Vk I
t /2tkj (z). (3.50) 

k #i 
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We empha~ize that (3.50) contains no objects like two-parti­
cle subsystem Coulomb transition operators. The only two­
particle input consists in t;(z) operators of the type (3.1). In 
contrast to the two-body situation, the kernel of (z - He ) - I 

is not known in closed form. For this reason one has to devel­
op appropriate approxiations for (z - F() - I, e.g., the ei­
konal type approximations discussed in Refs. 10. 
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I t is shown, by taking P to be the projection operator on the subspace of function space in which 
the potential is truncated, that the exact solution of the scattering problem for the truncated 
potential using the Feshbach formalism is identical to the J-matrix solution. 

PACS numbers: 03.6S.Nk 

I. INTRODUCTION 

The J-matrix method '-3 has been introduced to solve a 
model scattering problem exactly in L 2-function space. The 
model is defined by truncating the infinite-dimensional ma­
trix representation of the given short range potential to a 
finite representation. The resulting Hamiltonian, composed 
of the exact zeroth-order Hamiltonian Ho plus the truncated 
potential, is then solved exactly by finding the representation 
of its eigenvector in the space. By demanding that the eigen­
vector behaves asymptotically as a linear combination of the 
eigenvector solutions of Ho, one is able to write a closed-form 
expression for the tangent of the phase shift caused by the 
truncated potential. 

Heller and Yamani' compared at length the J-matrix 
method to both theR-matrix method andL 2 Fredholm tech­
nique pointing out computational as well as formal similari­
ties. Later, Broad4 in his analysis of the quadrature resulting 
from diagonalizing a scattering Hamiltonian in a finite L 2 
basis, proved the equivalence of the J-matrix and the Fred­
holm equivalent quadrature methods. In this paper, we pro­
pose to show the formal equivalence of the J-matrix and the 
Feshbach5 methods. 

The hint to the equivalence comes from the truncation 
procedure used in the J-matrix method which formally re­
sults from an application of a projection operator on a sub­
space spanned by the first N members of the basis set used. It 
is, therefore, expected that when the Feshbach P and Q pro­
jection operators are properly defined and the Feshbach 
equation solved exactly, a result identical to the J-matrix is 
obtained, thereby establishing the equivalence of the two 
methods. 

In Sec. II, the J-matrix procedure is summarized and 
the main result written down. In Sec. III, the Feshbach equa­
tions set up, and the needed results regarding the abbreviated 
Green's function quoted, leaving the details to the appendix. 
Finally, in Sec. IV, the equivalence of the two methods is 
established 

II. THE J-MATRIX METHOD 

Since the results of the method have already been de­
tailed elsewhere"} only an outline of the steps leading to the 
main result is given. 

A. The basis 

A convenient choice for the basis set spanning the L 2 
space is either the Slater set, 

¢n (r) = (rl¢n) = ; 1+ 'e -; /2L ~l + '(;), n = 0, 1,2 ... , (1) 

or the Oscillator set, 

¢n (r) = (rl¢n) =; I + Ie - ;2/2L ~ + 1/2(; 2), n = 0, 1,2 ... , (2) 

where; = Ar and A is a free scaling parameter and L ~ is the 
Laguerre polynomial. Both basis sets are complete, although 
the Slater set is not orthogonal. The set I lin ) J is defined as 
the orthogonal complement to the basis; i.e., 

(3) 

The reason this choice of basis is convenient is the fact 
that it renders the matrix representation oftheJ operator, 3.6 

J=H -E= ~ ~ l(l+ 1) -E (4) 
o 2 dr + 2r ' 

tridiagonal. This leads to a three-term recursion relation 
among the coefficients [zn J;: ~ 0 of the representation of its 
eigenvector in the basis 

In,n_IZn_1 + In,nzn +In,n+IZn+1 =0, (5) 

where I n.,,, = (¢n IJ I¢m ). This equation has two basic solu­
tions, Zn = Sn and zn = Cn such that the functions 

S(r) = (rIS) = ~>n¢n(r) (6) 
n=O 

and 

C(r) = (riC) = f cn¢n(r) (7) 
n=O 

behave asymptotically sinelike and cosinelike, respectively,6 
i.e" 

S (r) - sin(kr - 1T1/2), 
r • 00 

C (r) - cos(kr - 1T112), 

(8) 

(9) 

Furthermore, Heller7 showed that the J-matrix can be in­
verted, thereby giving the matrix representation of the 
Green's function; e,g., 

G~,f-~ = <inl[J(+']-'li",)=(-2Ik)sn.(cn. +isn.), (10) 

where n < (n> ) is the lesser (greater) of the two numbers n, m. 

B. The phase shift 

When a short range potential V is given, the J-matrix 
method solves the scattering problem exactly for a model 
potential V whose matrix elements are identical to those of V 
in the finite N XNblock and vanish outside it; i.e., 

V = {Vnm' O<n, m<N - 1, 
nm ° otherwise. 
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It has been argued 1,3 that the eigenvector solution has 
the form 

N--I 

II{!) = L Rnl¢i,,) + IS) +tIC), (11 ) 
n=O 

where t is identified as the tangent of the phase-shift caused 
by the model potential. The projection of the null vector 

(J + V) II{! > = ° 
on each member of the basis results in enough conditions to 
solve for the unknowns, ! R n , t I. The result of interest is that 
for t, 

t= 
CN _ I + r(E)JN _ I, NCN 

( 12) 

Herer(E) is the (N - I,N - 1) matrix element of the Green's 
matrix which inverts the N X N representation of the full 
matrix (J + VI. 

The goal for the rest of the paper is to show that the 
result (12) can be obtained by using the Feshbach method. 

III. THE FESHBACH METHOD 
A. The projection operators 

The truncation procedure used in the J-matrix method 
has the effect of using an operator which projects on to the 
subspace UN spanned by the first N members of the basis set. 
More precisely the P operator is defined as 

(13) 

It is clear that P is idempotent and its range is the sub­
space UN' Thus, P is a projection operator, It is also clear 
that the adjoint operator 

N-I _ 

P t = L l¢in) (¢in I (14) 
n=O 

is a projection operator in the dual space. With P, the projec­
tion operators Q = 1 - P and hence Q t = 1 - P t are de­
fined and have obvious meanings. The model potential can 
now be simply written as 

V = ptVP. (IS) 

B. The Feshbach equations 

Associated with the definition of P and Q is a natural 
division of L 2 space into "inner" and "outer" spaces, using 
the Feshbach language, The wavevector II{!) which solves 
the Schrodinger equation 

(Ho+ptvP-E)II{!) =0 (16) 

can be divided into two parts, P II{! ) and Q II{! ), which satisfy 
the coupled Feshbach equations 

[PV+ V)P]PII{!) + [ptJQ]QII{!) =0 (17) 

and 

(18) 

As is usually done in the Feshbach method,8 Eqs. (17) and 
(18) are solved for Q II{! ) with the requirement that its asymp­
totic value be identical to that of II{!) itself; i.e., that Q II{! ) 
contains the correct phase shift for the true scattering prob-
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lem caused by v: For example, if an outgoing wave boundary 
condition is imposed, then Q II{!), as well as II{!), will have the 
following asymptotic form: 

I{!Q(r) = (rIQII{!) - e
ili
'sin(kr-i1r12+DF I, (19) 

r---+oo 

where D F is the Feshbach phase shift which is to be compared 
with the J-matrix phase shift of Eq. (12). 

It is noted that, due to the tridiagonal nature of the J 
matrix, the operator (ptJQ) has the simple form 

(ptJQ) = liN-I )IN-I.N)iNI = (QtJPt. (20) 

Therefore, Eq. (17) can be written as 

PII{!) = [pV+ V)p]-'liN_,)JN_',N(iNIQII{!)· (21) 

Consequently, Eq, (18) can be written as 

(Q tJQ + Vopt)Q II{!) = 0, (22) 

where the Feshbach optical potential VoPt is given by 

Vort = -liN)JN,N I (iN- II [PV + V)P] -'liN_,) 
XJN ',N(iNI, (23) 

It is noted that the matrix element (iN _ I I [PV + VIP ]-1 
liN _ I ) is just the r(E I used in the J-matrix method. Now, 
Eq, (22) can be solved for Q II{!): 

QII{!) = Ix) - [QtJQ-I] VoptQ II{!), (24) 

where Ix ) satisfies the conditions: 
(i)P Ix) = 0, 
(ii) {QtJQ Hy) = 0, 

(iii)(rlx) - (rIS), 

It is clear that the vector Ix ) is different from Q IS ) since it 
can be easily shown that 

[QtJQ]QIS)= -liN)JN.N-,sN-,#O. 

In fact, the choice 

Ix) =QIS) + [QtJQ]-'liN)JN.N_,sN_, (2S) 

satisfies the stated condition, and is hence the desired vector. 
Therefore Eq, (24) can be written explicitly as 

Q II{!) = Q IS) + [QtJQ ]-'liN)JN,N_, 

X!SN_I +r(E)JN __ ',N(iNIQII{!)j· (26) 

The appendix analyzes in details the inverse of (Q tJQ) 
which has been called the abbreviated9 Green's function G. 
Thus, with an outgoing wave boundary condition built in, 
the matrix elements needed for the solution of Eq, (26) are 

G
-I+I _ -1 cn +isn 

'1[_ , n>N. 
n, ' J N _ INC N _ I + is N _ I 

(AI4) 

Now it becomes easy to use Eq. (26) to solve for (iN IQ II{!I+I) 
and to insert the result back into the right-hand side of Eq. 
(26). The final result is 

Q II{!I+I) = Q IS) - G 1+1 liN)JN,N-,(cN- , + isN_ d 
Xb I(a - ib), (27) 

where 

a=cN_ 1 +r(E)JN-I,NCN (28a) 
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and 

-b=SN_1 +r(E)JN_I,NSN' (28b) 

Equation (27) is the desired explicit solution of the Feshbach 
equations with outgoing wave boundary condition, 

IV. THE EQUIVALENCE 

In order to compare the Feshbach and the J-matrix 
phase-shifts, Eq. (27) is needed to examine the asymptotic 
form of Q I tp(+) in light of condition (19). More easily, the 
coefficients of Q I tp (+) will be found first and Q I tp) will be 
reconstructed again. If Q I tp(+) is written as 

Qltp(+) = f d~+)ltPn)' 
n=N 

then it is easily seen that 

d~+)=sn - G~j)JN,N_I(CN_1 +SN_I) 

Xb I(a - ib) n;;.N 

which, with the use ofEq. (AI4) becomes 

d~ +) = (asn + bcn)l(a - ib), 

(29) 

(30) 

(31) 

Consequently Q I tp(+) can be reconstructed again as 

Qltp(+) = [a/(a-ib)]QIS) + [b/(a-ib)]QIC), 

Thus, asymptotically Q I tp(+) behaves as 

tpk+ )(r) = (rlQ I tp(+) 

- [a/(a-ib)]S(r)+ [b/(a-ib)]C(r) (32) 
r---+oo 

or more explicitly, 

tpk+ )(r) - [a/(a - ib )]sin(kr - 1T112) + [b I(a - ib)] 
r~oo 

X cos(kr - 1T112), (33) 

In reaching this result, Eqs. (8) and (9) have been used. The 
asymptotic behavior exhibited by Eq. (33) is consistent with 
that required by Eq. (19) provide OF is connected to the quan­
tities a and b via the relation 

tan OF = b la. (34) 

With a and b given by Eqs. (28a) and (28b), it is easily seen 
that the Feshbach phase shift (34) is identical to theJ-matrix 
phase shift (12). This completes the proof of equivalence. 

V. DISCUSSION 

It is clear from the analysis that "folding-in" the phys­
ics of the P-part of the space into the Q-part in terms of an 
optical potential Vopt ' as well as subsequent steps in the anal­
ysis, are exact. Unlike the usual procedure, no approxima­
tion is made in the optical potential to be able to solve the 
Schrodinger equation in the Q-part of the space [Eq. (22)]. 

Since the J-matrix and Feshbach methods solve the 
model problem exactly, the equivalence is, therefore, not su­
prising. The benefit of the previous analysis has been to show 
the precise sense in which the J-matrix divides the L 2-func­
tion space into "inner" and "outer" parts. Also, in course of 
the proof of equivalence, more light is shed on the represen­
tation of the various abbreviated Green's functions in the 
basis chosen. 

85 J. Math. Phys., Vol. 23, No.1, January 1982 

ACKNOWLEDGMENT 

The author thanks E. J. Heller for suggesting the prob­
lem and for helpful discussions. The initial phase of this 
work was carried out while the author was at the Physics 
Department, University of Petroleum and Minerals, Dhah­
ran, Saudi Arabia. 

APPENDIX: THE ABBREVIATED GREEN'S FUNCTIONS 

The Green's matrix as given by Eq. (10) is the inverse of 
the J-matrix; i.e., 

JG = GJ= 1. (AI) 

Here, what is of interest is the inverse to the abbreviated9 J­
matrix Q tJQ. With the help of the projection operators P 
and Q (AI) can be written in more details as 

(
PtJP PtJQ) (PGpt PGQ t) 
QtJP QtJQ QGpt QGQ 

(
pt

o
lPt 0) 

QtlQt . (A2) 

Equation (A2) is actually four equations in one, namely, 

(ptJP)(PGpt) + (ptJQ)(QGpt) = Pt, (A3) 

(ptJP)(PGQt) + (ptJQ)(QGpt) = 0, (A4) 

(QtJP)(PGpt) + (QtJQ)(QGpt) = 0, (AS) 

(QtJP)(PGQt) + (QtJQ)(QGQt) = Qt. (A6) 

Equations (AS) and (A6) can be solved to yield the relation 

(QtJQ)(QGQt _ QGpt(PGpt)-IPGQt) = Qt. (A7) 

Therefore, the inverse of (Q tJQ), which is what has been 
called G in the text, is given by 

G = (QGQt - QGpt(pGpt)-IPGQ t ). (A8) 

In order to find Gexplicitly, (PGpt)-1 has to be found. From 
Eq. (A3), it is clear that 

(PGpt)-1 =F(ptJP), (A9) 

where F satisfies the relation DF = P t and D = P t - P tJQ 
QGpt. Due to the simplicity of the operator ptJQ, operator 
F can be easily obtained, 

where 

..1 = I-JN_1,NGN.N_I' 

Consequently, Eq. (A8) for G reduces to 

(AIO) 

- t - - t 
G=QGQ +QGltPN_I)JN_I,N(tPNIGQ 1..1, (All) 

More explicitly, if p and q are integers greater than or equal 
to N, then 

(Al2) 

It is stressed that the matrix elements of G are indeed 
symmetric inp and q. In particular, if q = N, the outgoing­
wave abbreviated Green's function is 

GI+) - GI+I -GI+)+GI+) J GI+)/..j'+) pN - Np - pN N. N - I N - I. N Np 

=G~~J/(I-JN_I,NG~:k_l)' P;;.N. (AI3) 
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Since? 

I N_l,N(SNCN_ 1 -SN_ICN) = k12, 

and with the help ofEq. (10), (A13) reduces to 

G(+) - -1 (cp +isp ) ~N (AI4) 
pN - .' pp 

I N- 1• N (CN_ 1 +ISN_l) 

which has been quoted in the text. 
As a by-product of the above analysis, the inverse a to 

the abbreviatedJ-matrix (P t J P ) may be found. Starting from 
the relations (A3)-(A6) and following a similar procedure as 
outlined above, an analogous expression a may be obtained. 

- t -G=PGP +PGI¢N)JN.N_ 1(¢N_IIGp t /l1. 

Explicitly, if i and} are integers less or equal to N - 1, then 

a = G + G NJN N _ 1 GN _ 1 111. l) lj 1,-.-. ,J 

In particular, GN _ 1. N _ 1 = - SN _ I/(J N - 1. NSN)' 
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Therefore, when V = 0, r (E) = aN _ 1. N _ 1 • Thus Eq. (12) 
implies that tan 8 = O. This result is of course expected, yet 
never proved before. 
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The asymptotic form of the continuum wavefunctions and redundant poles in 
the Heisenberg condition 
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The derivation of the Heisenberg condition is re-examined to show why it is not an identity for 
potentials possessing redundant poles. Consideration of several such potentials for which exact 
solutions are known reveals that, in the process of taking an asymptotic limit, the usual derivation 
of the Heisenberg condition improperly neglects a set of terms. These terms are just those 
necessary to make the Heisenberg condition an identity; more importantly, it is demonstrated that 
these terms, providing information on the redundant poles, i.e., the sum of the residues of S (k) at 
the redundant poles, come from the asymptotic expansion of the continuum wavefunction. By 
this we are able to give the details of the nature of the asymptotic expansion of the continuum 
wavefunction and the information contained therein. 

PACS numbers: 03.65.Nk, 11.20.Fm 

1. INTRODUCTION 

The analytic S-matrix of potential scattering theory is 
generally credited with incorporating information on all of 
the bound-state solutions corresponding to a given potential. 
Specifically, the bound-state energies correspond to poles of 
the S-matrix S (k ), with the energy of the state being given by 
the value of k for which the pole occurs. 

In addition to these poles, it has long been known that 
the S-matrix may possess other poles which are dynamical 
(i.e., they disappear when the potential is cut off at large 
distances) but correspond to no bound states of the potential. 
Several authors have investigated these poles l

-
3 and have 

shown in particular that the states corresponding to these 
poles do not contribute to the completeness relation. This is 
contrasted with the fact that the bound states do contribute 
to the completeness relation and must be included in any set 
of states in order for it to be a complete set. 

The fact that states associated with redundant poles do 
not contribute to the completeness relation, whereas bound 
states do, has some interesting consequences. Some of these 
consequences have been investigated and detailed by Biswas 
et al. 3 in relation to the analogous concept of shadow states 
in quantum field theory. In particular, they demonstrated 
how the roles of redundant poles and bound-state poles can 
be interchanged, both with local potentials and separable 
non local potentials. It was shown that phase equivalent sys­
tems can provide cases where two distinct potentials having 
an identical S-matrix can be such that one has a bound state 
while the other does not. Thus, the unique pole applying to 
both theories is a bound-state pole in one theory and a redun­
dant pole in the other. In the case of a separable potential, it 
was shown how in a theory containing two redundant poles, 
a larger theory may be constructed in which the two redun­
dant poles are associated with bound states, and thus cease to 
be redundant. They also solved the inverse problem, show­
ing how in a theory with two poles, a reduced theory may be 
constructed in which both poles have become redundant. 

The fact that the roles of bound-state poles and redun­
dant poles may be interchanged carries implications on the 
nature of the continuum wavefunctions. This is manifested 

in the resolution of a seeming paradox given by Biswas et al. 3 

They consider a general condition on the S-matrix obtained 
by Heisenberg4 from the completeness condition 

Iu~(r)un(r') + roo dk ut(r)udr') = o(r - r'). (1.1) 
n Jo 

Since Eq. (1.1) is valid for all values of rand r' Heisenberg 
replaced the discrete wavefunction un (r) and the continuum 
wave function udr) by their asymptotic expressions: 

un(r)-Cn(21T)-1/2exp( - Ikn Ir), (1.2) 

(r---+oo) 

udr)-(2/1T) '/2sin(kr + o(k)). (1.3) 

The resulting condition 

f~oo dkS(k)elk(r+r'I=~ICnI2e-lknl(r+r'l (1.4) 

contains on the right-hand side only the contribution from 
the bound states, the states corresponding to the redundant 
poles making no contribution. However, for S-matrices con­
taining redundant poles the left-hand side is evaluated as 

f~ 00 dk S (k )eik(r + r'l = ~ICn 1
2e - Iknl(r+"1 

_ I(dS)-'1 . e-lk.llr+,'I, 

r dk k ~ 'lk.1 
(1.5) 

where the second term on the right-hand side gives the resi­
due of S (k ) at the redundant poles. 

The fact that S-matrices containing redundant poles do 
not satisfy the Heisenberg condition suggests that the as­
ymptotic expressions (1.2) and (1.3) used in deriving Eq. (1.4) 
do not give the correct asymptotic form of the completeness 
relation. In a paper by Nelson et al"s the effect of discarding 
the terms not present in the asymptotic expressions (1.2) and 
(1.3) is discussed in its relation to the essential character of 
the completeness relation as an identity. They show that by 
retaining in the derivation the terms normally discarded, an 
identity is maintained throughout. This exercise is per­
formed, however, without considering asymptotic expres-
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sions, and the identity in its final form, obtained after some 
algebraic manipulations, necessarily appears as an obvious 
equality. They are thus led to the conclusion that the correct 
derivation of the Heisenberg condition yields a tautology. 
The manipulations of Nelson et al. do not, however, consi­
tute a derivation of the Heisenberg condition. The Heisen­
berg condition is an asymptotic statement and its correct 
derivation requires asymptotic analysis, i.e., in a derivation 
valid to a given order, it is necessary to ensure that all terms 
of that order are retained and that all terms retained contrib­
ute in that order. When this is done the resulting identity is 
far from a tautology because it makes a statement concern­
ing the physical or mathematical content of the order consid­
ered. Indeed, as we shall see, the amended Heisenberg condi­
tion, now rigorously an identity, contains contributions 
arising from more than one order in the expansion of the 
wavefunction and thus reveals structure in the asymptotic 
series while clarifying the content of the S-matrix and its 
meaning. 

Thus, we will demonstrate that the correct asymptotic 
form of the Heisenberg condition must include an additional 
set ofterms, these terms beingjust those represented in equa­
tion (1.5) as the sum of the residues of S (k )exp(ik (r + r')) at 
the redundant poles. They come from the term 
Se dk ut(r)u.(r') in the completeness relation when for the 
continuum wavefunction Uk (r) we substitute not Eq. (1.3) but 
Eq. (1.3) with the addition of the next term in the asymptotic 
expansion of Uk (r). This next term in the asymptotic expan­
sion of Uk (r) is subdominant to the leading contribution given 
by Eq. (1.3). For this reason it is not usually included in 
statements on the asymptotic form of the scattering wave­
function and was not retained in the above derivation of the 
Heisenberg condition. However, when redundant poles are 
present these terms are exponentially damped and of the 
same order as the right-hand side ofEq. (1.4). Hence, this 
term makes a contribution to SO' dk ut(r)u k (r') of the same 
orderasS(k )exp(ik (r + r')) evaluated at the bound states and 
redundant poles. So while the states associated with the re­
dundant poles can make no contribution to the completeness 
relation in the sum over states Ln u~(r)un (r'), a knowledge of 
the redundant poles is nevertheless present in the complete­
ness relation. This knowledge is contained in the integral 
over the continuum SO' dk ut(r)uk(r') in the leading order 
correction term to the dominant asymptotic form of the con­
tinuum wavefunction u k (r). 

This may be stated in terms of Eq. (1.5) which we now 
take as the correct form of the Heisenberg condition for the 
potentials with redundant poles: The integral over the S­
matrix comes from the dominant asymptotic form of the 
continuum wavefunction [Eq. (1.3)], the sum over bound 
states comes directly from the sum over bound states in the 
completeness relation, and the sum of residues of 
S (k )exp(ik (r + r')) at the redundant poles comes from the 
leading correction term to the dominant asymptotic form of 
the continuum wavefunction. 

From a different point of view, we observe that given an 
S-matrix and an a priori way of distinguishing the bound­
state poles we have information contained in the leading cor­
rection term to the dominant form of the asymptotic contin-
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uum wavefunction. This occurs even though the S-matrix 
itself is formed only from the dominant form of the asymp­
totic wavefunction. 

In the remainder of this paper we will establish the 
above statements by considering several potentials for which 
exact solutions are known. These are potentials previously 
studied by Ma,' Ter Haar, 2 Biswas et al., 3 Bargmann,6 Bhat­
tacharjie and Sudarshan 7 and Nelson et al"s and are illustra­
tive of a variety of phenomena possible from different redun­
dant pole "spectra." In each case we will consider the 
completeness relation with the exact wavefunctions for zero 
angular momentum, carefully performing the integral over 
the continuum and taking the asymptotic limit. This paper is 
organized as follows. In Sec. 2 we analyze the case of the 
exponential potential first studied by Ma. Phase equivalent 
systems are examined in Sec. 3 and 4, taking examples from 
Bargmann. In Sec. 3 we consider the potentials of the linear 
type and in Sec. 4 we address ourselves to the potentials of 
the quadratic type. In Sec. 5 we give the conclusions. 

2. THE EXPONENTIAL POTENTIAL 

The first potential we consider is the rather simple po­
tential of Ma, referred to as the exponential potential 

VIr) = - Vo exp( - arlo 

We seek solutions of the transformed radial wave equation 
for zero angular momentum, ¢ ~(r) + k 2¢.(r) = V(r)¢.(r), 
where ¢ (r) = r.t/J(r) and t/J(r) is the radial wavefunction. With 
V (r) as given above a simple transformation of the wave equa­
tion yields a Bessel equation. The complete solution for ¢ k (r) 
up to a multiplicative factor is 

¢k(r) = (2il r(i17 + 1) J'n(A )1)-'{IT(i17 + 1)1 2 

(A 12),,' ., 

X [J",(A)1_ i.,,(Ae- arI2
) 

- J _ i" (A )1i7, (Ae - ar/2) n, (2.1) 

w here we have written the solution in terms of the linearly 
independent Jost functionsf(k, r) andf( - k, r) constructed 
so that limr -00 exp(ikr)f(k, r) = 1 and limr • oo exp( - ikr) 
xf( - k, r) = 1. Here 

f(k, r) = T(i17 + 1)1", (Aexp( - ar12)), 

where Jv is the Bessel function of order v, r is the gamma 
function, A is a constant, and 17 equals 2k la. 

The series expansion of the Bessel functions gives the 
asymptotic expansion of ¢ k (r), which we use in the complete­
ness relation to obtain the asymptotic expansion of 
SO' dk ¢ t(r)¢ k (r'). This integral is given exactly by the series 

f" 00 dk ¢ t(r)¢.(r') 

= _1_ foc dk {e ik1r - r' l [ 1 + a,(k, r) + al( - k, r') 
21T - 00 

+ a,(k, r)a l( - k, r')] - eik1r + r'IS(k) 

X [1 + al(k, r) + al(k, r') + al(k, r)a,(k, r')]}, (2.2) 

where 

00 ( _ 1 Y(A 12)2J 
a l(k,r)=r(- i17+l)I .. e 

j ~ I iT ( - 117 + J + 1) 

. arj (2.3) 

Paul Terry 88 



                                                                                                                                    

and S (k ) is the S-matrix given by 

S (k ) = Ji'l (A )r (i1] + I) (~) - 2i'l. (2.4) 
J _ i'l (A )r ( - i1] + I) 2 

The imaginary values of 1] for which J _ i'l (A ) = 0 comprise 
the bound-state poles. The poles of r (i1] + 1) (occurring also 
for 1] imaginary) are the redundant poles. We note that there 
are an infinite number of redundant poles evenly spaced 
along the positive imaginary 1] axis beginning at 1] = i. 

We now consider the dominant contribution to equa­
tion (2.2) in the asymptotic limit. Because of the presence of 
factors of exp( - arj), exp( - ar'l ), and exp( - a(rj + r'l )) in 
all terms containing ai' these terms are subdominant to 
exp(ik (r - r')).1 and exp(ik (r + r'))S (k ) as r, r'-+ 00. Drop­
ping these subdominant terms at this point in the derivation 
constituties the use of the asymptotic expressions given in 
Eqs. (1.2) and (1.3). On the other hand, if all terms in the 
asymptotic expansion of I dk rp *rp are retained until after the 
integration over k, we find that additional terms must be 
included in the dominant contribution. 

Considering Eq. (2.2), we obtain /) (r - r') for the inte­
gral over the first term. The remaining terms are evaluated 
by contour integration. When we take r, r'_ 00 subsequent 
to doing the integration, we will do it in such a way that r > r'; 
this enables the contour to be closed above for all terms with 
vanishing contribution on the closing semicircle. The only 
poles lie on the imaginary k axis and are contained in either 
the factor 1/ J _ i'l (A ) or r (i1] + 1). There are six terms in Eq. 
(2.2) containing either or both of these factors; they are 
al( - k,r'),al(k,r)ad - k,r'),S(k ),S(k )al(k,r),S(k )al(k,r'), 
and S (k )a I (k, r)a I (k, r'). 

We begin by computing IS (k )exp(ik (r + r')) dk. At the 
redundant poles the residue of S (k )exp(ik (r + r')) is given by 

Res{eik (r + r')s (k );n} 

= _ e - (an/2)(r+ r'I[( _ lrln!] (A 12)2n, (2.5) 

where n is the n th redundant pole of S (k ) corresponding to 
1] = in(n = 1,2, 3 ... ). We then compute the residues at the 
redundant poles of the other terms al( - k, r'), 
a,(k, r)ad - k, r'), etc. to compare asymptotically with Eq. 
(2.5). For al( - k, r') we find that 

Res{eik 
(r - r')a d - k, r'); n} 

= e - (na/2)!r - r') I (- 1 V(A 12fje - ar'j . 
j~l j1F(-n+j+ 1) 

We consider the contribution to this result from eachj. At 
values ofj < n the contribution is zero due to the factor 
[r( - n + j + 1)]-1, atj = n we have 

Res{eik(r- r') a) (- k, r'); n} 
(nth term) 

= e - (na/2)(r+ r') ( - InA 12)" , ' n. 
(2.6) 

and at values of j > n each contribution is smaller by a factor 
of exp( - r'U - n)) than the contribution forj = n. But the 
dominant contributionj = n given by Eq. (2.6) is exactly 
equal and opposite to the residue of S (k )exp(ik (r + r')) at the 
nth redundant pole. These terms must be included in the 
dominant contribution and are the additional terms of Eq. 
(1.5) which were not present in Eq. (1.4). In looking again at 
Eq. (2.2) we observe that even though all - k, r') is subdo­
minant to 1 in the asymptotic expansion of rpk(r), 
exp(ik (r - r'))a)( - k, r') at selected values of k andjis of the 
same order as exp(ik (r + r'llS (k ) atthose values ofk. It just so 
happens that those critical values of k coincide with the poles 
and that the residues are equal and opposite. 
. If we now compute the residues of the remaining terms 
In Eq. (2.2), we find that they are all subdominant to the 
residues of exp(ik (r + r'))S (k ) at the bound-state poles and 
redundant poles. We therefore find that the completeness 
relation, Eq. (1.1), leads to Eq. (1.5) and not Eq. (1.4). The 
leading terms in the asymptotic expansion of the continuum 
wavefunction give the integral over the S-matrix while the 
leading correction terms give the redundant pole inform a­
~ion of E~. (1. 5). The exact nature of the redundant pole 
InformatlOn thus retained in the continuum wavefunction is 
summarized by writing the asymptotic expansion of/(k, r) as 

I(k, r) = e - ikr[ 1 +I §j(k )e - rrj ]. (2.7) 
J~ I 

We then have that the residue of S (k ) at the nth redundant 
pole [k = k (n)] gives the residue of the nth coefficient at that 
pole, 

Res{S(k); k (n)} = Re{9 n (k); k (n)}, (2.8) 

with r given as 

r = - 2ik (n)ln. (2.9) 

Thus amended the Heisenberg condition is satisfied by the 
wavefunctions of the exponential potential. 

3. THE POTENTIAL OF LINEAR TYPE 

The next potential we will examine is one of the phase 
equivalent families of potentials studied by Bargmann: 

VIr) = - 2{3A 2[e- Arl(,Be- Ar + If]. (3.1) 

The radial wavefunction is 

rpk(r) = ~I 2k - iA I {[ -2k + iA (,B - 1)1(,B + 1)J[2k + iA (,Be-
Ar 

- 1)1(,Be-
Ar + 1)] e- ikr 

2i 2k + iA (,B - 1)1(13 + 1) (2k + iA )(2k - iA) 

_ [2k+iA(,B-l)I(I3+ 1)][ -~k+iA(I3e-Ar-l)l(,Be-Ar+ 1)]eikr }. 
(2k - fA )(2k + iA ) (3.2) 

Forming the quantity fa dk rp r(r)rpdr') and expanding the integrand for r, r'-+oo, we obtain 

fO dk rp r(r)rp dr') = J~ 00 dk {eik 
(r - r') [ 1 + a2(k, r) + a2( - k, r') + a2(k, r)a 2( - k, r')] - eik 

(r + r')S (k ) 

X[ 1 + a2( - k, r) + a2( - k, r') + a2( - k, r)a2( - k, r')}], (3.3) 
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where 

and 

S(k)= [2k+iA(I3-1)I(I3+ 1)](2k+iA). (3.5) 
[2k - iA (/3 - 1)/(/3 + 1)](2k - iA) 

As before, we note that the terms exp(ik (r - r'))·1 and 
exp(ik (r + r'))S (k ) appear to represent the dominant contri­
butions to Eq. (3.3). Retaining only these terms constitutes 
the use ofthe asymptotic forms given in Eqs. (1.2) and (1.3). 
Here we retain all terms, however, and then integrate. The 
terms a2( - k, r'), a2(k, r)a 2( - k, r'), S (k ), S (k )a2( - k, r), 
S (k )a2( - k,r'),andS (k )a2( - k,r)a 2( - k,r')allpossesspoles 
and contribute to the integral. The pole at 
k = !iA (13 - 1)/(13 + 1) is the bound-state pole while the pole 
at k = VA is the redundant pole. We find the residue at 
k = FA of each of the above terms: for S (k ) we have 

(3.4) 

Res{S (k )eik Ir + r'l; k = iA /2} = 2iAf3e - .\,[ Ir t r'), (3.6) 

and for exp(ik (r - r'))a 2( - k, r') we obtain 

Res{eik Ir ~ ")a 2( - k, r'); k = iA. 12)} 

= 2iA.f3e ~ \,[ I' + r') + 0 (e ~ 1,[ Ir + 3"1). (3.7) 

The leading contribution to the residue of 
exp(ik (r - r')Ja 2( - k, r') at the redundant pole is equal and 
opposite to that of exp(ik (r + r'))S (k ) and so provides the ad­
ditional term of Eq. (1.5). Evaluation of all remaining resi­
dues shows that they are subdominant as r, r'-.oo. 

4. THE POTENTIALS OF QUADRATIC TYPE 
In this section we examine four additional phase equiv­

alent families of potentials due to Bargmann, 

V (r) = pur 4pu + fp - u) 2cosh(fp + u)r - 28) - fp + u)2coshfp - u)r] 
I [usinhfpr _ 8) - psinh(ur - () W ' (4.1) 

V (r) = pur 4pu + fp - u) 2coshfp + u)r - fp + u) 2cosh(fp - u)r + 2¢ )] 
2 [usinhfpr + ¢) _ psinh(ur _ ¢ )]2 ' 

(4.2) 

- 2fplu)fp + u) 2e ~ II' + ")r 
V3(r) = --'-----'-'!.........:------'---

1 + fplu)e ~ II' + "Ir 
(4.3) 

Vk) = - pur 4pu + fp - u) 2coshfp + u)r + fp + u) 2cosh(fp - u)r - 2¢ )] . 

[ucoshfpr - ¢) + pcosh(ur + ¢ W 
(4.4) 

The solutions of all of these potentials are related and can be 
parametrically represented as a single solution with param­
eters a and f3 subject to the requirement that either a = - 1 
or (J = 1 and that 

(a) when a = - 1, f3> I}. 
(b) whenf3 = 1, a> _ 1 (4.5) 

Case (a) gives the potential VI with f3 = exp(28) (8) 0), and 
Case (b) gives potentials Vl> V3, and V4 with 
a = - exp( - 2¢ ) (¢ > 0), a = 0, and a = exp(2<,6 ) 
( - 00 < ¢ < (0), respectively. 

The scattering solutions 4>k (k) are complicated func­
tions of exponentials of r: 

4>k (r) = [ - x( - k, O)X(k, r) e ~ ikr 
X( - k, 00 )X(k, (0) 

+ X(k, O)X( - k, r) eikr ] I X(k, (0) I, (4.6) 
X(k, 00 )X( - k, (0) X(k, 0) 

with 

X(k, r) = 4k 2 - (4ikpaf.ePr _ af3e ~ pr + ae"r - f3e ~ "') 

_ (~ - p2) [af.eP' + af3e ~ prj - p(aeur + f3e ~ "r)] J 

X [af.eP' +a(Je~P') +p(aeur +(Je~"r)]-I. (4.7) 

The S-matrix is 

S(k) = [2k - i(u - p)] [2k + ifp + u)]/[2k + i(u - p)] 

X [2k - ifp + u)]. (4.8) 

We note that S (k ) is independent of the parameters a 
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'and f3. However, the spectrum of bound states, curiously, is 
not independent of a and f3 in the following sense: for 
a = - 1 the pole 2k - ifp + u) = 0 corresponds to the 
bound state and 2k + i(u - p) = 0 corresponds to a redun­
dant pole. For the other possibility,f3 = 1, 2k - ifp + u) = 0 
now corresponds to a redundant pole, and 2k + i(u - p) = 0 

the bound state. For the two possible cases, the bound-state 
spectrum and redundant pole spectrum interchange. This is 
the same type of situation studied by Biswas et al. 

We proceed exactly as we have done in Sees. 2 and 3 
obtaining the asymptotic expansion of f dk 4> t(r)4>dr'). The 
expansion of <,6 *4> is tedious and involves considerable alge­
braic manipulation and the lengthy result is not reproduced 
here. There are two singular points in the expression, the 
bound-state pole and the redundant pole. The integral over 
</J *4> is readily performed by taking the residue of each term 
possessing one or the other or both poles. The leading order 
in the asymptotic expansion of f</J *</J dk consists offour 
terms: D (r - r') and f S (k )dk from the leading contribution to 
</Jdr) and two terms from the leading correction. The exact 
form of the Heisenberg condition for this problem is found to 
be 

f dk S (k )eikR = Du. ~ I IC I 1
2e ~ )k,)R + D/3.1 IC2 1

1e Ik,)R 

+ 1TPfp + u)(13 lu)e ~ )k,IR + 1TPfp - u)(alu)e' )k,IR, 
(4.9) 

where kl = ~fp + u), k2 = !fp - u), and S (k ) is given by Eq. 
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(4.8). 
The first two terms on the right-hand side ofEq. (4.9) 

are the contribution ot the Heisenberg condition from the 
sum over bound states. For this potential there is but one 
bound state; two terms are written, but of the two terms, only 
one or the other actually occurs. When a = - 1, 
ICl1

2exp( - IkllR) is the contribution from the sum over 
bound states, and when p = 1 (a # - 1 necessarily) 
IC212exp( - Ik21R ) is this contribution. In order to include 
the two possibilities in one equation both possibilities are 
written and the Kronecker delta is used to eliminate the term 
not applicable to the given parameter values. 

The second two terms on the right-hand side ofEq. (4.9) 
comprise the contribution to the Heisenberg condition com­
ing from the leading correction terms to the dominant as­
ymptotic form of ,pdr). We have seen in previous cases that 
this contribution gives the sum of the residues at the redun­
dant poles. As with the bound-state contribution both poles 
are represented since either pole can be the redundant pole, 
depending on the values of the parameters. We note that 
these two terms enter Eq. (4.9) in an essentially different way 
from that in which the bound-state terms enter. While only 
one or the other of the bound-state terms is actually present 
both of the second two terms of Eq. (4.9) are present. Since 
there is only one redundant pole, only one of the terms gives 
the residue of S (k )exp(ik (r + r/)) at the redundant pole, the 
other term constitutes an anomalous contribution to the ab­
solute squared value of the asymptotic amplitude of the 
bound-state wavefunction. The anomaly of this contribution 
comes by way of contrast with cases where the roles of 
bound-state pole and redundant pole are not interchange­
able. In such cases, among which are the potentials ofSecs. 2 
and 3, the anomalous contribution does not occur and we 
have 

21TiRes(S(K)exp(iKR); K = ikll = ICl 12exp( -lk1IR), 

where K = ikl is one of the bound-state poles and C1 is the 
leading amplitude of the bound-state wave function in the 
asymptotic limit as given in Eq. (1.2). For potentials with the 
anomalous contribution this equation is modified so that 
21TiRes(S(K)exp(ikR); K = ik11 = (IC1 1

2 +.:l ) 
X exp( - I<IIR), where L1 is the anomalous contribution. 

For the potential just studied we have that 

21TiRes(S(K); K = ik11 = - 1TPIp + u)/u, 

.:l = 1TPIp + u)f3 / u, 

for a = - 1. Therefore, in the formula for the bound-state 
amplitude C1, 
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ICl 1
2 = 1TPIp + u)(.8 - l)/u (a = - 1), (4.10) 

the important P dependence is coming entirely from the 
anomalous contribution and not from the S-matrix. A simi­
lar statement with regard to a dependence holds for P = 1, 
where now IC212 is given by 

IC2 1
2 = 1TPIp - u)(a + I)/u (a = 1). (4.1I) 

5. CONCLUSIONS 

In this paper we have given further consideration to the 
matter of redundant poles showing that the existence of re­
dundant poles in an S-matrix has implications on the nature 
of the continuum wavefunction. The modified Heisenberg 
condition has been the ideal vehicle for obtaining the details 
of these implications, for a careful derivation of the Heisen­
berg condition for a variety of potentials with exact solutions 
shows that the usual statement of this condition incorrectly 
ignores a set of terms giving information on the redundant 
poles. This set of terms comes precisely from the leading 
correction terms in the asymptotic expansion of the contin­
uum wavefunction, while the leading terms give the S-ma­
trix itself. Since the sum of the residues of the S-matrix at the 
redundant poles is proportional to the new terms arising 
from second order, a relationship between the terms of the 
leading order and the next lower order is thus implied. 
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Eigenvalues are determined for the plane pendulum problem by the WKBJ method in one- and 
four-term approximations, and the results are compared. It is found that at high quantum 
numbers, the four-term WKBJ approximation can yield eigenvalues of eight-significant-figure 
accuracy, but for low quantum numbers the results continue to be poor. 

PACS numbers: 03.6S.Sq 

I. INTRODUCTION 

The problem of the plane pendulum, that is, of the mo­
tion of a masspoint constrained to move in a circle and acted 
on by a uniform field, was first discussed from the standpoint 
of quantum mechanics by Condon. I A more detailed discus­
sion was given by Pradhan and Khare.2 The Schrodinger 
equation for the plane pendulum can be recase,2 into a 
Mathieu equation, the characteristic values for which are 
known,3,4 Khare5 has solved the pendulum problem in the 
one-term WKBJ approximation and has shown that the ei­
genvalues are given by solutions of two equations which in­
volve elliptic integrals and are thus different from the exact 
spectrum, Khare,5 however, did not obtain any numerical 
results for the eigenvalues to show the degree of disagree­
ment. Garbaczewski6 has derived the conditions under 
which the quantum pendulum becomes equivalent to the 
elementary spin 1/2. 

The improvement in the eigenvalues by the inclusion of 
higher-order terms in the WKBJ approximation has been 
examined for the Lennard-Jones potential7

-
9 and the anhar­

monic oscillator. 10.1 I The behavior of the potential-energy 
expression for the plane pendulum is very different from that 
of the two above-mentioned potentials. Also, above a certain 
energy, there are no turning points in the plane pendulum 
problem. Thus it was of special interest to examine the effect 
of higher-order terms in the WKBJ aproximation on the 
eigenvalues of the plane pendulum. In the present paper we 
have considered the four-term WKBJ approximation. In the 
course of this investigation an interesting phenomenon for 
the one-term WKBJ approximation was also discovered, 
that is, for certain combinations ofthe quantum number and 
a characteristic parameter of the pendulum, it is not possible 
to determine the eigenvalue. We discuss this unusual situa­
tion more fully in Sec. III. 

II. THEORY 

For a plane pendulum, the potential energy V due to the 
earth's gravitational field is 

V(O) = mgl(l- cos 0), (1) 
where m is the mass of the particle, I the radius of the circle in 
which it is constrained to move, and 0 is the angle between 
the downward vertical and the radius vector of the particle 
measured from the center of the circle. 

The Schrodinger equation for the plane pendulum can 
be written as 

fI 2 d 2t/1 
2mf2 d02 + [€ - mgf(l - cos 0)] t/I = O. (2) 

If we set 

k = [€/(2mgf)] I /2 

and 

f3 = 16m 2gf 31f1 2 , 

Eq. (2) reduces to 

d 2t/1 + Ii [k 2 _ sin2(0 12)] t/I = 0 
d0 2 4 ' 

(3) 

which is the Mathieu equation.3 

We shall find it convenient to express the energy in re­
duced units, E* = €/(2mgf). It is known2 that if 0 < E* < 1, 
the motion of the pendulum is oscillatory between the turn­
ing points - 00 and 00 , where sin(00/2) = k; whereas if 
1 < E*, there are no turning points and the motion of the 
pendulum is rotatory. For E* = 1, the motion is nonperiodic 
and the pendulum swings up to the position 0 = 11' and re­
mains there forever. 

Until now, the effect of higher-order terms in the 
WKBJ approximation on the eigenvalues has been examined 
for only such potentials as do have two turning points; the 
effect of such terms on the pendulum eigenvalues is thus of 
special interest. 

A. Case of oscillatory motion, 0 < E* < 1 

In the WKBJ approximation, the quantization condi­
tion up to four nonzero terms9 ,12-15 is 

n + ! = II + 12 + 13 + 14 , 

where 

II = (2mf2)1/21f1 fen (E _ V)I/2 dO, 
11' - e. 

12 = - fll(2mf2)1!2 !!.... fO. V"(E - V)-1/2 dO, 
2411' dE - 0" 

13 = [fll(2mI2)1!2p ~ fen (7V"2 - SV'V"') 
288011' d~ - e. 

X(E - V)-1/2 dO, 

(4) 
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[1i/(2m[2)1/2)5 
~= - ~~7-25-7-~~~ 

X [~f8. (93V"3 - 224V'V" V", + 35V,2V"") 
de -8. 

X(E- V)- 1/2 dO+216 d: f8. V",2(E- V)-1/2 dO ]. 
dE -8. 

It is possible to evaluate the I's in a closed form in terms of 
elliptic integrals K (k ) and E (k ). The expressions for the I's 
can be written in a compact form in terms of A (k,n) and 
B (k,n) defined by 

A (k,n) = (1 - k 2) - " - (k 2) - " n = 1,2,.·· 

and 

B(k,n)=(I-k 2)-"+(k 2)-" n= 1,2,.··. 

The final expressions are as follows. 
2/3 1/2 

II = -- [E(k)-(I-k2)K(k)), 
1T 

/3 - 1/2 
12 = -- {2K(k) +A (k,l) [E(k) - (1- k2)K(k)]), 

121T 

13 = /3 -3/2 {[28A (k,2) + 8A (k,I)) K(k) 
28801T 
+ [56B(k,3) + 23B(k,2) + 30B(k,I)) 

X [(E (k ) - (1 - k 2) K (k )]} , 

14= /3-5/2 {[1984B(k,4)-4D4B(k,3) 
1612801T 
+ 190B(k,2) + 124B(k,I))K(k) 

+ [3968A (k,5) - 312A (k,4) + 589A (k,3) + 461A (k,2)) 

X [E (k) - (I - k 2) K (k)]} . 

2/3 1/2 
J I = --E(A), 

1TA 

B. Case of rotatory motion, 1 < E* 

In this case E - V is always positive so that there are no 
turning points. The quantization condition takes the 
form l •16 

where 

J2= - 7l m _ V"(E- V)-1/2dO, 
.1:./(2 [2)1/2 d 121T 

241T dE 0 

J3 = 7l m _ (7v,,2 _ 5V'V"') [ .1:./(2 [2)1/2)3 d 3 i211 

28801T d~ 0 

X(E- V)- 1/2 dO, 

[1i/(2m[2) I 12)5 
J4 = - 7257~ 

X [~ t" (93V"3 - 224V'V"V'" + 35V,2V"") 
de )9 

(5) 

X(E- V)-1/2dO+216~ (211 V",2(E- V)-1/2 dO ]. 
dE4 Jo 

The J's can be evaluated in a closed form in terms of elliptic 
integrals. The final expressions are given below. For the sake 
of convenience, we write A = k -I = (2mg[ IE)1/2. Then 

J2= A/3-1/2 {A2K(A)-(1 + _1_2) [E(A)-(I-A2)K(A))}, 
121T I-A 

J = A/3 -3/2 {[ _ 56,i 6 + 5A 4 _ 15A 2 _ 43 + _7_1_ _ 28 ] K(A) 
3 28801T 1 _ A 2 (1 _ A 2)2 

+[56A 4+5A 2+30-~ + 135
22 

- 56
23

] [E(A)-(I-A 2)K(A))}, 
I-A (I-A) (I-A) 

J4 = A/3 -5/2 {[3968A 10 _ 2296A 8 + 497A 6 + 6U 4 _ 337A 2 _ 2812 
1612801T 

9347 12579 8028 1984 ]K(A) 
+ 1 - A 2 - (1 - A 2)2 + (1 _ A 2)3 - (1 _ A 2)4 

+ [ _ 3968A 8 + 31U (, _ 589A 4 _ 461A 2 _ 4706 + 16575 
I - A 2 (1 - A 2f 

I 
value. The root is determined by the Newton-Raphson 

III. RESULTS AND DISCUSSION 

The energy eigenvalues were calculated by solving (4) 
and (5). The elliptic integralsK (k) and E (k) can be expanded 
as series in powers of k 2. The number of terms which need be 
retained depends on the accuracy desired and on the eigen-

method. The eigenvalues obtained from the one-term WKBJ 
approximation shall be denoted by E·(I) and those obtained 
from the four-term WKBJ approximation, by E·(4). The ex­
act eigenvalues can be calculated from the characteristic val­
ues of the Mathieu equation3

•
4 and shall be represented by 

E~. 
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TABLE I. Reduced energy eigenvalues for the potential (I). The symbols are explained in the text. 

{3 n e-*(l) [c·(Il-t"~]XI07 E*(4) [c*(41 - t"~l X 107 
~ 

2 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

20 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

100 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

'Three-term WKBJ value. 
"Two-term WKBJ value. 

0.6373109 
1.0690723 
2.5157024 
5.0069512 
8.5039074 

13.0025003 
18.5017362 
25.0012756 
32.5009766 
41.0007716 
50.5006250 
61.0005165 
72.5004340 
85.0003698 
98.5003189 

0.2171686 
0.6084539 
0.9235989 
1.0295279 
1.3403747 
1. 7753244 
2.3.174676 
2.9627970 
3.7097844 
4.5577253 
5.5062549 
6.5551680 
7.7043419 
8.9536992 

10.3031894 

0.0987338 
0.2882828 
0.4664083 
0.6316976 
0.7819512 
0.9130049 

1.0608818 
1.1915580 
1.3498412 
1.5318977 
1.7361850 
1.9619116 
2.2086201 
2.4760262 

1981937 
- 1643111 

- 347479 
- 18523 

- 2749 
- 1044 

- 497 
- 265 
- 155 

- 97 
- 63 
- 43 
- 31 
- 22 
-16 

71709 
155445 
511434 

- 479137 
- 144544 

- 21742 
- 5774 
- 2757 
- 1577 

- 974 
- 636 
- 433 
- 305 
- 221 
-164 

13016 
14318 
16299 
20568 
38988 

125030 

- 144651 
- 36827 

- 9288 
- 4043 
- 2451 
- 1653 
-1170 

- 854 

Calculations were carried out for three different values 
of (J, namely, 2, 20, and 100, for n = ° to n = 14. The results 
are shown in Table I. Columns 3 and 5 show the reduced 
energies obtained from the one- and four-term WKBJ ap­
proximations respectively. The exact eigenvalues are shown 
in column 7. The differences €*(I) - €~ and €*(4) - €~ are 
shown in columns 4 and 6, respectively. We may note here 
one point. The series expansion from which (4) is obtained is, 
in general, semiconvergent. 17

•
18 Consequently, situations 

can arise in which I/j + I/Ij 1 is greater than 1. In such a case it 
would be appropriate to take terms only up to and including 
I j on the right-hand side of (4). Similar remarks are applica­
ble to (5). In actual practice, calculations were carried out in 
stages for one-, two-, three- and four-term WKBJ approxi-
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0.5273797 ' 882625 0.4391172 
1.2480202 ' 146368 1.2333834 
2.5216292 - 288211 2.5504503 
5.0078601 - 9434 5.0088035 
8.5041793 - 30 8.5041823 

13.0026092 45 13.0026047 
18.5017881 22 18.5017859 
25.0013034 13 25.0013021 
32.5009928 7 32.5009921 
41.0007817 4 41.0007813 
50.5006316 3 50.5006313 
61.0005210 2 61.0005208 
72.5004372 72.5004371 
85.0003721 85.0003720 
98.5003206 98.5003205 

0.2102475 2498 0.2099977 
0.5986790 57696 0.5929094 
0.8904405' 179850 0.8724555 
1.0522161 b - 252255 1.0774416 
1.3446179 - 102112 1.3548291 
1.7765226 - 9760 1. 7774986 
2.3179954 - 496 2.3180450 
2.9630718 -9 2.9630727 
3.7099426 5 3.7099421 
4.5578231 4 4.5578227 
5.5063187 2 5.5063185 
6.5552115 2 6.5552113 
7.7043725 7.7043724 
8.9537214 8.9537213 

10.3032059 10.3032058 

0.0974322 0 0.0974322 
0.2868512 2 0.2868510 
0.4647845 61 0.4647784 
0.6297531 1123 0.6296408 
0.7793211 12687 0.7780524 
0.9077444' 72425 0.9005019 
0.9897508 b -71 0.9897579 
1.0669397 • - 84072 1.0753469 
1.1929874 - 22533 1.1952407 
1.3505016 - 2684 1.3507700 
1.5322795 - 225 1.5323020 
1.7364287 -14 1.7364301 
1.9620769 0 1.9620769 
2.2087372 2.2087371 
2.4761117 2.4761116 

mations. A few cases were encountered for which 1/3/121 or 
1/4/131 was greater than 1. Such cases are identified by super­
scripts a and b in Table I. All other eigenvalues are from the 
four-term WKBJ approximation. 

It was found that when €* is very close to 1, it is not 
possible to calculate €* from the one-term WKBJ method, 
and for this reason there is no entry for n = 6, f3 = 100 for 
one-term WKBJ in Table I. The cause of this unusual situa­
tion can be understood by referring to Fig. 1, where we have 
plotted/dfork 2 < 1) and Jdfor k 2 > 1) versusk 2 for the case 
f3 = 100. An eigenvalue for the case n = 6 can be obtained 
from (4) only ifat some stage II becomes equal to 6.5, but we 
see in Fig. 1 that II remains always below 6.5. Similarly, an 
eigenvalue for n = 6 can be obtained from (5) only if at some 
stage J I = 6, but the minimum value of J I is 6.367. We note 
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k2 

FIG. L I, and I, as functions of k 2 in the vicinity of k 2 = L 

thatI!(k 2_1) = J 1( 11k 2_1). For each value of n, there is a 
narrow range of /3 values where this phenomenon occurs. 
Some other combinations of such (n, /3) values are as follows: 
(1,3.6), (2, 12.2), (3, 26), (4, 44.5), and (5, 68). Ifhigher-order 
terms are taken in (4) and in (5), this problem is eliminated, 
and eigenvalues can be calculated close to €* = 1. 

It will be noticed from Table I that the four-term WKBJ 
results show an improvement over the one-term WKBJ re­
sults in all cases, the accuracy being improved by between 
one and four additional significant figures. It is of some in­
terest to compare these results with those obtained for the 
Lennard-Jones potentiaf·9 where it was found that the four­
term WKBJ results improve upon the one-term WKBJ re­
sults by seven or eight additional significant figures. Clearly 
the improvement obtained in the eigenvalues by taking high­
er-order terms in the WKBJ approximation is very much 
poten tial-dependen t. 

The results shown in Table I indicate that for a given/3, 
errors appear to increase as €* increases toward 1 and then 
they decrease fairly rapidly. At high quantum numbers, 
four-term WKBJ results show an eight-significant-figure ac-
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curacy. A comparison of the one- and four-term results 
shows that the relative improvement is greater as /3 becomes 
larger. This result is somewhat surprising in view of the fact 
that the higher-order terms in (4) and (5) involve inverse pow­
ers of /3. It will also be noticed in Table I that for a given 
quantum number, the eigenvalue decreases as /3 increases. 

In conclusion we find that the inclusion of higher-order 
terms in applying the WKBJ method to the quantum pendu­
lum problem can lead to eigenvalues of good accuracy (eight 
significant figures) at high quantum numbers, but the results 
at low quantum numbers remain poor. 
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Invariant methods of modern differential geometry are used to formulate exact closed form 
expressions for the coordinate velocity and coordinate acceleration of a geodesic particle in the 
tangent space of a general relativistic accelerating rotating observer. The observation of a general 
vector field is shown to be definable in two ways from presymmetry and covariance arguments. 
Our results for the parallel translation definition of observation are shown to subsume existing 
work in both special and general relativity on accelerated observers. 

PACS numbers: 04.20.Cv 

I. INTRODUCTION 

Synge l considered observations by a general relativistic 
accelerated observer in his discussion of stellar aberration. 
By using Fermi coordinates2 he obtains a first order equation 
for the stellar aberration. A natural proper reference frame 
for a general relativistic accelerating rotating observer 
(GRARO) was introduced by Misner, Thorne, and Wheeler 
(MTW)3 who suitably extended the Fermi normal coordi­
nates discussed by Manasse and Misner4 to obtain a local set 
of coordinates for describing the GRARO. They obtained 
the first-order expansion for the metric and the connection 
coefficients along the GRARO world line which give rise to 
both the rotation and the acceleration of the observer. 
Burghardt5 utilized a covariant projection formalism to ob­
tain a decomposition of the Einstein equations of motion for 
a rotating system of observers. Using a dyadic formalism 
Estabrook and Wahlquist6 obtained an equation for the ac­
celeration near a general world line. Within the framework 
of special relativity Li and Ni7 employed the MTW coordi­
nate system to obtain an expansion of the metric for an accel­
erated observer. They also have done extensive work on de­
termining the metric expansions for an accelerating observer 
in both special and general relativity. At about the same time 
DeFacio, Dennis, and Retzloff,8 using a coordinate-free ap­
proach, derived an exact closed form expression for the co­
ordinate acceleration of a geodesic particle relative to a non­
inertial observer which they showed reduced to the second­
order expansion ofNi and Zimmerman9 for the case ofspe­
cial relativity. 

In the setting of general relativity Mashhoon 10 in his 
extensive treatment of tidal processes derived a second-order 
expression for the metric and a first-order expansion of the 
connection coefficients in Fermi Coordinates for a general 
relativistic nonrotating accelerating observer. Ni and Zim­
merman,9 using the MTW coordinates, extended these re­
sults to a GRARO to obtain a second-order expansion of 
both the coordinate velocity and coordinate acceleration of a 

geodesic particle in the frame of the GRARO. These latter 
results were extended to third order by Li and Ni, II who in 
the process derived a third-order metric expansion and a 
second-order expansion of the connection coefficients. Cou­
pling effects between gravitation and special relativity were 
first exhibited in the third-order terms obtained by Li and 
Ni. 

The general relativity calculations thus far have been 
formulated in terms of various coordinate systems eminently 
suited for computational purposes. The MTW coordinate 
frame is the most natural GRARO frame for obtaining ex­
pansions of the coordinate velocity and coordinate accelera­
tion of a freely falling particle in the G RARO frame. Howev­
er, the coordinate velocity and coordinate acceleration have 
not been defined to date in a coordinate-free invariant man­
ner and the coordinate velocity is currently determined from 
the coordinate acceleration by integration in contrast to the 
pedagogical approach of defining the acceleration as a de­
rivative of the velocity. Furthermore, in the coordinate for­
mulation it is not abundantly clear where the domains and 
ranges of the associated vector field mappings reside on their 
respective manifolds. This is offundamental importance in 
general relativity where vectors associated with particular 
observations by the GRARO must live in the tangent space 
of the GRARO.H 

In this paper we will formulate as coordinate-free invar­
iant objects in the tangent space of the GRARO the coordi­
nate velocity and coordinate acceleration of a freely falling 
particle employing the approach of DeFacio, Dennis, and 
Retzlofr! extended to general relativity. The coordinate ac­
celeration will be identified as the derivative of the coordi­
nate velocity. Hence the coordinate velocity will be obtained 
independent of the coordinate acceleration. The manifold 
defined by the GRARO and the geodesic particle will be 
explicitly identified. Using these results and the definitions 
of "presymmetry", "spacetime," and "observations of spa­
cetime" as given by DeFacio, Dennis, and Retzloff,8 closed 
form expressions for both the coordinate velocity and co-
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ordinate acceleration will be obtained. These expressions 
will be shown to agree with the corrected results of Li and 
Ni II to the order of their expansion. 

The organization of this paper is as follows. In Sec. II 
we define in a coordinate-free manner the observation of a 
geodesic particle by a GRARO. Section III contains the 
derivation of the closed form expressions for the coordinate 
velocity and coordinate acceleration. In Sec. IV the connec­
tion coefficients on the manifold defined by the GRARO 
and the geodesic particle are obtained and our results are 
shown to subsume the third-order expansion of Li and Ni II 
as well as the exact results of DeFacio, Dennis, and Retzloff'l 
for special relativity. Our conclusions are given in Sec. V. 

II. GRARO OBSERVATIONS OF A GEODESIC PARTICLE 

In the notation of DeFacio, Dennis, and Retzloff'l the 
basic description of the GRARO observation of a geodesic 
particle is depicted in Fig. 1. The manifold M determined by 
this description is given by the map 

a:R XR-M, a(t,s) = exp/1lI sr(t ). (1) 

From this map a, the world line and velocity of the GRARO 
(y(t ),u) and the geodesic particle (YI(t), V) are easily found to 
be 

y(t) = a(t,O), u = a. (a lat )1' ~ 0.1 ~ I = V d Idl y(t), 

ydA) =a(t,I), 

V = a. (alat )1' ~ 1.1 ~ I = V dldJ.'YI(A ) = TV dldIYI(t), 
(2) 

where r = dt IdA and V is the usual pseudo-Riemannian 
connection of general relativity on the manifold. 

In general presymmetry8 it has been shown that for a 
general spacetime (M, g) any event q is identified as qEM. The 
observation of this event XETM is found by lifting Minto 
TM with the map 

TM 
i exp-I, i.e., Xp =expp-lq. 
M 

(3) 

Because the tangent space of the GRARO is fiat, the "natu­
ral" connection for observations in the GRARO frame is the 

ylt) 
Y,I)') = Y, It) 

GEODESIC PARTICLE 

FIG. I. The manifold defined by the GRARO and the geodesic particle. 
The symbols have the following definitions; r(t I-world line of the 
GRARO; r,(A I = r,ft I-world line of the geodesic particle; A-affine pa· 
rameter of the geodesic world line; t-nonaffine parameter; r2(S,t I-unique 
geodesic passing through q and p, s-affine parameter of 
r,;r(t 1= nit Ill'{t II-position of geodesic particle relative to the GRARO; 
nIt l-direction cosines ofr(t I in G~ARO frames; u-velocity ofGRARO; 
V-velocity of geodesic particle; V-p~rallel translation of veTy ,,)., M to 
T,H,M along unique geodesic r,(s,t I; V(t,sl-parallel translation of 
VETI','). ,M to T.M along r,(t,sl. 
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pseudofiat connection V' defined by 

V~/dtB = VdldlB - (I1,B), 

11 = a®u - u ®a + l1,(w,u), 

(l1s (w,u),u) = 0, 

(l1 s (w,u),B) = wXB, 

(4) 

where a is the acceleration of the GRARO. The coordinate 
velocity Wand coordinate acceleration A obtain their sim­
plest forms when expressed in terms of this natural GRARO 
connection as 

(5) 

A = V~/dt W = V~/dt V~/dt~* (alas)ls~o,t ~ I' 
Clearly by definition W, AET/1I)M and hence "live" in the 
frame of the GRARO. 

To conclude our discussion ofGRARO observations 
we give the following definitions of the observation of a gen­
eral spacetime event by a G RARO which arises from general 
presymmetry consideration.8

•
12

•
13 

Definition 1: For an arbitrary event qEM and observa­
tion of that event Xq ETqM by an observer at q, the observa­
tion of event q by a GRARO at p is determined by the com­
muting diagram 

T T M expp •. 
t' p ;::. TqM 

vETpM oJ" exp ~IJ'~l t exp, e'~'" • 

M ----.;:>~ M 

with Jv being the usual projection map. The map expp• J 
preserves vector equations as well as equivalence classes of 
state preparation and observation procedures. Thus it satis­
fies the covariance and presymmetry requirements for defin­
ing the observation of a spacetime event. However, the map 
is only a radial isometry. The consequences of this definition 
of observation are presented in Part II. A second definition 
of the observation of an event that also satisfies the require­
ments of covariance and presymmetry is the following: 

Definition 2: For an arbitrary event qEM and observa­
tion of that event Xq ETqM by an observer at q, the observa­
tion of event q by a GRARO atp is determined by the paral­
lel translation map 1"qp with 

1"qp : TqM_TpM. 

For our purpose q is given by 

q = Y2(SO(t ),t) = expy(t I r(t). (6) 

The map 1" is an isometry and hence preserves the magnitude 
of the observed vector field. A direct application of Defini­
tion 2 is the calculation of the velocity V of the geodesic 
particle as seen in the GRARO frame. The result will be used 
in this paper to obtain closed form expressions for Wand A 

An alternative method of formulating the observation 
of a particle by a rotating accelerating observer based on the 
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cotangent bundle of the manifold has been developed by De­
Facio and Retzloffl4 in their treatment of non inertial frames 
in special relativity. Their approach has the advantge of pro­
viding a natural setting in which the velocity vector field of 
the geodesic particle is a Killing vector field and "cotangent 
geodesics" are described by the vanishing of the Lie deriva­
tive of the associated velocity form. This method is readily 
extended to a general relativistic setting and will be the sub­
ject of a future paper on this problem. 

We now consider the results of defining an observation 
of a spacetime event by a GRARO via Definition 2. 
III. THE COORDINATE VELOCITY AND COORDINATE 
ACCELERATION 

From Definition 2 we know that V is the solution at 
s = Oof 

A dVfL A (3 d71 
Vdld V = O( = ) -- = - r fL a(3(t,s)V --, 

S ds ds 

/-l,a, f3 = 0,1,2,3, V = Vat s = so(t). (7) 

To proceed further, we use the MTW coordinate system to 
give M a coordinate chart and note that 

y(t) = ! t,O,O,O L Ydt) = expr(l) r(t) = ! t,rl(t ),r(t ),r(t) L 
Y2(t,S) = expr(l)sn(t) = ! t,n I(t )s,n2(t )s,n3(t)s L 
r(t) = ,-i(t )eil = so(t )ni(t )e'l ' i = 1,2,3, 

)1() Jit) 

n(t) = ni(t )eil ' i = 1,2,3, (n(t ),n(t) = 1, 
"''' 

W = W(t) = Wi(t )e'l;,,,, i = 1,2,3, 

V = V dldA expr(l)r(t) = F'V d IdlexPr(I) r(t) 

= real)'.", + rWi(t)eil )'.,,,, i = 1,2,3, 

= r! 1, W I(t), W 2(t), W 3(t) Ilr,(I)' 

(8) 

Because (7) is a linear matrix differential equation its solution 
can be written in terms of the matrixant n (s,t ) as 15 

V = n (s,t)V or V = n (so(t ),t lV, (9) 

where (V~) 
A VI 

v= ~: ' 

n (s,t) = I + n~1 iJ.
o 
fi B (Sj,t )dsj , So = s, 

=pexp[f B(SI,t)dSI ], (10) 

B (s,t) = (bu(3)' ba(3 = - r uj(3(s,t )nj(t), 

a,/3 = 0,1,2,3, j = 1,2,3, 

and P is the Dyson chronological-order operator for the Si' 
Substituting (10) into (9), we obtain an expression for the 

'OO'd;ate(v;~;:)Y of t~' :~n ('JI ),1 )(~~, (II) 

W3(t) Ijj" V:}IJ.!" 
which in component form is _ 

Wi(t Wil"", = r -In ~(so(t ),t )Vueil ",,,, (12) 

V = VUeUI"'d' i = 1,2,3, a = 0,1,2,3, 

V = VUe I ' i = 1,2,3, a = 0,1,2,3, 
a -y(tj 
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where eil are the basis vectors obtained from eil by paral-
Mil y,!I) 

leI transport. The physical interpretation of(12) [or (11)] is 
that Wi represent the components of the coordinate velocity 
f~r the basis vectors eiiJ1" while the geodesic particle velocity 
Vis given in the natural basis vectors eil "", = a lax ilr(l)' 

Xi = ! t,r l ,r,r I. Thus (12) represents the transformation law 
from the tilde set of basis vectors at y(t) to the natural set of 
basis vectors at y(t). By writing (12) as a vector equation we 
can obtain the coordinate velocity in terms of the natural 
basis vectors at y(t). 

The coordinate acceleration is obtained from Was 

A ~ V;,,, W~ / ;:) 

~ IW' 

= r -I( dfJ (~y ),t) _ r -In (so(t ),t )~)(P 
V:) 1'" 

+r-ln(so(t),t)V~/dl (~:) (13) 

v 3 
IJ.!" 

We must express V~/dl V in termsofWandn (so(t ),t )tocom­
plete the calculation of the coordinate acceleration. To ac­
complish this we consider the equation of the geodesic parti­
cle for the nonaffine parameter t which is 

Vdldl [F'Vdld1YI(t)] = ° = )Vdldl VdldIYI(t) 

= -r- I dr VdldIYI(t). (14) 
dt 

In component form this reduces to 

dVfL fL -a-(3 - = - r u(3(t,so(t ))FW W , 
dt 

From (9) we have 

V~/dl V = V~/dl [n -1(SO(t ),t)V 1 
dn -1(SO(t ),t) rw + n - I (so(t ),t )D, (16) 

dt 

where 

(

ro a(3(t,SO(t)) w
a
W(3) 

r i a(3(t,so(t ))WaW(3 

D = - r r 2 a(3(t,SO(t)) WaW(3 

r 3 a(3(t,SO(t)) W aW(3 1

"

" 

( 17) 

Combining (11), (13), (16), and (17), we obtain the desired 
expression for the coordinate acceleration 

~O~) = r -I( _ dr W + D) 
A dt I.l!" 

3 iJ.!" 

( 18) 

The remarks concerning the natural and parallel translated 
basis vectors at r(t) made previously also apply to (18). 

Next we will show that (11) and (18) include the results 
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of De Facio, Dennis, and Retzlotr,8 and Li and Ni II as special 
cases. 

IV. THE SPECIFIC CALCULATION OF A AND WUSING 
THE CONNECTION COEFFICIENTS ON M 

Although (11) and (18) are exact closed form formulas 
for the coordinate velocity and coordinate acceleration of a 
geodesic particle, these quantities are normally expressed in 
terms of the curvature tensor, 4-rotation and acceleration of 
the GRARO. 7

-
11 To do this we must write the connection 

coefficients rand dr Idt in terms of these latter quantities. 
The connection coefficients on M are obtained in terms of 
the appropriate quantities from a Taylor series expansion of 
the r tL af3 about the world line of the GRARO where they are 
known from the work of MTW. Thus on M we have 

r tL af3(t,s) = r tL af3(t,O) + r Paf3.1(t,O)n'(t)s 

+ r tL af3.1i (t,O)n' (t )ni(t )s2/2! + .. , , (19) 

fl,a,{3=0,1,2,3, I,i, etc. = 1,2,3. 

Equations (15) and (22) require the r tL af3 along r.(t) 
which from (12) and (23) are 

r tL af3(t,SO(t)) = TI'af3(t,O) + r tL af3.I(t,O)r' (t) , . + TI'af3.Ii(t,O)r (t )r'(t )/2! + ... . (20) 

The derivatives of rl' af3 along r(t) occurring in (19) and (20) 
are obtained by solving the Jacobi field equations associated 
with the following two separate one-parameter family of 
geodesics: 

a(s,n') = expylt)sniei, fixed, 

(3 (t,s) = expy(l)sni(t )ei · 

(21) 

(22) 

The one-parameter family of geodesics given by (21) is de­
picted in Fig. 2 and is identical to the reference frame of the 
GRARO described by MTW.3 From (21) we have 

a* (a las) = n'ei n, V nn = 0, 

a* (a Ian i) = sei f-iiei , i ='1,2,3 (i not summed), 

[n,f-i] = a* [alas, alan] = 0, (23) 

wherefl is the Jacobi field and n is the tangent vector field. 
From the definition of the Riemannian curvature tensor we 
obtain 

JACOBI FIELD 
y(t) 

GEODESICS 

FIG. 2. The I-parameter family of geodesics determined by 
a(s,n') = exp,,, ,sn'e,. 

99 J. Math. Phys., Vol. 23, No.1, January 1982 

which combined with (23) gives the Jacobi field equation 

V n V n fl + R (n, fl)f-i = O. 

In component form (25) is 

d 2fla + 2 df-i f3 r a (s t Ins + R a lJf3nsn" 
ds2 ds f35' f3s" r-

(25) 

+ flf3n5n"(Faf35." + rTf35raT" - raf3TrTs") = o. (26) 

This is Eq. (10) ofNi and Zimmerman9 and Eq. (14) ofLi and 
Ni. II Substituting (19) and (23) into (26), we obtain 

'" sm 
2 I -, [(nl(t )D,)mr a

jk ](t,O)nk(t) + R ajkpsnk(t )nP(t) 
m~O m. 

[ 

00 sm 
+ snP(t )nk(t) m'2;o -;;;! [(nl(t JD,lmrajP.k ](t,O) 

00 sm 00 sq 
+ I - [(n'(t)D,lmr T

jp ](t,O) I - [(ni(t)Dilqr"Tk ](t,O) 
m=O m! q=O q! 

- m~o ~! [(n'(t )DdmrajT ](t,O) qto :~ [(ni(t )Dilqr
T
pk ](t,OI] 

=0, 

T,a = 0,1,2,3, i,l,mJ,k,p = 1,2,3, 

a . . 
Di = -.' Xl = sn'(t ). (27) 

ax' 
Equating powers of s through S2 in (27) yields the results ofNi 
and Zimmerman 9 as well as those of Li and Ni for the first 
and second derivatives of r a ij(iJ = 1,2,3). Higher deriva­
tives of r a ij are found by continuing the process. Because 
only the first and second derivatives of r a f3r are needed to 
compare our general relativity formulation with the work of 
Li and Ni II and the computation of the higher derivatives of 
the connection coefficients provide no new insight into the 
basic physics of the problem, we will not compute these high­
er derivatives in this paper. We also refer to the work of Li 
and Ni II for the tabulated formulas for the first and second 
derivatives of r U ij' However, in the case of special relativity 
we require the derivatives to be determined to all orders in 
order to compare with the exact result of DeFacio, Dennis, 
and Retzloff. x The results for special relativity are obtained 
from the above computational process by setting R a f3r" = O. 
This gives the values in Table I for r U ij' The remaining con­
nection coefficients listed in Table I are found using (22) 
which defines the one-parameter family of geodesics shown 
in Fig. 3. Following a procedure identical to that of(23) and 
(24), we obtain the Jacobi field equation 

VuV uN + R (U,N)N = 0, (28) 

U = {3* (a las) = ni(t lei' 

N = {3* (a lat) = eo, 

which reduces to the identity 

R I' aOf3 = r tL uf3.a - r " ao.f3 + r saf3rl' 50 - r 5 anrl' 5f3' (29) 

Combining (29) with differentiation of the known connec­
tion coefficients along r(t ) yields the remaining derivatives of 
the r a f3" 9.11 which agree with the second order results of Li 
and Ni II in general relativity and produce the remaining 
entries in Table I in the case of special relativity. 
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TABLE I. Connection coefficients on the M in special relativity r a /I,,(t,s), q = 0, r a'j(s,t ) = 0, a = 0,1,2,3, iJ = 1,2,3. 

~o 
o 

2 

3 

o 

2 

3 

a·sn(t) + a'w X sn(t ) 

1+ a·sn(t) 

a'p + a·sn(t)) + [wx(wXsn(t))]' 

+ [wxsn(tl]' 

[wXsn(t I]'(a·sn(t) + a'wxsn(t)) 

1+ a·sn(t) 

a2p + a·sn(t)) + [wx(wXsn(t))j2 

+ [wxsn(t)f 

[wXsn(tW(a'sn(t) + a·wXsn(t)) 

1+ a·sn(t) 

a3p + a·sn(t)) + [wx(wXsn(t))]' 

+ [wXsn(t)]3 

[wxsn(t )]3(a·sn(t) + a·wxsn(t)) 

I + a·sn(t) 

1+ a·sn(t) 

-wke!2 +a2(wXn(t))' ! (-a'n(t))m~'sm 
m= 1 

a2(w X n(t)f ! (- a.n(t))m ~ 'Sm 
m= I 

- WkE:! 2 + a2(w X n(t ))3 ! (_ Q.n(t ))m - 'Sm 
m= I 

We are now ready to express the coordinate velocity 
and coordinate acceleration in terms of the curvature tensor, 
the 4-rotation and the acceleration of the observer. The case 
of special relativity will be treated first. Using Table I the B 
matrix in (10) becomes 

( 

-a·n(t)/[1 +a·sn(t)] 0 0 

B(s,t)= (wxn(tW/[I+a'sn(t)] 0 0 
(wxn(t))2/[I+a·sn(t)] 0 0 

(wxn(t))3/[I+a·sn(t)] 0 0 

y(t) 

JACOBI 
FIELD GEODESICS 

~. (30) 

FIG. 3. The I-parameter family of geodesics given by.B (t,s) = exp)1t)sn'(t Ie,. 
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1+ a·sn(t) 

a,(wXn(t))'! (-a'n(t))m~'sm 
m= I 

-wkc., +a,(wXn(t))2 ! (_a·n(t))m-'sm 
m= I 

-wkE:!, +a,(wXn(t))3 ! (_a'n(t))m~'sm 
m= I 

3 

I +a·sn(t) 

_wke!, +a3(wXn(t))' ! (_a'n(t))m~'Sm 
m= 1 

- Wkc., + a,(w X n(t ))2 ! (_ a.n(t ))m . 'Sm 
m= I 

a3(w X n(t))3 ! (- a'n(t ))m ~ 'Sm 
m= 1 

From (30) and (10) the matrizant is calculted as 

( 

l/{1 + a·r) 
- (wxr)'/(1 + a·r) n s t t = (o( ),) _ (w X r)2/( 1 + a·r) 

- (wxr)3/(1 + a·r) 

o 0 
o 

o 
o o 

D (31) 

Combining (11) and (31), we obtain the following result for 
the velocity of the geodesic particle as seen by the observer: 

(

1 + a'r 

= (wXr)' 
(wxrf 
(wxr)3 

o 
1 

o 
o 

o 
o 
1 

o 

~Xr~t)) o rr(t) , 

1 rr(t) 

which can be written in vector notation as 

(32) 

V=r[u(l+a'r)+roxr+r], u=eo. (33) 

This last result is identical to Eq. (4.8) obtained by DeFacio, 
Dennis, and Retzloff. 8 To calculate the coordinate accelera-
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tion, we note that from Table I and (IS) for IL = 0 we obtain 

t _ dr/dt _ r o ( ())W-uW-P - _ (a'r+ 2a'i' + a·roXr) 
r 

- -r - - up t,so t -
1 + a'r 

The definition of D in (17) gives 

r~p(t,SO(t)) WuWP 

- al(1 + a·r) - [roX(roXr)] 1_ wlr l - 2(roxr)1 + (roxr)1 [a.r + 2a'i' + a'roXr] 
1 + a'r 

- a2(1 + a·r) - [roX(roxrW - W2r - 2(roxr)2 + (roxr)2 [a'r + 2a·i' + a.roXr] 
1 + a'r 

- a3(1 + a·r) - [roX(roxrW - W3r - 2(roxr)3 + (roxr)3 [a'r + 2a'i' + a.roXr] 
1 + a'r 

Substituting (3S), (34), and (11) into (18) gives in compact 
vector notation 

A = r = - a(1 + a·r) - roX(roXr) - ro·r - 2(roXi') 

B (s,t) = A (O,t) + Ai(O,t )ni(t)s 

+ Aij(O,t )ni(t )ni(t)s2 /2! + "', 
a!-,v(O,t) = - nk (t )r~v(O,t), 

(a!-,v);{O,t) = - nk(t )r~v.i(t,O), 

(34) 

(3S) 

+ (i' + roxr) (a.r + 2a'i' + a.roXr). (36) 
1 + a'r (a!-'v)ij(O,t) = - nk (t )r~v.ij(t,O), etc. (37) 

This latter result agrees exactly with equation (4.14) of De­
Facio, Dennis, and Retzloff. 8 

The A matrices for the first three terms of (37) are 

( 

- a'n(t ) 0 0 0) 
In a general relativistic framework the calculations be­

gin with the Taylor series expansion of the r!-' ap as given by 
( 19) from which the B matrix in (10) can be written as 

A(Ot)= - [wXn(t)]1 0 0 0 
, - [wXn(tW 0 0 0 

- [wXn(tW 0 0 0 

Aj(O,t )ni(t) 

= [a'n(t )] 2 _ R 0 iOjni(t )ni(t ) !R °ilk ni(t )nk (t ) !R °i2k ni(t )nk (t ) !R °i3k ni(t )nk (t ) 

[a'n(t)][wxn(tW -R \kOni(t)nk(t) !R I ilk ni(t )nk (t ) !R li2kni(t)nk(t) !R I i3k ni(t )nk(t) 

[a·n(t )][w X n(t W - R 2ikOni(t )nk(t) !R 2i1kni(t )nk(t) !R 2i2kni(t)nk(t) !R 2i3kni(t)nk(t) 

[a.n(t)] [w X n(t)] 3 - R 3ikOni(t )nk (t) !R 3ilkni(t)nk(t) !R 3i2k ni(t )nk (t ) !R 3i3kn i(t )nk (t) 

Aij(o,t )nini 

= ! RO/O};I nlnini + 2(a'n)RoiOj n
ini 

- 2(a·n)3 + j(w X n Y'(R Olip + ROpii )ninl ) 

! ROillJninlni + j(a·n)RO\j1nin ' 
2( IR I' k . I + wXn) O/Ojnn'+j(wXn) (Rkjll + Rkljl)n'n 

- 2(wXn)l(a'n)2) 

!ROi2/;)ninlni + j(a'n)R02jlninl 

+ 2(wXn)2RO/Ojnlni + ~(wXn)k(Rkj21 + Rk2jdninl 

- 2(wxnf(a·nfl 

! ROi3/;jninlni + ~(a'n)R03jlninl 
3 I . k . I 

+ 2(w X n) Ro/ojn 11' + ~(w Xn) (R kj31 + R k3jl )n'n 

- 2(wxn)3(a·nf) 
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- [ -b PI I (SR °lil;) - R °ilj;1 )ni 

- j(a·r)PII R 0 Ijl j nlni 

- [.LP (SR I _ I i 
12 II iii;) R ilj;l)n 

( 
I 0 I' -jwXn) PIIR Ijdnn' 

_ [.LP ( R 2 _ 2 i 
12 liS lil;j R ilj;l)n 

2 0 I' - i(w X n) PII R Ijl n 11'] 

[ 
3 3 i - -bPI I (SR liI;j - R ilj;l)n 

3 0 I' - ~(wXn) PIIR Ijl] n 11' 
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- [ -&,P12 (SR Ili2;) - R I ilJ;2 )ni 

- j((UXn)'P12 R (1)2] nlnl 

- [ -&'P12 (SR 2li2;) - R 2il);2 in' 

1((U XnfPlzR °lj2] nlnl 

- [ -&'P12 (SR 3/iZ ;) - R 3,I);z)n i 

- i((U X n?PlzR 01)2] nlni 

- [ -&,P13 (SR °li3;) - R °ilj;3 )ni 

- i(aon)PI3 R °lj3] nlnJ 

_ [~P (SR 3 _ R 3 ) i 
12 13 li3;) ilj;3 n 

:1 0 I' - i((U X n)' PI3 R 1)3] n nl 
(38) 

By s~bstituting (~8) an~ (37) into (10), ca~culating the mat~zant n (so(t ),t) to third order in r and using this result in (11), we 
obtam the followmg thlrd-order expresslon for the coordmate velocity. 

U~\)= rf2 
r' 

I - aor + (aor)2 - (aor)) - ~ROiO/";( 1 - ~or) + (l!3!)RoiOJ.k r''';rk 

- ((U X r)1 [1 - aor + (aor)2] - ~RlijO";1"(1 - jaor) + ~((U xr)IRoiO/1" + (l!3!)Roil).k";";~ 
- ((UXr)2[ 1 - aor + (aorf] - ~R2ijO";";(1 - jaor) + ~((UXr?ROiO/"; + (l!3!)Roi2)k";1"rk 

- ((U Xr)3 [I - aor + (aor)Z] - ~R3ijO";";(1 - jaor) + ~((U X r)3 ROiO/1" + (l!3!)Roi3).kr''';~ 

° " 0 0 ',k 1 i;R iI/1"(1 - aor)- -hPil (SR ik 1;1 - R kil;I)r'rr 
I " 1 0' R I R 1 )r" k 1 1+!R iI/1"-(1I3!)((Uxr)R il/1"--hP,dS ikl;l- ki/;I rr 

2 " 20' 2 R2 r"kl ~R iljr'1"-(1I3!)((Uxr)R il/1"--hPil(SR ikl;l- kil;t! rr 
:1 " 3 0 " 3 R 3 )r""k.,1 !R . il/1" - (1I3!)((U X r) R il/1" - -hPn (SR ik 1;1 - kil;\ r r 

tR °i2/";( 1 - aor) - -hP,l (SR °ik 2;1 - R 0 kll;2)r'~rl 

I " I 0 " I R \ )r".k.1 !R iZ/1" - (1I31)((U X r) R i2/1" - -hPi2 (SR ik 2;1 - kll;Z r r 
2 " 2 0 " 2 R 2 )r" k 1 1 + iR i2/1" - (113!)((Uxr) R i2/1" - -hPi2(SR ik2;1 - kil;Z r r 

3 " 3 0 " 3 R 3 ' k.1 
!R '2/1" - (1I31)((U X r)' R i2/1" - -hPi2 (SR ik Z;I - kil;2 )r'r r 

o " 0 0 '.k.1 
tR i3/1"(1 - aor)- -hPi3 (SR ik3;1 - R kil;3 )r'r r 

1 " I 0 " I R I )r" k I iR i3/1" - (1I31)((U X r) R i3/1" - -hPi3 (SR ,k 3;1 - W;3 r r 

2 " 2 0 " 2 R 2 )r" k I iR i3/1"-(1I3!)((Uxr)R i3/1"--hPi3(SR ik3;1- kll;3 rr 
3 " 3 0 " R 3 R 3 )r".kl 1 + ~R ;3/1" - (113!)((Uxr) R ;3/1" - -&P;3(S ik3;1 - kll;3 r . (39) 

where velocity, is related to the left-hand side of (39) by 

(V) - Vi 
V = -

I"" ~: 
V I"., 

(40) W_(W~(t)) - r-\0~') 
- W 2(t) - rf2 

W 3(t) 1;1;['[ P 1);[,[ 

(41) 

is the velocity of the geodesic particle and W, the coordinate It is immediately apparent that (39) reduces to the third or-
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der expansion of (32) for the case of special relativity. To 
compare this result with the work of Li and Ni 11 we must 
obtain an equation relating r to the physical variables of the 
problem. This is accomplished using the eo-equation of(18), 
or equivalently (14), which reduces to 

rlr= -rOap(t,so(t))WaWp 
= - 2(a·r)[1 - a'r + (a'r)2] - 2a·eu X r[l - a·r] 

- b'r[ 1 - a·r] + 1R °ijkf;ir" [1 - a·r] 

- 2Ro,o/,.'[ 1 -1a'r] 
- [ ~Ro,oj;o + !akROjki - ~{a.r)Ro.uj! ,..,.. 
+ i(euxr)k(RoUk + ROkji)f,.' 

+ t(RO,ok;j + ROkOi;j + ROkOj;i)f,.'r" 
- (2/4!)(5R O,kj;/ - R ° kil;j jf;ir",-I. (42) 

The solution to (42) is 

r = r(t = 0) exp{ - I rO ap(t,SO(t ))WaW
f3
dt } 

= F(t = O){ 1 - l' rOap(t,so(t ))WaWPdt 

+ ~! [1' rOap(t,so(t)jWawf3dt r + .. -}. (43) 

Integrating only the terms involving a first derivative with 
respect to t, we obtain 

r = r(t = 0)( 1 - ( 3a·r[ 1 - a'r + ~(a'rf] 
+ R o,o/,.'[3 - 2a·r] 

- !(eu X r)krOijk "',.' -!(RO,ok;j 

+ ROkOi;j + ROkOj;i ),-I,.'r" 

- (2/4!)(5R °ikj;/ - R 0 kil;j W,.'r",-I + .,. J + (1I2!)! J 2 - ... J. 
(44) 

To second order in r, (44) becomes 

r = r(t = 0)\1 - 3a·r[ I + ~a'r] + 3Ro,o/r' + 0 (?)J. (45) 

Li and Ni '0 implicitly treat the case r (t = 0) = 1 and consid­
er only the first-order representation of r for which (45) re­
duces to 

(46) 

If, however, we integrate only the exact terms in (43) the 
first-order representation of r is 

(47) 

A comparison of (47) with equation (33) of Li and Ni 11 shows 
that they are the same. This establishes that the results of Li 
and Ni contain only the exact terms for the representation of 
r. 

Now from (39) we have 

VO 1 - [~R °ip/,.'(l - a·r) - ftP,p(5R °ikp;l - R {)ki/;p)"'r",-Ij vPlr 
= 

r 1 - a'r + (a·rf - (a·r)3 - !ROiO /,.'(1 - 3o·r) + (1I31)R oioj ;k"',.'r" ' 

Wi = f = (VOir)! - (euXrn 1 - a'r + (a'r)2] 

- ~Rijko,.'r"(l - ia'r) + ~(euxr)iRojOk,.'r" 
+ (1I31)Rojik;/r'r"rl J + (V k Ir1l8k 
+ ~R ijk1r',J - (l/3!)(euX r)'R °jkl,.',-I 

- -f2P/d5R i/Pk;m - R ip/m;k),Jr"~J, (48) 

which when combined with (47) and the usual expansion of 
the denominator of (48) yields 

Wi = f = - (euXr)i[ 1 + a'r - (a·rf] 

- !RijkOr'r" (1 + ¥z·r) 

+ VP[ (1 +a'r)8~ +~Rjp/,.'r/(1 +a·r) 

- -f2P/p(5R i1kp;m - R ik/",;p)rlr"~j + o (r4
). (49) 

A comparison of(49) with Eq. (37) ofLi and Ni" shows that 
the two equations do not agree. This is indicative of the prob­
lems that are encountered in trying to obtain the coordinate 
velocity by integrating the coordinate acceleration as per Li 
and Ni. Basically, Li and Ni's equations (27) and (28) are 
incomplete because they consider only those terms that give 
rise to exact differentials and do not recognize that the co­
ordinate acceleration is given in the e

l 
basis while Vis 

stated in terms ~the ell'" basis. The r;~~lting mixing of the 
components of V in the expression for Win (49) does not 
occur in special relativity because the underlying manifold is 
flat and the two basis sets e

l 
I'" and el I" I are the same to within 

scale factors. We can also write (49) as the vector equation 
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W = - (eu X r) [1 + a'r - (a·rf] - !( I + ta·r)R (r,eo)r 

+ V(1 + a·r) + Ml + a·r)R (V,r)r 

-12[V,5R (r, Vir - V vR (r,r)r], (50) 

which allows us to obtain the coordinate acceleration in 
terms of either the e

l 
or e

l 
basis set. 

,HJ )1r) 

In order to calculate the coordinate acceleration, we 
first note that the D matrix is 

- D () I r = 2(a'r) [I - a'r + (a'r)2] 

+ a'euXr[1 - a·r] + (ei·r)[1 - a·r] 

- ~R {)ijkf;ir" [1 - a·r] + 2RojOirr'[ 1 - ia'rl 

+ [ !~Oj;O + riRojki - ~(a'f)Ro,oj I r'r' 
- ~(eu X r)k (R Oijk + R Okji W,.' 
- ~(RO,ok;j + ROkOi;j + ROkOj;i)f,.'r" 

+ (2!4!)(5R ()ikj;l - R °kil;jW;ir",-I, (51) 

Dilr = ail 1 + a'r] + 2(eu X f)' 

- 2(eu X r)i(a'r) [1 - a·r] + ('r/ X r)i 

+ eui(eu'r)- 8j,.'(eul )2- (b·r)(euXr)i-2a·euxr(euxr), 

+ [Ro,Dj(1 + 2a·r)-2(eu X r)kROjik],.' +[ - !ROjOk,i 

+ ROiOkJ - ¥Z/Rik/j + ~(a'r)ROkij 1 ,.'r" 
+ [2RijkO - ~(a'r)(ROkij + ROikJ - 2(euxr)'RojOk 

- ~(euxrY'(Rpkij + Rpikj)j fir" 

+ [ - ~R ;kl - !(eu X rrR ~k I rrk,-l 

+ [ - 'R - R 'R I :j·k / 3" Ojik;l Okij;l +:3 Okil;j r r r 
+ (2/4!)(5R ij1k;p - R i/jP;k);i;-K,Jr". 
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Combining (18), (42), and (51), we obtain the coordinate acceleration as given by 

Ai - - ai(1 + a.r) - [UJX(UJXr))'" - (7]xr)i - 2(UJX W)i + 2(a'W)(UJXr)i 
l;d') -

+ Wi[b'r + 2a'(UJxr) + 2a·W{1- a·r)] + (b'r)(UJ X rj'" + 2a'UJ X r(UJxr)i 

- 2a' Wa·r(UJ X r)i - W ia·rb·r + 2UJia• W (a·r)2 - 2 W i(a·r)a·UJ X r 

- ROiO/ - 2R iJkO "xWJ + jRiJkl WJWkrl + 2RojOk WiWJ"x 

+ tROJkl WiWJWkr' + t,akR,.Jkpr'r" + 2(UJ X rY'Ro)ipr' 
. k . . 

- 2(a'r)Ro,o/ + ~(a'r)(ROJik + ROiJk)W r - ja·WROJiprr" 

+ 2(UJ X r)iRojOk WJ"x + i(UJxr)k(RkliJ + Rki/J)WJrl 

+ j(UJxr)iRokJP WJWkr" + t,akROpkl Wir'r" 

- ~(a'r)RojO/ WiWJr' - ta·WROjOk Wir-,.x + j(UJXr)k(RoJkl + ROkJI)WiW)r' 

- j(a'r)ROkJP WiWJWkr" - !(Ri)kO:O + RiOjO;k)r"x 

+ !RiJk/:Or'r'Wk - RiJ/O:Pr'r"WJ + -&.(5R ikjl;P + Ri/JP;k)W)Wkr'r" 

+ ~ROIOP:Or'r"Wi + ROjOk:/"xr'WiWJ 

+ !R01)k;Or'"xWiW) + -&.(5RokJI;p + RO/JP;k )r'r"W"WJW k + 0 (,-3). (52) 

Equation (52) is identical to equation (21) ofLiand Ni. 11 This 
is no surprise as (18) is the parallel translation of(14) and 
hence the same as equation (20) of Li and Ni. The proof of 
this statement is the subject of the next theorem. 

Theorem 1: Equation (18) is equal to the parallel trans­
lation of (14). 

Proof: Writing (18) out in component form we have 

(t Irwo1"" = - rO,,{3(t,so(t ))WuW{3eOI "" 

[A i ri ( ())W- u W-{3]- t W- i -+ "fJ t,so t eil = - - eil • 
1111 r )111 

Parallel translating (53) to y.(t) we obtain 

t _ ro ( ())W-UW-{3 --- - - a{3 t,so t eOI re )",1" 

011',111 

(53) 

[A i +r'a{3(t,sO(t))WuW{3]eil = - tW'eil • (54) 
1'.111 r Jill 

which can be rewritten in vector notation as 

V. CONCLUSION 

t 
- Vd1d,YI(t). r Q.E.D. (55) 

In this paper we have used Ekstein's presymmetry and 
covariance to obtain two distinct definitions of the observa­
tion of a vector field by a general observer, and modern dif­
ferential geometry to define a natural connection for the gen­
eral observer. This led to an invariant definition of the 
coordinate velocity and coordinate acceleration of a geode­
sic particle and yielded closed form expressions for these 
quantities. We have examined the consequences of our defi­
nition of observation based on the mapping of tangent spaces 
to tangent spaces via parallel translation. Our results sub­
sume the exact special relativity treatment of DeFacio, Den­
nis, and Retzloff as well as the general relativity work of Ni 
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and Zimmerman and Li and Ni. We have clearly identified 
the tangent spaces of the relevant vector fields and in so 
doing have shown that the expressions of Ni and Zimmer­
man and Li and Ni for the coordinate velocity and rare 
incomplete to the order stated in their work. The procedure 
for obtaining higher-order coordinate representations of A 
and Ware clearly stated. 
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The observation of a general vector field based on expo is employed to obtain formulas for the 
coordinate velocity and coordinate acceleration of a geodesic particle. Our results are shown to 
reduce to those based on a parallel transport definition of observation in special relativity. In 
general relativity the difference between the expressions for the coordinate velocity and 
coordinate acceleration derived from the two definitions of observation is given in terms of the 
Riemann curvature tensor. 

PACS numbers: 04.20.Cv 

I. INTRODUCTION 

In a previous paperl (hereafter referred to as I) we gave 
two distinct definitions of the observation of a general space­
time event by a general relativistic accelerating rotating ob­
server (GRARO) which are consistent with covariance and 
presymmetry2.3 considerations. In I we developed the conse­
quences of the second definition in which the observation of 
an event at qEMby a G RARO at pEM is given by the parallel 
translation map Tpq' The purpose of the current paper is to 
investigate the consequences of the first definition wherein 
the observation of an event atqby aGRARO atp is given by 
expo . The analysis will focus on the observation of a geodesic 
particle by a GRARO. It will be shown that for special rela­
tivity the two definitions of observation of a spacetime event 
give identical results, while by contrast, the difference in the 
results of the two definitions of observation in general rela­
tivity is measured by the Riemann curvature tensor. 

The organization of this paper is as follows. In Sec. II 
we show that expo is the solution of an appropriate Jacobi 
field equation and prove that the difference between expo 
and Tpq for the observation of a geodesic particle by a 
GRARO is determined by the Riemann curvature tensor. 
Section III contains our calculations of the coordinate veloc­
ity and coordinate acceleration. Our conclusions are given in 
Sec. IV. 

II. THE JACOBI FIELD EQUATION AND expo 

From Definition 1 of I the observation of the velocity of 
the geodesic particle by the GRARO is given by 

(1) 

or 

v = eXPrit). YrirJl 
"" 

as shown in Fig. 1. Using (1), we state and prove the follow-
ing theorem. 

Theorem 1: The velocity vector V is the covariant de­
rivative with respect to dY21ds of the Jacobi field associated 
with the map a(s,' )-exPrit)s(r(t) + 'V(t)) for fixed t. 

Proof Consider the map 

a(s, ') = eXPrir)s(r(t) + 'V(t)), (2) 

and the associated Jacobi field along s-exPrit) r(t ) given by 

J (s) = a. (alaI) I, ~ 0' (3) 

with 

J(O) = 0, 1'(0) = VdldJ
1

, = V. 
This Jacobi Field is depicted in Fig. 2 and satisfies the 
equation 

V dlds V dldJ = R (d Ids, J)d Ids. 

Now from a consideration of the canonical isomorphism 

(4) 

(5) 

(6) 

Y, (AI =Y, (tl 

Yltl 

FIG. I. The manifold defined by the GRARO and the geodesic particle. 
The symbols are defined as follows y(t) -world line of the GRARO' 
r,(;t) = rolt) -world line of the geodesic particle;;t -affine param:ter of 
the geodesic world line; t -nonaffine parameter; r,(s, t ) -unique geodesic 
passing throughp and q, s -affine parameter of r,: r(t ) position of geodesic 
particle relative to the SiRARO; u -velocity ofGRARO; V -velocity of 
the geodesic particle; V -velocity of geodesic particle as seen by the 
GRARO. 
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y(t) r, (t) 

FIG. 2. The Jacobi field associated with the velocity vectors Vand V. Bere 
r,(s) is given by r,(s) = r,(/, s) = r I, n '(t )s, n2(t )s, n.l(t)s I for fixed t. 

given by 

. d 
r"II:-(r(t)+mJ)1 n~' dm m 

and the map 

if;'. Ty(qM-+TY,lqM 

determined by 

¢ = eXPriq. oT"II' 
",' 

we have 

¢J = eXPJit).,,, [d~ (1'\t) + mJ) 1m ,,] 

d 
= --;;;;:XPJiIi (r(t I + mJ) 1m 0 = J (1) 

= a.(alal)l, 0, ,= expy(t).,,, V = V. 

At a general point along r2(S) we obtain 

J(s) = a.la/al IIi 0., ,= eXPJit).,""Sv. 

Hence 

J(O) = 0 J'(O) = Vd/d,!I, 0 = V, 
J(1) = expy(t). V = V. 

rl" 

(7) 

(8) 

(9) 

(10) 

(11 ) 

Q.E.D. 
It follows from the theorem that in special relativity 
eXPnt). V is equivalent to parallel transport and hence 

",' 
Definition 1 and Definition 2 of I for an observation are 
identical for this case. The proof of this statement is the con­
tent of the following corollary. 

Corollary. In special relativity V = exPW). V is identi-
- ~I) ~ 

cal to the parallel translation of V, i,e., V = l' y(t ),exp", ,,,1) V. 
Proof For special relativity R (d /ds,J)d Ids = 0, Hence 

(5) reduces to 

Vd/dsVd/dJ=O. (12) 

Let eil , be a set of basis vectors along Y2(S) obtained from the 
natural basis vectors eil at YI(t) by parallel transport. Fur-

y,\-\ 

thermore, let 

J(s) = Jaeal , V= VVevl,~o' V= vaeal,.~,' 
With these basis vectors (12) reduces to 

d 2rlds =0, 

106 J. Math. Phys., Vol. 23, No.1, January 1982 

(13) 

(14) 

with 

( 15) 

and 

(16) 

The solution off 14) satisfying the boundary conditions (15) is 

Ja(s) = vas. ( 17) 

Combining (17) and (16) we have 

V=V", (18) 

which are the equations for the parallel translation of V 
along Y2(S) to r(f). Q.E.D. 

We now consider the calculation of the coordinate ve­
locity Wand the coordinate acceleration A. 

III. SPECIFIC CALCULATIONS OF A AND W 

To calculate the coordinate velocity W we must first 
solve (5). To this end let eo: represent the natural coordinate 
basis vectors along the geodesic r2(S) based on the MTW 
coordinate system given in I, and ea be the parallel translat­
ed basis vectors along Y2(S) that are identical to eal,.", at YI(t) 
(see Figure 1). Then the tangent vector to Y2(S), Ty " at any 
point s can be written as 

(19) 

with t fixed. Thus we have the following proposition. 
Proposition. The fia(t) given in (19) are independent ofs. 
Proof In the MTW coordinate system Y2(S) is written in 

I as 

r 2(S) = [XD(S), XI(S), X2(S), x 3(sll 
= (t, n I(t )S, n2(t )S, n3(( )s I. 

T y , is given by 

and 

T y , = Y2(Sj = na(t)en = i'\J' 

0= V Ty, Ty , = V rii3lt le/la(t lea 
= nP (t) [VeHn"(1 )]ea · 

This implies 

(20) 

(21) 

(22) 

(23) 

Hence na(t) is constant with respect to s. Q.E.D. We now 
write (5) as 

d;;(S) e(J =ea Rao-y,;(t,s)nO'(I)nY(t)J5(s), (24) 

(2S) 

with t fixed. Here li i3 o-y,;(I, s) denotes the Riemann curva­
ture components with respect to the e Q basis set. To proceed 
further, we expand lii3 o-y,;(t, s) in a Taylor series, i.e., 
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IRgV)lIJ1 IR~V1siIJl IR~(MIJl IR~V)lIJl 
j j j j 

IR~V1siIJl IR: V1siIJl I R iV)l/j1 IR~V1siIJl 
N= 

j j j j 

Then IR~V1siIJl I R iV1siIJl IR~V)l/j1 IR~V1siIJl 
j j j j 

j[P "1's(t, s);;<T(t );;1'(t) = ! .{RP "1's(j);;a(t );;1'(t) 
j=O J1 I R6V1siIJ1 

j 
IRW)lIJl 
j 

IR~V1siIJl )'RW)l/j1 ...., 
j j 

00 _ I 
== L R P s U1-· (27) 

j= a J1 
(30) 

The initial condition for (28) is 
With (27) we can now write (25) as T _ ""0 ""I =2 =3 Z (0) - (0; 0, 0, 0, V , V , V , V ). (31) 

dz 
dt =Nz, (28) Using the matrizant method4 as in I to solve (28), we can 

write the solution to (5) to fourth order in s as 
where w=r-v +B)V, (32) 
Z T = (Jo(s), J I(S), J 2(s), PIs), jOts), j I(S), j2(S), j3(S) J, where Wand V = Vare given with respect to the ea basis set, 

the spatial components of Ware the components of the co­
ordinate velocity [see (41) ofI] and 

j(s)=dJ(s)lds, (29) 

and 

2 3 Z ( ) 3 ( ) S2 (t ) S3 (t ) S2 (t ) S3 (t ) 
ROo(Oto~~) + 2ROo(1)sO~~) R O

I(0)s02: + 2ROI(1)S03: R 0
2(0) 0

21 
+ 2R

0
2(1)Tr R03(0) 0

21 
+ 2R

0
3(1)T, 

2 3 ) Z ( ) 3 ( ) S2 (t ) S3 (t ) S2 (t ) S3 (t ) 
RIo(O)sO~~) +2Rlo(lto~: R I

I(0)S02: +2R I
I(1)So3: Rlz(O) 0

21 
+2R

l
z(1)Tr RI3(0) 0

21 
+2R

I
3(1)T, 

B = z 3 ) Z ( ) 3 ( ) S2 (t ) S3 (t ) S2 (t ) S3 (t ) 
R20(otO~:) + 2RZo(l)so~: R 2

1(Ot0
2
: + 2R\(1)s03: R

2
2(0) °2! + 2R

2
2(1)Tr R23(0) °2! + 2R

2
3(1)-"Tt-

2 3 2 ) 3 ) SZ (t ) S3 (t ) S2 (t ) S3 (t ) 
R30(0)SO~:) + 2R30(1to~:) R\(oto~: + 2R31(1)so~: R

3
2(0) 0

21 
+ 2R

3
2(1)Tr R\(O) °2! + 2R

3
3(1)-"Tt-

"" _ _ _ (33) 
Using the notation that Vis the representation of Vin the ea basis set and Vis the representation of V in the ea basis set, we 
have from I that 

v = n (so(t ), t)V, 

where n (so(t), t) is given by (10) and (39) of I. We further note that 

WTpq = r -IIV = r -I V = r -In (so(t), t)V 

(34) 

(35) 

is the result we obtained from the parallel transport definition of observation in I [see (39) ofI]. Thus the coordinate velocity 
based on the expw I. definition of G RARO observation WexPY(,J. can be written in terms of the coordinate velocity obtained 
from the parallel transport definition of GRARO observation W

T 
,plus a correction as follows: 

pq 

WexP"". = WTpq + r -IBV. (36) 

Ifwe letBbe the B matrix expressed with respect to the ea basis set and note that WexP and W
T 

are to be expressed in theea "If'). pq 

basis set, we obtain (36) in a form given by (37) that can be compared directly with (39) ofI, i.e., 

w.xp"". = WTpq + r -1B:a (so(t), t)V, (37) 

where W, is given by (39) of I; 
pq 

W~p = (1, ;-1, P, r)l ' 
y(Ij. y(tj 

and R 0 ( II 0 11r'< 
ifil t, 0)- + R iP dt, 0)--

2! . 3! 

R ill I IIr'< 
iP(t, 0)- + R ipdt,O)-

2! . 3! 

R 2 r'r' 2 IIr'< iP(t, 0)- + R ifil dt, 0)-
2! . 3! 

R 3 r'r' 3 r'1r'< 
iP (t, 0)- + R iP k (t, 0)-

2! . 3! 

R 0 ( Ir' a r'r'r" 
ijl t, O~ + R ijl k (t, 0)--

21 . 3! 

R I ( II I 11r'< 
ijl t, 0)- + R ijl dt, 0)--

2! . 3! 

R 2 II 2 11r'< 
ijl (t, 0)- + R ijl dt, 0)--

2! . 3! 

R 3 r'1 3 Ir'r'< 
ijl (t, 0)- + R ijl k (t, 0)--

2! . 3! 
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R 0 ( 1"1 0 I"Ir" 
ij2 t, 0)- + R ij2 k (t, 0)--

21 . 3! 
R 0 ( 1"1 0 ";Ir" 

ij3 t, 0)-+ R3k (t 0)--
21 'J.' 31 

R I ";1 I ";I"r" 
ij2 (t, 0)- + R ij2 k (t, 0)--

R I ( ,.;,; I ";Ir" 
ij3 t, 0)- + R) dt 0)--

2! . 31 2! 1J.' 31 

R 2 ( 0) ";1 2 I"Ir" 
ij2 t, - + R ij2 k (t, 0)--

2! . 3! 
R 2 ( 1"'; 2 I"Ir" 

ij3 t, 0)- + R) k (t 0)--
2! 'J.' 3! 

(39) 

R 3 ( ";1 3 1"1"r" 
ij2 t, 0)- + R ij2 k (t, 0)--

2! . 3! 
R 3 ( I"r' 3 I"Ir" 

ij3 t, 0)- + R) k (t 0)--
2! 1J.' 3! 

to fourth order and)' = 1, 2, 3. The R a "k are the Riemann curvature components in the eal basis. It is immediaie1y apparent 
li<:- y(t) 

from (39) that the correction is of the order of the Riemann curvature coefficients. 
The general expression for the coordinate acceleration is given by (18) of 1. The coordinate acceleration obtained from the 

expo definition of observation, Aexp., can be written in terms of coordinate acceleration derived from the parallel transport 
definition of observation, AT ,and a correction as 

pq 

where 

rl" up(t, sort )) is defined by (20) in I and [ffn (so(t ), t ) V] u is 
the a-component of the vector expression within the brack­
ets. The correction terms for the coordinate acceleration are 
also of the order of magnitude of the Riemann curvature 
coefficients. 

IV. CONCLUSIONS 

In this paper we have used our definition of observation 
based on the mapping of tangent spaces into tangent spaces 
via expo to obtain expressions for the coordinate velocity and 
coordinate acceleration. The results are stated in terms of the 
corresponding expression obtained from our parallel trans­
port definition of observation and a correction term that is a 
function of the Riemann curvature tensor. Thus the differ­
ence between the formulas for the coordinate velocity and 
coordinate acceleration obtained from the two definitions of 
observation will be numerically small in most situations. 
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(40) 

(41) 

(42) 

This difference arises principally from the fact that expo is 
only a radial isometry while the velocity vector of the geode­
sic particle is normal to the geodesic Y2(S). Finally, expo is not 
defined through conjugate points. However, this presents no 
basic difficulty when null geodesic photons are employed to 
make the observations. 
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Vacuum handles carrying angular momentum; electrovac handles carrying 
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Nonsimply-connected spacetimes can have locally defined Killing vectors that are globally 
defined only up to sign (pseudovectors). We show the existence of asymptotically flat vacuum 
spacetimes which are axisymmetric (have a rotational Killing pseudovector), are topologically 
trivial outside a spatially compact region, and which nevertheless have nonzero angular 
momentum. An analogous construction establishes the existence of source-free Einstein­
Maxwell spacetimes which are topologically trivial outside a spatially compact region and which 
nevertheless carry nonzero net electric charge. The existence of such space times leads to a new 
variant of the combined positive energy-cosmic-censorship conjecture: Given an asymptotically 
flat vacuum or electrovac initial data set which is axisymmetric and geodesically complete, the 
asymptotic mass, charge Q, and angular momentum J satisfy m;;.[Q 2 + (J Im)2]1/2. 

PACS numbers: 04.20.Cv 

I. INTRODUCTION 

In a nonorientable spacetime, the duality in variance of 
the electromagnetic field is broken, because there is no glo­
bally defined, totally antisymmetric tensor. A remarkable 
consequence, pointed out by Sorkin, I is that the topological 
model for charge (a nontrivial spatial topology threaded by 
an electromagnetic field) predicts the nonexistence of mag­
netic charge if one assumes that: 

(a) Spacetime admits a Cauchy surface M which is com­
pact inside a neighborhood of spatial infinity. 

(b) All prime factors (nontrivial topological structures) 
of M are microscopic. That is, handles do not join measur­
ably distant points of M (points with, say, larger than nuclear 
separation), nor, by (a), do they bridge two asymptotically 
flat regions. 

(c) The electromagnetic field is described by some anti­
symmetric tensor faP satisfying V Jap = 0, V I a fpy I = O. 

A priori, one does not know which combination, 
fsina + *fcosa, to identify with the usual electrom~netic 
fi~d tensor F, defined on the simply connected part M of M 
(M is obtained by excluding from M the interior of spheres 
containing its.prime factors). However, the observed nonex­
istence of magnetic charge is the statement that for one 
choice of a !.!Ie net flux ¢" FupdS ap vanishes through any 
sphere aCM.2 If a encloses an orientable factor of M, 

Stokes' theorem implies that both ¢"fapdS aP and 
¢: fapdS up vanish; there is no net charge of any kind. If the 
interior of a is nonorientable, then an extension of Stokes' 
theorem3 implies ¢: fapdS up is still zero; but ¢" fapdS ap 
does not in general vanish. Thus the model conforms to ex­
perience: There is a choice (a = 0) of a for which 
¢" FapdS ap through any (larger-than-nuclear) sphere a 
vanishes, and one can detect only electric charges until it 
becomes possible to probe the microscopic topology, to mea-

alWork supported in part by the National Science Foundation under grant 
PHY 7906657. 

sure, for example, the flux through just one of the entrances 
to a handle. 

There is a formal resemblance between the definition of 
charge as fiux through a two surface and the definition of the 
angular momentum of an axisymmetric spacetime N with 
rotational Killing vector <p a. The angular momentum J asso­
ciated with <p a may also be written as a surface integral, 
namely 

J= -8
1 ,J: va<pPdSa(3' (1) 
1T l~ 

where a 00 denotes a sphere at spatial infinity; if N is a vacu­
um spacetime with spatially compact interior-i.e., satisfy­
ing assumption (a) above-then J vanishes (even when N is 
nonorientable). We will find, however, that J can be nonzero 
if Nhas a somewhat weaker symmetry-a rotational Killing 
vector defined only up to sign. In Sec. II, below, we will 
establish the existence of vacuum spacetimes which have 
compact interior, are axisymmetric in this weakened sense, 
and whose angular momentum is nevertheless nonzero. 

In Sec. III, we similarly show that nonorientable topo-
logies carrying net charge arise as solutions to the Einstein­
Maxwell equations. The proofs in Secs. II and III show the 
existence of asymptotically flat vacuum (or electrovac) initial 
data; that the Cauchy development will remain asymptoti­
cally fiat is known for finite time evolutions.4 In Sec. IV, on 
the basis of the cosmic censorship hypothesis and Gannon's5 
singularity theorem for topologically nontrivial spacetimes, 
we conjecture that any asymptotically fiat, axisymmetric, 
electrovac spacetime must satisfy m > (e2 + J2 Im2)1/2, 
where e, J, and m are the asymptotic charge, angular mo­
mentum, and mass, respectively. 

Spacetime indices will be Greek, and spatial indices 
Latin. Our signature is - + + +, and we set 
Via Vb IVC = ~R cdabVd and Rab = R cacb ' Our notation for in­
tegrals has already been mentioned in footnote 2. 

The portion of this work dealing with angular momen­
tum in axisymmetric vacuum spacetimes is also discussed in 
S. Mayer's Ph.D. thesis. 6 
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II. VACUUM HANDLES CARRYING ANGULAR 
MOMENTUM 

Let N be an asymptotically flat spacetime with a rota­
tional Killing vector 4> a defined at least on a neighborhood 
of spatial infinity. A spacelike hypersurface M of N will be 
said to have compact interior ifit is complete and has only 
one asymptotic region-if, that is, it can be compactified by 
adjoining a single point at infinity. If N is a vacuum space­
time with topology R XM, where M has compact interior, 
and if ¢ 0 is globally defined, then the angular momentum 
associated with ¢ a vanishes 

8rrJ = i r;ra¢ f3 dSa{3 = ( Va -va¢ f3 dS{3 = 0. (2) 
~" JM 

Stokes' theorem has been used to integrate by parts,7 and the 
final equality follows from the Killing identity 

Vf3 V{3¢u=Raf3 ¢f3, (3) 

and from the vacuum field equation R a {3 = 0. 
A nonsimply-connected spacetime may, however, have 

a weaker symmetry, which will be called a Killing pseudo­
vector field. 

Definition: A pseudo vector field on N is an assignment 
to each point pEN ofa pair, {¢ a(p), - ¢ a(p)}, of vectors atp 
such that on any simply connected submanifold of M, ¢ a is 
itself a smooth vector field. (Pseudo tensor fields are analo­
gously defined.) A pseudovector field is thus a vector field 
up to sign, and it gives rise to a true vector field on the univer­
sal covering space N of N. A Killing pseudo vector ¢ a is a 
pseudovector field that Lie derives the metric 

(4) 

For example, if one constructs a Mobius strip by identifying 
left and right edges of a rectangle, a constant vector field 
parallel to those edges becomes a Killing pseudovector of 
the Mobius strip. 

In what follows, the word axisymmetric will, for bre­
vity, be retained to describe a spacetime having a rotational 
Killing pseudo vector. The remainder of this section will be 
devoted to proving the existence of axisymmetric vacuum 
spacetimes whose spacelike hypersurfaces have compact in­
terior and which nevertheless have nonzero angular momen­
tum. Specifically, it will be shown that on some three-mani­
fold M with compact interior, one can find axisymmetric, 
asymptotically flat initial data which satisfies the vacuum 
constraint equations and has nonzero angular momentum. 
We are then guaranteed a finite time evolution: a vacuum 
spacetime N in which M is isometrically embedded and 
which exhibits the axisymmetry and nonzero angular mo­
mentum of the initial data. This time development will also 
be asymptotically flat at least for some finite evolution.4 

Note that in a neighborhood of spatial infinity, M will have a 
true Killing vector and Eq. (1) will therefore continue to 
provide a well defined angular momentum. 

A vacuum initial data set is a triple (M, gab,Pab)' where 
M is a three manifold, gab a positive definite metric on M, 
andpab a symmetric tensor onM(which will be the extrinsic 
curvature of M in the spacetime N evolved from the data), 
satisfying 
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Db(pab - gabp ) = 0, (Sa) 

R - pabpQb - p2 = 0, (Sb) 

where Dais the covariant derivative associated with gab' and 
p pUu' 

The set (M, gab ,Pab) will be called axisymmetric if there 
is a rotational Killing pseudo vector, ¢ a on M which Lie 
derives both gab and P ab' The angular momentum J can be 
written in terms of the initial datagab ,Pab as follows. Suppose 
that M is an axisymmetric spacelike hypersurface of an axi­
symmetric vacuum spacetime Nand let ta be the unit normal 
to M. Let (J oc be any sphere in M enclosing all nontrivial 
topology [any sphere for which (M - int(J 00 )~(R3 - a 
ball)]. If na is the unit normal to (J 00 , 

8rrJ= L.va¢f3tanf3dS, 

= i ¢ "V (7 tf3 n
f3
dS, 

= i.Paf3¢anf3dS, 

where £q\ t ex = ° was used in the second equality. In this last 
form, J is expressed solely in terms of tensors on the three­
manifold M (tensors orthogonal in all indices to na)' Thus if 
¢a ,nb,Pab' and gab denote the pullbacks to M of ¢a ,na ,po{3' 
and [hf3' we have 

8rrJ = f!abrnb dS. (6) 

Finally, we recapitulate a definition of asymptotically 
flat initial data. R Let M be a compact manifold and let 
£1 = M - ! P J, P a point of M. Then an initial data set (£1, 
gab ,p ab) is asymptotically flat at spatial infinity if there exists 
a scalar field fl and a metric gab on M such that 

(i) fl is smooth on £1 and C 2 at P, gab is smooth on £1 and 
CO at P, gab = fl 2gab on £1, and 

fl=O, Dafl=O, DaDbfl=2gab atP, 

where Da is the covariant derivative associated with gab; 
(ii)Pab=flPab is bounded in a neighborhood of P; 
(iii) the tensors fl 1/2 Eab and fl 1/2 Bab admit regular, 

direction-dependent limits at P, where (raising indices with 
gab and using the covariant derivative Da of gab)' 

Eab = Rab - PamPbng
mn + PPab' 

Bab = £mnlaDmp\) 

are parts of the (spacetime) Weyl tensor. 
In our existence theorems we will begin with smooth 

fields gab and Pab on the compact manifold M and will then 
construct a conformally related vacuum initial data set on 
M,with 

gab = Ij/ 4gab , (7) 

Pab = 1j/2Pab' (8) 

(Ij/ is easier to use than fl -Ij/ - 2). Let r be the geodesic dis­
tance from P with respect to the metric gab on the compact 
manifold M. Then to prove asymptotic flatness of (£1, gab' 
Pab) it suffices to show that (a) Ij/ is smooth and positive on £1, 
(b) near P, Ij/ has the form Ij/ = 1!r + ¢, where ¢ is continu-
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ous at P, and where (c) Da r/J and r DaDbr/J have regular 
direction dependent limits at P. 

In less esoteric terms, conditions (a)-(c) imply the exis­
tence of a chart Xi on M (take Xi = xii r. where Xi are geodesic 
coordinates of gab about P) in which the components of gab 
and P ab are smooth on M and have the asymptotic behavior 

gij = 8ij + 0(1:-1). akgij = 0(1:-2), aka,gij = 0(;:-3), 

Pij = 0 (;:-2), akPij = 0 (;:-3). 

The point P of M, of course, plays the role of the "point at 
infinity" of M. 

Theorem 1: On some manifolds M with compact interi­
or, there exist axisymmetric vacuum initial data sets (M, 
gab,Pab) which are asymptotically fiat and have nonzero an­
gular momentum. 

Proof We first establish three lemmas. 
Lemma 1: Let M be a compact three-manifold with 

positive definite metric gab whose scalar curvature is every­
where positive. Then there is a conformally related, asymp­
toticallyfiat initial dataset (M,gab' 0), whereM = M - ! PI, 
some PEM. (This result was suggested by Geroch.9 Its impli­
cation-the fact that to any compact three-manifold M ad­
mitting a metric with positive scalar curvature R corre­
sponds an asymptotically flat space (M, gab) with vanishing 
R-is mentioned by Schoen and Yau.)10 

Proof Since Pab = 0, the momentum constraint (Sa) is 
automatically satisfied. Under a conformal transformation 
of the form (7), the Ricci scalar becomes 

R = - 8tJ1- 5(D 2 - AR )tJI, (9) 

whence the Hamiltonian constraint (Sb) will be satisfied if 

etJI=( - D 2 + ~R)tJI = 0 (10) 

on M. If, following Geroch,9 we set etJI = 8 on M, with /) p p 

the covariant 8 function at P, then we will see below that 
tJI> € > 0 everywhere (thus gab will be positive definite) and 
that asymptotic fiatness of (M, gab) will be guaranteed as 
well. Now 8p EH _ 2(M), where Hn(M) is the nth Sobolev 
space. II Because R is positive definite, e is positive definite 
and kere = O. Because e is symmetric (e' = e) the index 
ofe, 

inde = dim kere - dim kere', 

vanishes as well. Then by a theorem due to Seeley 12 e is an 
isomorphism from Hk (M) to Hk _ 2 (M) for all integers k. In 
particular, there is a tJI in Ho(M) for which etJI = D p' Fur­
thermore, because e is C 00 and elliptic on M, tJI is C '" on M 
by the local smoothness of solutions to elliptic equations. 13 

To prove (b) and (c), pick Riemann normal coordinates 
x' about P [so that xi(P) = 0] and write tJI in the form 

1 1 1 x'Xi 
tJI= - + -(R - -8R)(P)-

r 12 '1 4 '1 r 
1 I 1 xiyjxk + - ('ViRjk - 'V,R i8jk - - 'ViRDjk )--

M 4 r 

+t/I, 

where r = [~(Xi)2] 1/2. Then, using 

'V2(l/r) = 83(x) = 8p (x), 
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(11) 

we find that etJI = Dp has the form 

xi;xi xiyjxkx' Xi ... Xn D 
et/l = Aij -r- + Bijkl ? + Cijklmn ~ + , 

(12) 

where Aij,Bijkl,Cijklmn, and D are smooth. The ri~ht-hand 
side of ( 12) is C a ,a > 0 and all the coefficients in e are 
smooth. Thus t/I is C 2 and Eq. (11) implies that the require­
ments (b) and (c) for asymptotic fiatness at spatial infinity are 
satisfied. 

Finally, tJI> € > 0 follows by noting first that vi is posi­
tive in a neighborhood U of Pbecause tJI-l/r. Then tJI can-

not be negative on the compact set M - U ,for if it were, it 
would have a minimum at some point q and there R tJI < 0, 
- D 2tJ1.;;;0, contradicting (10). It now follows from (10) that 

if tJI = 0 at some q, all derivatives,. of tJI vanish there as well, 
and by a theorem of Aronszajn, 14 tJlwould then have to van­
ish everywhere, contradicting tJI> 0 on N. Thus tJI> € > 0 
everywhere. 0 

Lemma 2: Let A and B be Banach spaces and T). a fam­
ily of continuously differentiable maps of a neighborhood V 
ofaoEA intoB. Let To(ao)bean isomorphism of A ontoB and 
suppose A continuously parameterizes T). and T A' Then for 
sufficiently small A, there is an open set UC V such that the 
restriction of T). to U is a homeomorphism onto an open 
neighborhood of To(ao) in B. 

Proof: The proof is virtually identical to that of the im­
plicit function theorem. For sufficiently small AEiR, bER, T A 
is an isomorphism and the map 

S (a) = - (T;J-I [T). (a + ao) - To(ao) - b ] + a (13) 

is a contraction in a neighborhood N of OEA. Hence S has a 
unique fixed point, an aEN for which S (a) = a. This a satis­
fies T). (a + ao) = Tc)(ao) + b. Thus a + ao is the unique solu­
tion in the neighborhood ao + N of ao to the equation 
T).(a) = To(ao) + b. 

Lemma 3: Let M, gab be as in Lemma 1 and letpab be a 
smooth tensor field on M with D bpab = 0, pa a = O. Then for 
sufficiently small real A, there is an asymptotically fiat initial 
data set (M, gab (A ), APab)' where M and gab (A) = tJl4gab are 
as in Lemma 1, and where 

(14) 

Proof: Because i5bPa b = tJI- 6DbPa b, the momentum 
constraint is automatically satisfied. As in Lemma 1, we 
need only show the existence of a tJI). satisfying conditions 
(a)-(c) and for which R satisfies the constraint (Sb) on M: 

or 

R- - -ub 0 -PabP = , 

e tJI =(D 2 _ !R ) tJI +!) 2pabp .T, - 7 - 0 ). ). - 8 ).!y0 ab 'Y ). -. 

Again we seek a solution to 

e). tJI). = Dp 

(IS) 

on M. Ifwe write tJI). = tJlo + t/I)., with tJlo the (unique) solu­
tion to eo tJlo = Dp , Eq. (16) becomes an elliptic equation for 
t/I)., namely 
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For 1/1). in Hz(M) with 111/1).112 sufficiently small, '/10 + 1/1). is 
bounded away from O. Therefore 0). maps to Ho(M) a neigh­
borhood of 0 in H 2(M). Moreover, 0). is continuously differ­
entiable at 1/1). for 1/1). near 0 in H2(M), with derivative the 
linear map 0 ~: H2(M)-Ho(M) given by 

o ~: ¢-[eo - 0- 2pahPab('/Io + 1/1). )-8)¢. 

ForA = 0,0). = eoisanisomorphismfromH2(M)toHo(M), 
whence, by Lemma 2, 0). 1/1). = 0 has a solution 1/1). Ell2(M) for 
A sufficiently small. By the construction of the proof. of 
Lemma 2,1/1). will be close to 0 in Hz(M) and so '/I). 
= '/10 + 1/1). will be positive on M for small A. By an argu­

ment analogous to that used in the proof of Lemma 1, 1/1). 
will behave near P like 1/r + ¢, ¢ satisfying (c). Finally, to 
show that 1/1). is smooth on M, we proceed by induction on 
the differentiability index k. Let n be any smooth submani­
fold with ii compact in M and suppose t/J). is in Hk (ii). Then 
because '/10 + 1/1). >€>Oonii[and l/IoEC"'(fl)],pabpab 

7 - -(1/10 + 1/1).)- Elldn), k>2.IS Because 1/1). satisfies on n the 
elliptic equation 

eol/l). = A zPabpab(l/Io + 1/1). )-7, 

with right-hand side in Hk (ii), 1/1). Ellk + 2(ii). By construc­
tion,l/I). is in H2(ii), whence 1/1). Ellk(ii), all k; that is, 1/1). 
EC "'(n). Finally, sincen was arbitrary we conclude that 1/1). 
= 1/10 + 1/1). is in C "'(M). 0 

To prove Theorem 1, we will pick a particular compact 
manifold M, a metric gab' with a rotational Killing pseudo­
vector and with positive scalar curvature R. We will then 
find an axisymmetric divergence-free tensor Pab that yields 
nonzero angular momentum on a conformally related as­
ymptotically fiat manifold. 

Let C(f be the cylinder of constant curvature R = 2/a 2
, 

constructed as a product S z X I of the metric sphere with the 

FIG.!. Boundary spheres a ± ofthecylinderS 2 x[ - l,l}arerepresented 
here. The manifold M of Sec. II is constructed by identifying a, and a _ in 
such a way that points labeled by the same letter (e.g., A + and A _) are 
identified. 
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closed interval [ - 1,1]. Let ¢ a be a rotational Killing vector 
of C(f and let ¢E[0,21T] parameterize its orbits. Mis construct­
ed by identifying the boundary spheres u _ = S 2 X! - I) 
and u + = S 2 X ! I) after an inversion. In terms of the natu­
ral cylindrical coordinates (O,¢,z), the identification is (see 
Fig. 1) 

(O,¢, - 1)-(1T - 0,21T - ¢,1). (16) 

Then the induced metric gab of M is smooth with constant 
curvature R = 2/a2 and Killing pseudovector ± ¢". 

Let 

( 17) 

where UJa is a pseudo vector on M Lie derived by ¢ a, 

£",UJa = O. (18) 

The projection ofthe momentum constraint (Sa) orthogonal 
to ¢", 

KacDbpbc = 0, 

where K a h = 8a 
b - ¢ a¢h (¢ C¢c)- I,can be written in the 

form 

K"cUJbDa(¢ d¢d)Dh¢ = 0, 

where Killing's equation (D la ¢b I = 0) and the identity 

¢a = ¢ b¢hDa¢ 

(19) 

have been used (¢ is a pseudosca1ar on M). The projection of 
(Sa) along ¢ a takes the form 

Da(UJa¢b¢b) =0, (20) 

after Killing's equation and (18) are used. Then, by choosing 

UJa = E"bcDb¢Xc(¢d¢d)-l, (21) 

where Xc is a curl-free vector field (DlaX b I = 0), both projec­
tions (19) and (20) ofEq. (Sa) will be satisfied. The pseudo­
vector UJa will be axisymmetric and smooth if £",Xa = 0 and 
if X a vanishes sufficiently fast as ¢a¢ a_o, i.e., near the axis 
of symmetry (we find such aXa below). 

Given such a X a' Lemma 3 now guarantees the exis­
tence of an asymptotically fiat initial data set (M,gab'P ab)' 
with Pab = 1/1-2Pal)l gab = 1/1 4gab , for a scalar 1/1 defined on 
M = M - IP I. BychoosingPto lie on the axis of symmetry, 
we make the conformal factor 1/1 axisymmetric. If> Conse­
quently (M,gab,Pab) will be axisymmetric with Killing 
pseudo vector ¢a. 

The corresponding angular momentum J is conformal­
ly invariant: 

81TJ = lyPa br dSb = I~Pa b¢ a dSh, 

where u'" is any sphere in M enclosing the handle (equiv­
alently, as seen from the other side, u'" is any sphere enclos­
ing P). To evaluate J, we will use the construction of M from 
the cylinder C(f with boundary spheres u + and u _ identi­
fied. LetA +, B +,A _, B_, be the points of u + andu _ that lie 
on the symmetry axis [so that in the natural cylindrical co­
ordinates, A +' is (z = + 1, 0 = 0), B+ is (z = + 1,0 = 1T), 
A_is(z= -l,O=1T),andB_is(z= -l,O=O)].InM, 
A + and A _ (and B + and B _) are identified (see Fig. 1). 

Claim: Letx be any scalar on (C -IP I withDcX = Xc' 
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where Xc is the vector field introduced in Eq. (21), and sup­
pose that X is constant in a neighborhood of each piece of the 
symmetry axis. Then 

J = UX(A_) - X(B_) + X(A+) - X(B+)]. (22) 

To prove the claim, notice that Stokes' theorem implies 

J= 1_pabtPa dSb = - 1+ +a_pabtPa dSb, (23) 

after Killing's equation and (Sa) have been used to eliminate 
the volume integral. Here dSb = nbdS, where nb is the out­
ward normal, ± Vaz, on (j ± ; the minus sign in Eq. (23) 
comes from the fact that the outward normal to a sphere at 
infinity used to define J is an inward normal when (j '" is 
regarded as a sphere enclosingPinS 2 Xl. Equations (20) and 
(21) now imply 

81TJ= - 1, +a HtPa~cdDctPDdX(tPmtPm)-I]tPa dSb, 

-(1, -1 f1atPDb LK dS
ab

, 

= (1, -1 f1a(xDb ItP) dS
ab

. (24) 

We can restrict the integral in (24) to parts of (j + and (j_, 

where DcX#O: let a + and a _ be spheres (j + and (j _ with 
small disks about the axis removed. Then 

J = A[X(A+) - X(B+) + X(A_) - X(B_)], 

as claimed. 
To conclude the proof of our main theorem, we need 

only show that we can choose a X on C - ! P I such that D eX 
is smooth on M and J is nonzero. But this is easy: Choose a 
constantj#O, and a functionf(O) withf(O) = ° near 0 = ° 
andf(O) = - (1/21T)j near 0 = ir; let X be smooth with 

f
(O) in a neighborhood of (j +, 

X(O,tP,z) = (0) + _1_j in a neighborhood of (j_, 

21T 
and with X constant on a neighborhood of each piece of the 
symmetry axis. Then DcX is smooth on M and J = j.D 

Expressions of the form (24) are valid under more gener­
al circumstances. For stationary, axisymmetric vacuum spa­
cetimes with Killing vectors tP a and t a (e.g., the exterior of a 
rotating star, or the Kerr geometry), one can define a scalar t 
for which Vat is in the t a--</J a plane, t aVat = I, and 
tP aVa t = 0. On a t = const surface, p ab and (j) a have the 
forms (17) and (21), respectively, with 

Xa = DaX = tP·tP ( _gmnv mtVnt)-1/2€abcDb( ;.~ )tP c. 

X is constant along the upper and lower symmetry axes and 
has the asymptotic form 

X-2J cos 0 (3 - cos20) + 0 (1/r), 

and 
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J = UX(O = 0) - X(O = 1T)]. 

III. ELECTROVAC HANDLES CARRYING NET CHARGE 

An initial data set for the Einstein-Maxwell equations 
is a quintuple (M, gab,Pab' Ea, B a), where Ea and B a are 
divergence-free vector fields, 

DaEa = DaBa = 0, 

and where 

Db(pab _ ~bp) = 2~bcEbBc' 

R - pabpab + p2 = 2(E2 + B2). 

On a nonorientable spacetime exactly one combination, 

(25) 

(26) 

(27) 

E a sina + B a cosa, is a true vector. Ifwe call the vector B a, 

then E a is a pseudovector (an axial vector, in this case), and 
by the generalization of Stokes' theorem, Eq. (25) implies 
that ~B a dSa = ° for any sphere (j enclosing a prime factor 
of M. In general, however ~aEa dSa #0 when (j encloses a 
nonorientable prime factor; we want to show that such elec­
tric fields with asymptotic charge can arise as solutions to 
the Einstein-Maxwell equations on spaces with compact 
spatial interior. We take B a = ° and Pab = ° and prove 

Theorem 2: On some manifolds M with compact interi­
or there exist asymptotically flat Einstein-Maxwell initial 
data sets (M, gab' Ea) which have nonzero asymptotic 
charge. 

To the previous definition of asymptotic flatness we add 
the requirement that Ea , regarded as a tensor field on M, 
have a direction-dependent limit at P; that is,Ea -1/P on M. 

The proof of Theorem 2 is essentially the following 

Lemma 4: Let Mbe a compact three-manifold (not nec­
essarily orientable) with positive definite metric gab whose 
scalar curvature is everywhere positive. Let E a be an axial 
vector field onM = M - IP l,somePEM, withD Ea = Oon 
M. Suppose that in a geodesic chart I x'l about P, 

E' = (x'/r)(1 +A ~kxixk), (28) 

some smooth A '~k' Then for sufficiently small real e, there is 
a~ asymptotically flat initial data set (M, gab' eE a), where 

A!. = M - ! PI, some PEM, where gab = IJI !gab' and where 
~=lJIe-2Ea' 

Proofof Lemma 4: Because DbEb = IJI e- 6DbE b,Ea is 
divergence-free. We need only show the existence of a lJIe 
satisfying 

e IJI =(D 2 - lR)1JI + le2,..abE E IJI -J - " e e 8 e 4 5 abe - Up, (29) 

where lJIe is smooth and positive on M and has the form 
1/r + tP near P, some tP satisfying condition (c). 

Just to show that eo:H,-H,_ 2 is an isomorphism re­
quires some discussion, because the Fredholm alternative 
seems to be established in the literature only for orientable 

manifolds. Let M':M be the orientable, two-sheeted cover 

of M. Because 1T is a local isomorphism, eo determines an 
elliptic operator eo on M. eo is again symmetric and posi­
tive definite, so ker 8a = 0, ind eo = 0, and thus eo is an 
isomorphism H,(M )-H, _ 2 (.¥). Now the pullback to M of 
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any fEll, _ 2 (¥) is~ functionf = f 01T invariant under the 
involution I:M_M (I interchanges the inverse images 
[PI,P2l of eachpEM). Since eo is also invariant under I, if VI 

A A A A A 

satisfies (901/1 = fso does 1/10 1. But (90 an isomorphism 

means VIis uniq~e: $001 = $0' Thus, there is-a (unique) 
I/IEll,(M) with 1/1 = 1/I0 1T, and (90 is an isomorphism. 

Let 

I/Ie = 1/10 - (e 2/8)r + tPe, (30) 

where 1/10 is the unique solution to 

(901/10 = op (31) 

and r is any smooth scalar on M that agrees near P with 
r = (x~ + x~ + x~ ) 1/2 (defined in terms of the geodesic 
chart [Xi j). The symbolsfo,' .. /s will denote scalars on M that 
are smooth on M and ca at P. From (28) and (30), and using 
I/I() = 1Ir + fo, we find 2 3 

E 21/1 e- 3 = ~ + fl + r f3tPe + f4tPe + /stPe 
r (1 + rf6 + rtPe)3 

Then, using (9or = 2Ir + f7' we have 

OetPe=(ge I/Ie - op 
_ CI .1. + 1 2 htPe + f4tP; + /,tP; 2 
- 0'0'1-' - e r ------- + e is 

e 4 (1 + rf6 + rtPe)3 

and (29) becomes OetPe = 0. Because/,ECO(M), Oe maps a 
neighborhood of ° in H 2(M) to Ho(M). Because (90 is an iso­
morphism, 0; l,p,. = ° :H2(M )-Ho(M) is an isomorphism for e 
sufficiently small. By Lemma 2, Oe is an isomorphism from a 
neighborhood of0EH2(M) to a neighborhood ofOEllo(M). 
Then for small e the~ is a tPe in H 2(M) satisfying OtPe = 0, 
and tPe is smooth onM(asin the proof of Lemma 3). Thus the 
conformal factor I/Ie = 1/10 - (e2/8)r + tPe is smooth on M. 
Because tPeEll2(M)cca(M), 0otPeECU(M); hence tPe 
EC 2 

+ aIM) and I/Ie = 1Ir + ¢" ¢' satisfying (c). Finally, since 
1/10 > € > ° on M, so also is I/Ie, for e sufficiently small. (Note 
that with this I/Ie' and withEa defined by (28)'£0 = 1/1 e-2Ea 
has a regular, direction-dependent limit at P, as required.)O 

Proof of Theorem 2: We again construct M from the 
cylinder S 2 Xl with its natural metric, but this time we make 
the nonorientable identification of the boundary spheres a ± 

(O,¢" - 1 )-(1T - O,¢" 1). 

We now define a vector fieldE o onS 2 xI - [P l, wherePis 
the point Z = 0, 0 = 0. Let a be any smooth axisymmetric 
scalar on S 2 X I - [P l satisfying 

{

eZ(Z2 + a20 2)-1/2, in a neighborhood of P 

± e( 1 + cos 0 ), in neighborhoods of a + 
a= -

± e/2, 0 = 0, z~O 

0, 0 = 1T, 

and Va = 0(sin20) near the symmetry axes (0 = 0,1T); (it is 
easy to verify that such a's exist). Then EO = €"bcDb¢,Dca is 
smooth and divergence-free on S 2 Xl - ! P j, and its flux 
through a sphere a 00 enclosing P is 

(32) 

while 
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f E °dSo = 21Te, 
<T, 

where the outward normal ± Vaz is taken in each case. 
Moreover, E a = ± (e/2a2 )Vaz near a + ' so E a is a smooth 
axial vector field on M = M - [P l. Frnally, in a geodesic 
chart about P, E i has the form (28). 

Lemma 4 now guarantees an asymptotically flat initial 
data set (M, gab' Ea ), and we need only check that 
Sa, E odSo #- 0. But, like angular momentum, the charge is 
conformally invariant, ~E ads" = ~E adSo ' whence, by 
(32), 

-If- -Q_- EadSo = -e. 
41T 

(The charge seen at 00 is - e because flux emerging from Pis 
flux coming in from 00 .)0 

IV. A CONJECTURE 

A theorem due to Gannon6 shows that any initial data 
sets of the type constructed here (asymptotically flat with 
nontrivial topology) evolve to geodesically incomplete spa­
cetimes. If the cosmic censorship hypothesis is true, the ulti­
mate fate of such initial data will be a set of charged, rotating 
black holes, and these black holes will satisfy the inequalities 

(33) 

The time evolution of axisymmetric electrovac initial data 
with angular momentum J and net charge Q conserves both 
J and Q, while the total mass m can only decrease. By (33), 
the final mass will then satisfy 

mJ = 2:mi;> 2: (Q 7 + J7/m7)1/2;>(Q 2 + J2/m2)t!2. 

We therefore conjecture that all complete, axisymmetric, as­
ymptotically flat electrovac initial data sets with net charge 
Q, angular momentum J, and mass m, satisfy 
m;>(Q2 +J 2/m 2)t!2. 

An analogous conjecture for initial data sets with 
trapped surfaces was first suggested by Penrose and has been 
discussed by several subsequent authors. 17 

ACKNOWLEDGMENTS 

We would like to thank R. Sorkin for helpful discus­
sions and M. Cantor for pointing out an error in an earlier 
draft of this paper and for comments that improved the clar­
ity of our presentation. 

'R Sorkin, J. Phys. A 10, 717 (1978); 12, 403 (1979). 
2The integral of a two-form UJafJ over a two-surface S will be written 

f sUJa(JdS afJ. Let Nbe a four-manifold with volume form EafJrO ; let MeN 

be a three-manifold with induced volume form EafJr ; and let SeMbe a 
two-manifold with induced volume form E"fJ' We will write 

dS = Ea(JdS
afJ

, dS" = EafJrdSfJr, and dSafJ = lEafJrodS Y'-

Finally, the line integral of a one-form UJa along a curve c will be written 
f ,UJ"d/ a. 

'If/afJ is an antisymmetric tensor, then if! uEafJ rU/rodS"fJ = 0, where EafJr6 is 
defined in a neighborhood of any sphere u enclosing only prime factors of 
M (see Ref. I). 
'Y.Choquet-Bruhat and D. Christodoulou, Acta. Math. 146, 129 (1981); 
D. Christodoulou, J. Math. Pures App!. 60, 99 (1981). 

'D. Gannon, J. Math. Phys. 16,2364 (1975). 

J. L. Friedman and S. Mayer 114 



                                                                                                                                    

6S. Mayer, Ph.D. thesis, University of Wisconsin, Milwaukee, Wisconsin 

1979. 
7Stokes' theorem in this form is valid even when Mis nonorientable as long 
as t/J '" is a true (i.e., polarl vector field. ' ., . 

HR. Geroch, in Asymptotic Structure a/Space-Time, edited by P. EspOSitO 
and L. Witten (Plenum, New York, 19761; A. Ashtekhar, in General Rela­
tivity and Gravitation, edited by A. Held (Plenum, New York, 19801, Vol. 
2. 

oR. Geroch, "The positive-mass conjecture," in Theoretical Principles in 
Astrophysics and Relativity, edited by N. R. Lebovitz (Univ. of Chicago, 
Chicago, 19781· 

lOR. Schoen and S.-T. Yau, Phys. Rev. Lett. 43, 1457 (19791· 
"See R. S. Palais, Seminar on the Atiyah-Singer Index Theorem (Princeton 

U. P., Princeton, N.J., 19651. In a chart U ___ M, UClR', Hn(MI agrees 

with the restriction to U of Hn (lR'I, and Hn(R'I is the completi~n of C;;-' 

functions in the norm Ilfll n = sti(s W(I + s 2r12 d's, where/is the 

115 J. Math. Phys., Vol. 23, No.1, January 1982 

Fourier transform off 

12R. T. Seeley, Trans. Am. Math. Soc. 117, 167 (19651 (Theorem 8.31. See 
also Ref. 10, Chap. XI, Theorem 12. 

t3 A. Friedman, Partial Differential Equations (Holt, Rinehart and Winston, 
New York, 19691. 

t4N. Aronszajn, l. Math. (ParisI 36, 235 (19571. 
"Multiplication maps H, XH,---Ho and H. XH.---H., for k>2, when the 

manifold is three dimensional. See R. S. Palais, Foundations a/Global 
Nonlinear Analysis (Benjamin, New York, 19681. From this and 1/1> €> 0 
it follows that I/IEIf.(iil==.>I/I-HEIf.(iil, k>2. 

16If R", is a rotation by a about the symmetry axis, then, since e and bp are 
axisymmetric, e(R", 1/11 = bp • Since e is an isomorphism, Ra 1/1= 1/1. 

17R. Penrose, Ann. N. Y. Acad. Sci. 224,125 (19731; G. Gibbons, Comm. 
Math. Phys. 27,87 (19721; P. S. lang and R. M. Wald, l. Math. Phys. 18, 
41 (19771. 

J. L. Friedman and S. Mayer 115 



                                                                                                                                    

The form of Killing vectors in expanding Yr' Yr' spaces 
Stephanie A. Sonnleitner and J. D. Finley, III 
Department of Physics and Astronomy. The University of New Mexico. Albuquerque. New Mexico 87131 

(Received 21 May 1981; accepted for publication 1 August 1981) 

The Killing vector structure of those spaces of complexified general relativity known as 
expanding hyperheavens is investigated using the methods of spinor calculus. The Killing 
equations for all left-algebraically degenerate Einstein vacuum spaces are completely integrated. 
Using the available gauge freedom, the resulting homothetic and isometric Killing vectors are 
classified in an invariant way according to Petrov-Penrose type. A total of four distinct kinds of 
isometric Killing vectors and three distinct kinds of homothetic Killing vectors are found. A 
master Killing vector equation is found which gives the form that the Lie derivative of the metric 
potential function W must take in order that it admit a given Killing vector. 

PACS numbers: 04.20.Cv, 04.20.Me 

1. INTRODUCTION 

The most general algebraically degenerate solutions of 
the complex Einstein's vacuum field equations are called 
Yr' Yr' spaces. I These spaces have a curvature tensor with a 
self-dual part that is algebraically degenerate (i.e., it pos­
sesses a multiple Debever-Penrose vector), while its anti­
self-dual part is completely arbitrary. This degeneration is 
geometrically characterized by the existence of a 2-param­
eter congruence of totally null 2-surfaces which foliate the 
four-dimensional manifold under consideration. 2 On the 
other hand, these spaces are also characterized algebraically 
by the possession of a Hertz-like potential function W. This 
function determines the local metric structure of the space 
and is itself subject to a single (nonlinear) partial differential 
constraint,3.4 analogous to the wave equation that Hertz's 
potential must satisfy. 

The general class of Yr' Yr' spaces may be divided into a 
number of different subclasses. It is clear that all real-valued 
(Minkowski signature), algebraically-degenerate Einstein 
spaces are special cases of them. This is of course the princi­
pal reason for our interest in these complex solutions, al­
though quantum gravity theory may in fact have other uses 
for complex-valued solutions as well as those sections with 
Euclidean signature. However, staying on the complex level, 
it is useful to subdivide by the special properties of the null 2-
surfaces. In Ref. 3, all Yr' Yr' spaces were divided into ex­
panding (case II), plane (case I), and left-flat (Yr'spaces). The 
geometrical meaning of this division has its basis in the be­
havior of the variation over a given 2-surface of the vectors 
normal to the surface. In particular, the normal components 
of the covariant derivatives along the surface of the normal 
vectors form a I-form referred to as the (complex) expansion 
of the leaves of the congruence. The general case is then 
simply that in which the expansion is not zero. On the other 
hand, if the expansion is zero, then the covariant derivatives 
of the normal vectors lie totally tangential to the 2-surface in 
question. Therefore, it is possible, in that case, to choose the 
normal directions to all be parallel. It is then reasonable to 
refer to such a situation as "plane." The case of Yr' spaces is 
simply that in which the self-dual part of the curvature actu­
ally vanishes. In this case there is more than one (indepen­
dent and distinct) 2-parameter family of such 2-surfaces. (A 

more technical discussion of this division is given in Ref. 1.) 
The fact that these spaces are describable by scalar solu­

tions of a single partial differential equation makes it possible 
to study various properties of them without necessarily hav­
ing the general solution of the equation. Since this is such a 
large class, it is reasonable to work toward a better under­
standing of its structure by studying various additional 
structures, such as symmetry properties. In the case of Yr' 
spaces it was shown some time agoS that the requirement of a 
Killing structure on the space as well could lead to a consid­
erable simplification in the equations which must be solved. 
More explicitly the coexistence of the "Hertz" structure 
typified by the existence of the function W, and the Killing 
structure given by the existence of (at least) one Killing vec­
tor gives rise to a coexistence relation referred to as a master 
equation. (Put quite differently, the set of 10 Killing's equa­
tions can be completely integrated, leaving only as a residual 
consistency condition a single first-order partial differential 
equation for W, in an analogous manner to the integration of 
the 10 vacuum Einstein equations down to the constraint 
equation which Witself satisfies.) In any set of coordinates 
adapted to the existence of the special null congruence this 
equation gives the form the Killing vector must have, modu­
lo some functions which are constant on any given leaf of the 
congruence, and the form the Lie derivative (in the direction 
of the Killing vector) of W must have, again modulo some set 
of functions constant on each leaf. 

The gauge functions which appear in the master equa­
tion and the description of the Killing vector can be consid­
ered as determined by these equations if W is given in a spe­
cific set of coordinates. On the other hand, more generally 
these functions characterize the available gauge freedom in 
the choice of suitable coordinates. By considering all gauge 
transformations which preserve an appropriate choice oftet­
rad and coordinates, it was shown in Ref. 5 that the quotient 
of all the modulus functions in the description of the Killing 
vectors by all the functions in the description of the gauge 
group is a five-dimensional set. That is, that any single Kill­
ing vector in a given JY' space can always have appropriate 
coordinates chosen which are adapted for it in such a way 
that it takes on one of only five distinct simple forms (without 
any arbitrary functions). In that case, insertion of each of 
these forms into the equation which W must satisfy causes a 
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simplification of that equation which allows the determina­
tion of the general solution in four of the five cases.6 

In the case of plane jf' jf' spaces the integration of Kill­
ing's equations has also been performed in general giving an 
appropriate master equation 7 in that case, although the in­
sertion of this information back into the hyperheavenly 
equation has yet to be done. In contrast to the exposition 
given in Ref. 5, the discussion of the plane jf' jf' case was 
done in 2-spinorial coordinates that are particularly well 
suited for calculations related to this 2-parameter congru­
ence of2-surfaces, which were first introduced in Refs. 4 and 
8. However, the general case of the integration of Killing's 
equations in an expanding jf' jf' space has been somewhat 
resistant. It is the purpose of this article to give the derivation 
of a master equation (for the Lie derivative of W) in the ex­
panding case and to determine the allowed forms which 
these Killing vectors may take when expressed in an optimal 
gauge, so as to eliminate all arbitrary functions from their 
expression. 

To describe how this occurs and some uses to which it 
may be put, we proceed in Sec. 2 to give a brief introduction 
to the technical description of expanding jf' jf' spaces in a 
spinorial notation, while sending the reader to Refs. 1 (or 4) 
for more detail. In Sec. 3 we then outline the solution of 
Killing's equations and their attendant integrability condi­
tions, while Sec. 4 is concerned with finding the optimal 
gauge mentioned above. Finally, in Sec. 5, we present two 
simple examples of the use of these results. 

2. EXPANDING jy' jy' SPACES 

A general jf' jf' space is most efficiently described by a 
pair of coordinates conceived of as a 2-spinor [but enjoying 
somewhat more general transformation properties than the 
usual SL(2, C )]pA which are coordinates along any given leaf 
of the congruence, and another pair of coordinates given as a 
2-spinor q iJ which are parameters which label the various 
members of the congruence. The 2-surfaces in the congru­
ence are then the integral surfaces of the 2-form 

.I = !dqA Adqi. (2.1) 

In general, the (nonzero) expansion of the congruence picks 
out a special direction on any given leaf, which we specify by 
the constant spinor JA , with the expansion I-form being giv­
en (up to proportionality) by JAdpA.4 As has already been 
indicated, the structure of the space is essentially given by a 
potential function tv W (pA, q iJ) that must satisfy the hy­
perheavenly equation4 

!<,6 4(a A<,6 -2aBW)(aA<,6 -2a iJ W) + <,6 -laAW,A 

- f.1cP 4a</>cP -la</>cP -I W + {7Jlr)K (A JiJ p Af.1.iJ 

= NAPA + y, (2.2) 

where f.1, y, and NA are any functions of the q B only that 
permit the equation to be satisfied. In the statement of the 
hyperheavenly equation we have used both the coordinates 
pA and a version adapted to the direction of the expansion by 

cP==JApA +K, ll=K ApA' KIAJBI =1'e4B, (2.3) 

where K and l' are constants and K A is complementary to J B 
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in the sense that the pair form a constant, local spinor basis, 
and we have used the abbreviations 

aA w=aw lapA, w,A=aW laqi, a</> w==aw la<,6 (2.4) 

as convenient abbreviations for partial derivative operations 
that will recur many times. 

We prefer to describe the metric by a conventional null 
tetrad 

(2.5) 

which adapts itself in the usual way to a spinorial treatment 
via the usual symbols 

. (e4 e2
) ( E B) A = 1 

gAB = '\12 e< e3 ='\12 _ eB' A = 2' (2.6a) 

and 

ds2 = - ~B®gAiJ = 2E B®eB. (2.6b) 
s s 

The 2-spinorial basis I-forms are simply related to the differ­
entials of the spinorial coordinates: 

eA = <,6 -2dqA' EA = QABdqiJ - dpA. (2.7) 

The essential solution of Einstein's vacuum equations for 
jy' jf' spaces3

.4 is then given by Eq. (2.2) and the following 
equation which expresses the metric in terms of W: 

QAiJ= -iP<,64aBlcP-3W+fplr)cP3KAKiJ. (2.8) 

As a convenient summary of some of the essential char­
acteristics of these spaces we list here the components of the 
conformal tensor in this tetrad,4 from which we see how the 
various possible complex Petrov types are determined by W, 
f.1, N A, and y: 
C ISI = 0 = C(41; C(31 = _ 2f.1cP 3; 

c m = 2cP slNAJ A - [pA + (K/21')KA Jf.1.A I; 

C III 

(2.9) 

= 2<,6 71cP [fpl1')<,6 2KA - JlaqA ][NA + (1I21')PAKRf.1.R] 

+ JiJ(NApA + y + 3f.1W).iJ - (7J/21')JApBf.1.AiJ 

+ [2NAJ A JiJ - f.1.c!JcpiJ + pCJiJ + KKiJJc 11') ]aBW I; 
3 - 22-2 CABCO = <,6 aAaiJacaO{W -}j.t<,6 7J /r). 

We can see thatf.1 #0 is necessary for left-Petrov-type II or D 
while, when f.1 = 0, the non vanishing of NA J A=2v distin­
guishes between left-Petrov-type III and N. In this last in­
stance N degenerates to a left-conformally-fiat space (a right 
jf' space) when J iJY.iJ vanishes as well as J.l and NA J A. (The 
quantity KANA =25 can always be gauged away if desired. 
See Ref. 1 for a more complete discussion of optimal gauges 
for the form of the C (il.) 

We are looking for solutions of Killing's equations for 
the general case of homothetic Killing vectors: 

KiJ.;;v) = Xo8'I'V' (2.10) 

where X 0 is a constant, covariant derivatives are indicated by 
a semicolon, and KI' indicates the covariant components of 
our Killing vector. The case Xo = 0 corresponds to the usual 
case of a pure Killing vector-an isometry-while the case 
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where X varies over the manifold-a conformal symmetry­
is knowns to be too restrictive to allow very general Petrov 
types. Since, however, we have couched even our coordi­
nates for the space in spinorial terms, it is desirable and con­
venient to rephrase Killing's equations in a spinoriallan­
guage as well. 

In this language, Killing's equations take the form 10 

E AB_" (AK BI-O RS =V(R SI - , (2.11) 

where the Killing spinor Ks B is related to the Killing I-form 
by 

(2.12) 

Assuming that Xo is a constant, the integration condi­
tions for these equations may be written as 

L RST
A VRAIsT+2KuACuRsT=0, 

M RSTU =KpAVPACRSTU - 4XOCRSTU + 4Iv(RC vSTUI 
=0, (2.13) 

with similar equations for objects with dotted indices, and 
where 1ST and I sf are symmetric spinors such that 

or 

l AB _ l-RS" IAK BI 
- it" v R S, 

(2. 14a) 

Xo= -k£AB~SVRAKsB. (2. 14b) 

(Note that V R A = gR AI"V I" are the spinorial components of 
the covariant derivative.) 

We next give the results of the complete integration of 
Eqs. (2.11), as well as a complete, simple classification of 
these results. Details 10 of these calculations are presented in 
the following two sections. As stated above, these results are 
restricted to the case where X 0 is constant. 

We find that the Lie derivative of the metric potential 
function W must take the following form to admit a given 
Killing vector K: 

2'KW=2UJW+P, (2.15) 

where P is a fourth-order polynomial in pA, 

P=(1I2r)PvK co C,v - (K/2r)PAKCKvoD,c,A 

+ (1/¢J 12-?)(KEKVJC + 2JEK vKcloc,V,E 

+ (¢J 212-?)KEK CK v ov,C,E 

+ (1/212-?)JEJcKv ov,C,E - (¢J 3/3r)KcLl c (2.16) 

.1p¢J 31//2-?)KcK v oV,c + l, 
and UJ = 3X 0 - ° A ,A is functionally the same form found for 
plane hyperheavens. 7 The term corresponding to 2aoA for 
plane-spaces was not carried through in these calculations 
since, as before, it restricts us to left-flat spaces. The Killing 
vector (in a coordinate basis), which corresponds to Eq. 
(2.10) of Ref. 7, is given by 

a . . . 
K = fJA -- + (pBOB,A - 2XOpA 

aqA 

2 .... 
- - JJjKcfJC,BpA + ~ )aA· 

r 
(2.17) 

These two equations, (2.16) and (2.17), contain four appar-
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T ABLE I. Classification of Killing vectors. 

Left-Petrov Master equation 
Killing vector types allowed :/~KW= 

Isometric 

a". II, D, III, N 0 
a, II, D, III 0 

a" II,D 0 

a" N (1/3r)¢'e(w, t) 

wa, + ¢a" n,D (1!2r')llo¢ '1] + (1/6r)¢'v 

wa, + ¢a" III 0 
Homothetic 
Xo! 2ta, - ¢a. + 1]a" I n,D 0 

Xo! la, - ¢a", I III - XoW + (1/3r)¢ 'e(w, I) 

xo!¢a", + 1]a,,1 N 2XoW 

ently arbitrary functions of qc, namely fJA, ~,Ll '\ and l (7 
degrees of freedom). In this form, a general solution is not 
feasible, but when the integration conditions [LABC A and 
M ABCD ' Eq. (2.13)] are taken into consideration these results 
become more tractable. The final classification is accom­
plished by treating each Petrov-Penrose type separately as 
well as dividing the problem into the purely homothetic and 
the isometric cases. This results in one distinct kind of purely 
homothetic Killing vector per type and from two to four 
distinct kinds of isometric Killing vectors, depending on 
type (see Table I). All of the Killing vectors are then free of 
arbitrar'y functions of qc and are quite simple in form, while 
the complete generality of the results is preserved. 

3. INTEGRATION OF KILLING'S EQUATIONS 

We are now ready to begin integrating Killing's equa­
tions. Starting with the simplesttriple, E I /B = ¢J - 2JA¢J 2 pi 
= 0, we immediately find that P = ¢J - 2 ( apB + OB j, where 

a and OB are functions of qc only. Consideration of the 
M ABCD in Eq. (2.13) leads easily to the conclusion that either 
a = 0 or the spaces in question are left-flat. Since the latter 
are ,5Y-spaces, and their Killing vectors are completely dis­
cussed in Ref. 6, we hereafter restrict ourselves to the case 
a = 0, so that 

P=¢J-2fJB. (3.1) 

The first integration conditionL ll1 A, from Eq. (2.13), is iden­
tically zero, while one part of L211 A yields the condition 
J,JBfJB,A = 0 and the other part gives a compact expression 
for 112 : 

112 = -1p¢J 2/r)KAoA + 2¢J -lroAJAW,/ + (lIr)KAJBfJ1U , 
(3.2) 

The second triple EI/B can be cast in the form 

EI/B = 0 = alA (kBI _ fJDQBID - fJc,Bpel. (3.3) 

This is of the form JATBI, which has the obvious solution 
TB = 5pB -~, where 5 and ~ are independent of pC. Ex­
tracting IeB from the above solution gives us an expression for 
the other half of the Killing spinor K A B: 

P=fJAQAB_M B, (3.4) 
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where, for ease offurther calculation, we have defined 

MiJ=PAOA,iJ_SpiJ+~. (3.5) 

We now have expressions for the Killing spinor KA A in 
terms of five arbitrary functions of qc, namely OA,~, and S. 
The third triple will yield a master equation for W, while 
remaining integration conditions and the as yet unused sing­
let equation will impose restrictions on the arbitrary func­
tions in the Killing spinor. It is convenient to generate a few 
more simplifying conditions before proceeding to the final 
integration. Comparison of the direct calculation of 112 with 
the expression generated from L211 A yields 

- KS + (Klr)JAKiJoiJ.A = JA~' (3.6) 

The expression for X 0 generates a relation between X 0' con­
sidered as a given quantity 5, and OA, viz, 
4Xo = 25 - (4/T)JAKBoB.A. Then the condition represented 
by MI122 = 0 produces a further simplifying constraint, giv­
en by 

,u(4Xo + (3/T)JAKiJoiJ.A) = OA,u·A. (3.7) 

Returning now to Killing's equations and utilizing the infor­
mation gained to this point, the last triple becomes (with (lA 

=ifJ 2[alaqA +QAiJaiJl: 

EnAiJ = 0 = (lIAODQ BID - (lIAMBI +!ifJ 20cQ DCeJAQD BI 

- ~ifJ 2M DeJAQD iJl - !dJ 20cQ DCaDQ AB 

+ ~ifJ 2M DaDQAB 

- !ifJ 20DQ DIAacQ BIC + ~ifJ 2MIAacQ BIC 

+ olA(lcQ iJ IC. (3.8) 

With judicious combination of terms, Eq. (3.8) reduces to 

EnAiJ = 0 = Q DliJOD.A 1+ MRaRQAB + ORQAiJ.R 

(3.9) 

At this point we introduce4 a potentialization A iJ of 
QAB having the form QAB = ifJ 3eJAA BI which causes (3.9) to 
take the following form: 

0= alA [ORA BI.R + OD·BIA D - (1/T)A BIJcKDoD.C 

- 4XoA BI + M1R1aRA BI] 

- [aRA Iii IJA IMR + aDA IAOO·BI - ifJ -3MIB.A I, 

=eJAR 81 + BIABI. (3.10) 

The first term a IA RBI is already in the desired, easily integra­
ble form, while the second term may be cast in this form after 
introduction of a potentialization of A A in terms of W, name­
ly, A A = - ifJ -2JA W + (p,/T2)7JK A. After this substitution 
and application of earlier integration conditions, Eqs. (3.10) 
takes the form a IAT B I = 0 which imples T B = ApiJ + .::1 B. 
This new equation can then be written as a liS + p B = O. 
Operating with aB yields the condition aBP = O,leading to 
two new conditions between the integration variables OA, ~, 
A, and.::1 A. When these conditions are applied, the final 
equation reads a BN = 0 so that we may immediately write 
N = t(qc). This last equation is the master equation for W, 
and, after appropriate sorting of terms, takes the form ofEq. 
(2.15). Up to this point we have generated five integration 
conditions, these being 
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JAJiJoiJ,A = 0 (from L2IIA = 0); 

JA~= -K{2Xo+(lIr)JA KiJ oiJ,AI 

(from L211A = 0 and Xo); 

,u{4Xo+(3/T)JAKiJoiJ,Aj =OA,u'A (fromMI122 =0); 
(3.11) 

A = - (p,/2r)KAK iJ oiJ,A (from E 22
AiJ = 0); 

(p,lr)KKAKiJ oiJ.A - (2,u/T)KR~ = 2JiJ.::1 iJ 

(from E22 Ali = 0). 

Consideration of the remaining integration conditions 
(M I 122' L 12/' L21 /, L22/ and M22nl gives rise to three more 
conditions on the variables oA,~,.::1 A, and t. These condi­
tions wi1llead to further simplification of the Killing vector 
and master equations, as well as aiding in the classification of 
the Killing vectors by eliminating the arbitrariness in the 
coefficients of Eq. (2.17). They are 

0= 3,u€A·A + 2€A,u·A + (K/T)(OAKB,u·iJ),A + (1/T)JA~KiJ,u'iJ 
+ 2N Clc(OA·A + (lIK)JA~) + 20AJiJ N iJ.A 

(from MI222 = 0); 

0= 4ryKAJiJ oiJ.A + 2roAyA + 6,urt + 3,uK2KAKiJKcoc.iJ,A 

- KAKiJKcJDOD,C.iJ.A + 2rJAN A {KiJ~ - KKBKC oC.B j 
+ 2KroAK BN B.A - 3,uKrKAKB~·A + KrKA,u·AKiJ€B 

+ K2rKA,u·AKBKcoc.iJ (from L222A = 0); (3.12) 

and 

0= 2,urJAKB.::1 B.A + 2,uNAJAKBKcoC.B + 2,uroAKBN B,A 

- 4,uK ANA KBlcoc.B + ,urKA,u·AKB~ 
(from M2222 = 0). 

This completes the task of integrating Killing's equations 
EAB AB consistent with the constraints L ABC A and M ABCD ' 

4. CLASSIFICATION OF KILLING'S VECTORS 

It is convenient at this point to introduce explicit varia­
bles t and w for the ~ and to decompose the spinor integra­
tion variables oA,.::1 A, and ~ into parts parallel to J A and K A. 
Following Ref. 1, we introduce the following choice of~: 

Wo=JA~' t=KAqA' (4.1) 

which implies rat = JA (alaqA) and raw = KA (alaqA)' Upon 
setting K = 0 (the case K#O is only relevant to plane hyper­
heavens which have been dealt with e1sewhere7

) and taking 
account of the first and fourth conditions of Eq. (3.11),0 A, 
.::1 A, and ~ take the form 

OA = (lIr)a(w)KA + (lIr)b(t, W)JA, 

~ = (l/r)c(t, W)JA, (4.2) 
.::1 A = (1/T)e(t, W)JA + (p,lr)e(t, W)KA. 

With these definitions, the relevant integration conditions 
become 

4,uXo - 3,ubt = a,uw + b,u" 

3,uct + 2c,ut + rv(aw + 2bt - 2Xo) + ravw + rbvt = 0, 

4yaw + 2ay w + 2bYt + 6,ut - awww - vc = 0, (4.3) 

- 2,uet + ,uvbw - ,uaSw - ,ubSt - 4,usaw - ,uc,uw = O. 
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Further progress is facilitated by breaking the investigation 
down by Petrov type and also handling the isometric and 
homothetic cases separately. We will also utilize the trans­
formation properties of the qi to simplify our calculations. 
Thus, we wish to determine the conditions for those trans­
formations of the q A which allow both e A and E A to trans­
form in a form-invariant way. Define q' A q' A (q B)' where 
the transformation matrix is given by DR A=(aq' R I aq A) with 
determinantL1 #0, i.e., locally invertible. By first transform-

ing e A and demanding form invariance for g = 2E A ® e A' we 
s 

are led to the transformation equations for e A' E A, and pA, 
which are 

E 'R = (11 A HD ~ I ARE A _ hif! 2e'R ), 

P'R = (lIA)D ~ IA RpA + a'R, 

(4.4) 

wh.~reA = A (w,t ),h = h (w,t ),S = S(w,t ) and where SandA 
are related by S, = A ~ 1/2#0, 00. The quantities DR A, 
D ~! h A,JI R andK I R are determined by the requirement that 
J I k , K I R , K' be constant in the new 'coordinates, and are 
given by 

DRA = (l/T)J'RaS laqA - (j/T')K'RJ A, 

D ~ IA R = (l/TjH - a(/(AJ'R + a(,A. 1/2sJAJ'R 

+}A 1/2JAK'R l, 

J '. - 1 1/2D.AJ 
R -I\. R A' 

(4.5) 

where r'=aor, J'R' K I R are constant additional degrees of 
freedom for the transformation if JR and KR are, g = g(w), 
and} denotes dgldw. Finally, aiR is 

(4.6) 

where S = s(w, t ) and K' = A ~ 1/2K - J'R aiR ensure that the 
transformed K( K') is also constant. With the above, one final­
ly finds the transformation relation for qe, namely, 

q'e = (S /T)J'e + (g/T)K 'e · (4.7) 

These transformation equations then give transformed 
versions of if! and rJ, 

The independent variables wand t obey the transforma­
tion equations Wi = g(w) and t '= aoS (t, w). Considering the 
transformation of C (3) and the hyperheavenly equation, we 
obtain the equations for f.L', v', S I, and y', wheref.L, v, S, and y 
are the arbitrary functions of q B only that enter into the 
hyperheavenly equation (2.2). The relations are 
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f.L' =A 3/2f.L, 

v' = (A I ao}H v - U}Sf.L, - 3f.L)( AS), l, 

s I = (A 1/21/Hs + A 1/2Sw V + 2rB, 

+A 1/2}S[A (Swf.L, -f.LwS,) + ~(SwA, -AwS,)] ' 
(4.9) 

y' = (11/)[ y + 3f.Lv + (l/2})a2j/aw2 - (3/4/Ha}law)2 

+ I).}rsv + !rA/s2(~A, + Af.L,) 

+ I).}rs [2A}Sf.L, + 3f.L}(AS), ] l, 
whereB = w(w, t land v = v(w, t )arenewdegreesoffreedom, 
} = dgldw, and we have chosen K = 0 = K'. Lastly, before 
beginning the simplification of the Killing vector, we need 
transformed expressions for the functions which appear in it, 
namely a, b, and c. The appropriate relations are 

a' =}a, 

b '= (aolA 1/2)[b + (Swls,)a] = ao(S,b + Swa), (4.10) 

c' = (aoIA})[C + sA}r[a w - 2b, 

+ 2Xo + a(ln A}sL + b (In AS),] l, 
where these equalities are determined by considering the 
transformation of the Killing vector. The quantities e and" 
which appear in the master equation, transform as 

,_ 13/2{ + 3f.L Stu 3f.L13/2·(a sw) 1 1/2 e - ao I\. e - - C - - SI\. "} w - - I\. 

2r S, 2 S, 

X (b + ~~ a)} - 2r(aw - Xo)B - rb(J, - raBw }, 

(4.11) 

" = (lIA 3/2/), + I). 1/2 rs2[ alA 1/2a, [A ~ 1/2(b + Swls,)a] l 

+!SA 1/2a,(l/A})[C+SA}r[aw -2b, + 2Xo +a(lnA}s)w 

+ b (In A}sle ] l) + (4Xo - 3b, + 2aw)v + I).}Cs, 

+ avw + bv,. 

It turns out to be possible to always gauge f.L to a con­
stant and, to zero, so we will work with the set of constraints 
simplified in this way (as well as settingK = 0). The Eqs. (4.3) 
then become 

4f.LoXo - 3f.Lob, = 0, 

3f.Loe, + rv(aw + 2b, + 2Xo) + ravw + rbv, = 0, 

4yaw + 2ay w + 2by, - awww - vc = 0, 

f.Lo [2e, + vbw - asw - bs, - 4saw ] = o. 

(4.12) 

We now divide the remaining computations according 
to Petrov type and according to the nature of X 0 (0 or con­
stant). Further, for the isometric Killing vectors, we will in­
vestigate the cases a#O, a = O#b, and a = b = O#c 
separately. 

Case 1: Petrov-Penrose types [II] ® [Any] and 
[D) ® [Any] withXo = O. In this case we havef.Lo#O. For the 
first situation, a # 0, it is possible to gauge away b, c, e, v,s' 
and y, leaving a very simple form for the Killing vector and 
master equation, namely, K = aw and !£ K W = Ww = O. In 
the case a = 0 # b, we find two distinct solutions, one with b 
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a constant and the other where b = w. The first choice leads 
simplytoK=a" W, =Owith5=y=c=e=0,v=v(w). 
The other possibility, b = w, leads to 5 = y = c = 0, but 
e = !vf along with K = wa, + t/Ja'7 and if K W 
= 'y.tot/J 3",!r + (l/6r)t/J 3v .Finally,ifa = b = O#c, then we 

find 5 = v = y = e = ° and K = a'7' W'7 = 0. 
Case 2: Petrov-Penrose type [III] ® [Any] with X 0 = 0. 

Type III impliesJ.L = O#v, and we are always able to obtain 
v = Yo' For the initial conditions a ¥ 0, we are able to obtain 
y = c = 0, but we may not have both e and 5 gauged to zero. 
For the simplicity of the master equation we choose to elimi­
nate e and get K = aw' Ww = ° but 5 #0. The second possi­
bility, a = O#b, again splits into two cases, b = wand 
b = boo The first yields K = wa, + t/Ja'7' if K W = 0, 
y = c = e = 0, 5 #0, while the second gives K = aw , 

Ww = 0, and y = c = e = 5 = 0. The case a = b = O#c is 
not allowed for type [III] since one of the conditions states 
vc = ° and we require v#O. 

Case 3: Petrov-Penrose type [N] ® [Any] with Xo = 0. 
Type N requires J.L = v = 0, y, ¥ 0. For the condition a # 0, 
we find e = 0, 5 #0, K = aw , and Ww = 0. One of the inte­
gration conditions states that by, = 0, so the case a = O#b 
isnot allowed. Finally, fora = b = O¥c, weobtaine¥O¥y, 
K = a71 , and Y K W = (l/37)t/J 3e(W, t). 

Case 4: The purely homothetic Killing vectors for all 
algebraically degenerate Petrov-Penrose types. For this case 
we have Xo¥O and choose a = c = 0. The general case is 
then a linear combination of the homothetic and isometric 
Killing vectors. For types II and D we must have b = not 
but we may eliminate v's' y, and e and obtain 
K = Xol2ta, - t/Ja¢ + ",a", land 2" K W = 0. For type III, 
we must have b = Xot; we may gauge 5 and y to zero, and are 
left with K = Xol ta, - t/Jat/J J, 2" K W 
= - XoW + (l/37)t/J 3e(W, t). Finally, for type N, we may 

have a = b = c = ° leading to e = 0, 5 = 50' 
K = Xol t/Jat/J + ",a", J, and Y K W = 2XoW. 

We present the above results in tabular form (see Table 
I). 

From the table we see that there are four possible dis­
tinct isometric Killing vectors for types II and D, three for 
type III, and only two for type N. Each type has one distinct 
kind of purely homothetic Killing vector allowed. 

5. APPLICATIONS 

The use of the above results will be demonstrated for 
two simple cases in order to give an idea of their application. 
First we will find the Killing vectors for the Schwarzschild 
metric and, secondly, we will find the metrics corresponding 
to a given Killing vector. 

We obtain the Schwarzschild Killing vectors by taking 
the limit of the general type D Plebanski-Demianski II solu­
tion to the Kerr metric, and then from Kerr to Schwarzs­
child. At the same time we perform similar limits on the 
complex extension of the PD metric, giving us the form of 
the metric function Q AD for the Schwarzschild case. 

The PD metric can be brought to the Kerr form by 
applying the limits (p, q)-+I-I(p', q'); 7-+/7', u-+/ 3u', 
m-+I- 3m', E-+I- 2E', y-+I- 4 y', and n = e = g = A = ° by 
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making the identifications p = - a cos (J and q = r. With 
this 

ds2 = (1 _ pq)-2! (p2 + q2)&, -ldp2 + &'(p2 + q2)-1 

X (dr + q2du) + (p2 + q2)i!2 -ldq2 _ i!2 (p2 + q2) - I 

X(dr-p2dufl (5.1) 

becomes 

ds2 = - dt 2 + (r + a2)sin2(J dp2 + (2mr!.I) 
X (dt - a sin2(J dpf +.I (il -Idr + d(J 2), (5.2) 

where il = r + a2 
- 2mr, .I = r + a2 cos2 (J, and&', i!2 

are structure functions involvingp and q, respectively. The 
relationship between PD coordinates and Plebanski-Robin­
son (PR) coordinates l2 is given by 

x = - (q + ip)-I, y =pq(q + ip)-I, 

U = 7 + f i!2 -lq2 dq - 2 f &' -lp2 dp, 

v = iu - if i!2 -I dq + f &' -I dp. 

P = !x2(&, - .@)(P2 + l)-I, 
Q = !X2(P4.@-1 _ q4&')(p2 + q2)-I, 

R = _ !iX2(P2.@ + q2&, )(p2 + q2) - I, 

(5.3) 

(5.4) 

where Q AD = (~;), is the metric. Taking the limit as in PD to 
Kerr then yields the Kerr metric with the following 
identificiations: 

P-+!t/J 2.I -I(.I - 2mr), 

Q-+ - !t/J 2.I -1(r4a2sin20 - a4..::l cos40), 

R-+ - Ft/J 2.I - 1 {ra2sin20 + a 2..::l cos2(J), 

(5.5) 

t/J-+x = - (r - ia cos 0 ) - I , "'-+ - y = - xar cos 0, 

du = - dtKerr + adq; +..::l -I rdr - ia cos2(JcscOdO, 

dv = ia-Idq; - i..::l -I dr + a-I cscO dO. 

lt is clear that simply allowing a to go to zero does not yield a 
satisfactory limit for v and also causes Q and R to vanish. 
However, if we write out the metric and take the limit as 
a-+O, we can identify choices for x, y, u, and v which will 
yield the Schwarzschild metric. 

The following choices give the proper form: 

dx = t/J 2 dr, dy = sinO d(), du = dt +..::l - I r dr, 

dv = i dq; + csc() dO, P = - !r- 2(1 - 2m!r), 

Q = -! sin20, R = 0. (5.6) 

Passing over to x, y, W, t using the relations (5.3) and the 
definition of wand t in Sec. 4, one obtains 

x=t/J= -r- I
, -y=cosO="" 

dw = - i dq; + (1 - ",2)-1 d"" 

dt= -dts +t/J-2(1+2mt/J)-ldt/J. (5.7) 

Having the metric, we may find W from the relation 
QAD = _ 2J 1AaB 1W - aAaBW + 'y.tt/J 3KAKD, yielding 

tv =!t/J (",2 - I). (5.8) 

Substituting this W into the hyperheavenly equation (2.2) 

S. A. Sonnleitner and J. D. Finley, III 121 



                                                                                                                                    

gives the conditions 

r=!, 5= v=o. (5.9) 

Insertion of Winto the master equation (2.15) and use of the 
integration condition then gives the following forms for a, b, 
c, e,Xo: 

a = ao + coew + doe- w
, b = bo, 

c=ao-a, e=O=xo. (5.10) 

Taken together, we have a four parameter group (ao, bo, Co, 

do), with Killing vectors 

K = acPw + boa, + coeW[aw + (1 + rJ)a'11 
+doe-W[aw +(1 +rJ)a'11. (5.11) 

The timelike vector is bo#O, while the other three param­
eters generate the usual rotation group SO(3). 

As a second example, we will demonstrate how a class 
of metrics is generated by a Killing vector; in this case we 
choose K = a'1 for types II and D, where v = 5 = r = 0. 
When this information is inserted in the hyperheavenly 

3-
Ciiii = ¢ W",,,,oI>4> , Ciiii = Ciiii == Ciiii = 0, Ciiii 

C(3) = - 2f-lo¢ 3, C(I) = 6f-lo</J 7rW" 

where 

equation we find a differential equation for tv: 

Using u = {;.L/T)t and W = T(u)X (</J ) to separate variables 
yields 

Tu = - 2(3T and X",,,,</J 3 + (2(3 - 3</J 2)X", + 3</JX = 0. 
(5.13) 

The general solution is then given by W such that 

W'" = L ds((1-s)/S)1/2F(w)- Loo ds((l +s)/s) 1/2G(u), 

w = 2u - s/¢ 2, v = 2u + s/</J 2, (5.14) 

where Fand G are arbitrary, sufficiently smooth functions of 
one complex variable, except that G must be such that the 
integrals converge. 

We next calculate the Riemann curvature correspond­
ing to this W, with J"j chosen such that </J = x = - p2 and 
rJ = - y = i· The components are 

(5.15) 

W",,,,,,,,,, = - </J -3 L [s(l - s)] -1/2[ 12(1 - 1$)F + 9s(3 - 4s)Fs + 1$2(5 - 6s)Fss 1 ds 

+ </J -3 LOO [s( 1 + s)] -1!2[12( 1 + 1$)G + 9s(3 + 4s)G, + 1$2(5 + 6s)Gss 1 ds. (5.16) 

6. CONCLUSIONS 

In this paper we have determined the Killing structure 
of the expanding hyper heavens of Plebanski and Robinson. 
We have also deduced an invariant classification of these 
Killing vectors and have determined a master equation 
which gives the form that the Lie derivative must have in 
order to admit a given Killing vector. 

This work, combined with the earlier work of Finley 
and Plebanski, completes the determination of the Killing 
structure of all one-sided algebraically-degenerate, complex­
ified, Einstein vacuum space-times. These results then allow 
one to determine the symmetries (Killing vectors) of the met­
ric of any hyperheaven and, conversely, to determine all me­
trics which allow a given Killing vector. In addition, the 
present work once again demonstrates the power of the 
spinor approach. 

No attempt has been made to determine the real cross 
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sections on these metrics in a systematic way, nor has an 
attempt been made to find all metrics corresponding to each 
of the Killing vectors presented here. 
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An exceptional type 0 shearing twisting electrovac with iL 
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A new electrovac with A. type D solution and with both Debever-Penrose vectors aligned along 
the real eigenvectors of the electromagnetic field is presented. The principal null directions are 
shearing and twisting. The existence of this solution, endowed with an O(2,I,lR) symmetry, 
requires A. < O. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 
This work is a sequel of a previous paper (Plebaiiski and 

Hacyan I) dealing with exceptional electrovac with..i type D 
metrics; it corrects a serious error in that paper. The quoted 
paper belongs to a sequence of articles which had the objec­
tive of determining all type D electrovac solutions with ..i 
which have the principal null directions aligned along the 
real eigenvectors of the electromagnetic field. With the null 
tetrad members e3 and e4 (we use the same notation as in 
Refs. 1-3) oriented along principal null directions, the con­
formal curvature has only the component C (3) #0; then, with 
the invariant (complex) of the electromagnetic field defined 
by 

,r: = V;iV/"V + VliV' jliv =: - !(E + iB)2, 

jliv; = (i/2V - g)e"vP%", 

the invariant 

I: = (E 2 + B2)2 _ (~C(31)2 

(1.1) 

( 1.2) 

plays a crucial role in the problem considered. If I #0, the 
Goldberg-Sachs4 theorem applies and e3 and e4 must be geo­
desic and shearless. Moreover, by a theorem of Hughston et 
al. s the solution admits two commuting Killing vectors. The 
solutions ofthis type with complex expansion Z # 0 are com­
pletely described-modulo contractions-in the presence of 
..i in terms of the Plebaiiski-Demiaiiskio metrics. The case 
Z = 0 has also been covered completely in the recent work of 
Plebaiiski. 2 The exceptional electrovac solutions with..i arise 
when I = 0, with two subpossibilities: 

E ·E 2+B 2 =JC UI --.L0 E 'E2+B2= -JCLll--.LO 
(+ I' 2 r, I-I' 2 r· 

(1.3) 

In the two subcases E( t- I and E( I' the Goldberg-Sachs and 
Hughston theorems do not apply. In the paper by Plebaiiski 
and Hacyan I the branch E( + I was correctly integrated; it 
contains the Bertotti-Robinson 7.X solution, with both e3 and 
e4 geodesic and shearless, together with an exceptional solu­
tion given in a chart [Xl'j = [s,t,u,vj by 

g = 2e ' ® e2 + 2e"' ® e4
, 

w: = W;". + X,,)dxl
' /\dx'· = (E + iB)(e l /\e 2 + e3 /\e4

), 

( 1.4) 

'IOn leave of absence from University of Warsaw, Warsaw, Poland" 

where 

e l = ds , e2 = dt, e4 = dv, 

e3 = du + [..iu 2 + 5 F(v) -f tF(v)] dv, 

E+iB=const, ~CuI=E2+B2= -..i>0,(1.5) 

with F = F(v) = A (v) + iB (v) containing two arbitrary (real) 
functions of one variable. With F # 0, the principal null di­
rection e3 is not geodesic, and with F(v) being a general 
enough function, the solution does not admit any Killing 
vector whatsoever. 

In Sec. 3 of Ref. 1 the subcase EI I was also treated. 
The logical chain up to (3.38) of Ref. 1 is correct, but the 
argument given after (3.38), which attempts to show that a 
nontrivial solution within the branch E( I does not exist, is 
wrong. In the subsequent formulae after (3.38) in 
zdz-zdz-dv, the factor Hi" at dv was missed. The present pa­
per integrates correctly the branch E( _ I (in a different tetrad 
gauge from that of the formulae of Sec. 3 of Ref. 1) determin­
ing the most general form of the nontrivial solution which 
exists when..i < O. This solution, with both principal null 
directions geodesic but shearing and twisting and nonex­
panding, is of interest for reasons of completeness within the 
category of D-type electrovac solutions with..i which have 
principal null directions aligned along real eigenvectors of 
the electromagnetic field. The solution is also of some inter­
est,per se, exhibiting rather unusual singularities of the con­
gruences of the principal geodesic null directions, which are 
characterized by infinite values of the shear and the twist. 

2. THE DIFFERENTIAL PROBLEM AND ITS INTEGRAL 

The differential problem of the exceptional branch 
E(_ I states in the null tetrad formalism (notation is the same 
as that which was used in Refs. 1-3) can be summarized as 
follows. The tetrad e a and connection I-forms rab = r lab J 

must satisfy the first structure equations 

(2.1) 

while the second Cart an structure equations with built in 
Einstein equations G"," = 8rrEI''" + AgiO. amount to 

dr4 "2 + r 42 /\ (r
'

"2 + r 34 ) = - 2/1e'/\e ' , 

dr31 + (T12 +r,4)/\r11 = -2/1e4/\e1, (2.2) 

d (r 11 + r H ) + 2r,4/\ r" = - (10/1 + 2A )e I /\ e2 

+ 2J-le' /\ e4
• 
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where, with electromagnetic field given by (1.4), 

/1 = - H,i - E2 - B2), 

and the Maxwell-Faraday equations take the form 

(2.3) 

d I (E 'Bv I/? r I r? J ... n + I) +114e + 42.1e - r.112e - r 421 e = O. 
(2.4) 

The Bianchi identities require, with the E[ I condition 
from (1.3) assumed, that e.1 and e4 be geodesic; that is, 

r424 = 0 = r 1Ll . 

This granted, the Bianchi identities reduce to 

dC l11 = 6CUI(r.114el + r42 1e
2). 

(2.5) 

(2.6) 

Within this formulation of the E[ I branch differential 
problem, we are still left with the freedom of the phase and 
boost gauge of the null tetrad; i.e., 

(2.7) 

where the functions (real) ¢J and X are arbitrary. The connec­
tions transform under this gauge correspondingly (see Ref. 
1 ). 

Now, the E( _I condition from (1.3) demands that CUI is 
real. Hence, consistency of (2.6) requires 

(2.8) 

Moreover, combining (2.5) and (2.4), one easily infers that 

r.~21 = 0 = r 114, r 421 + r 412 = 0 =r.112 + r 121 , (2.9) 

and, therefore, C 1.11 and E 1 + B 2 are constants. Hence /1 is 
also a constant. Consequently, setting 

E + iB =: (E2 + B") I12e 2;,}< (2.10) 

we infer that (2.4) reduces to 

(2.11) 

In the next step, employing (2.1), one deduces from (2.2) 
the further necessary algebraic conditions 

(r421 f + r422r422 = 0 = (r.112f + r.1llr H,' 

(2.12) 

2r4ll r.112 - r422rll1 - r422rl11 + 4/1 = O. 

If/1 = O-+E 2 + B 2 = A = - ~C (31, one can select a tet­
rad gauge (2.7) such that r42 = 0 = r 11 . In the subcase the 
solution reduces to the Bertotti-Robinson solution with e.1 
and e4 geodesic and shearless [see comments after (3.17) of 
Ref. 1]. The nontrivial branch of the problem considered 
arises when /1 =1= O. With /1 =1= 0, denoting E = sign(f1), 
El = I-+E/1 > 0, and employing the freedom of (2.7) gauge, 
one can always select the tetrad so that 

r - h/E/1( 1+ iv 2) r _ iEVE/1( iv 1+ 1) 42 -. e e e, .11 - . e e e. 
smv smv 

(2.13) 

With this tetrad gauge (2.12) reduce to identities and (2.11) 
takes the form 

(2.14) 

Using (2. 13) in (2.2)-accompanied by (2.1) and (2.14)­
one extracts then the complete information contained in the 
second structure equations. One easily finds that consistency 
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of (2.2) requires 

/1 = - A 12- - ~C III = E 2 + B 1 = - 2,1._,1. < 0, 
(2.15) 

so that within the nontrivial E( I branch, A < 0 and E = 1. 
This granted and integrating the remaining information con­
tained in (2.2) and (2.14), one finds that 

r iv( - A /2)( I ". ') 42 = . e + e e-, 
smv 

r - iV( -,1./2)( ". I 2) .11 - . e e + e , 
smv 

rq = V( - ,1./2) cosv(e.1 - e4), 

r ll = - (i/2)V( - A 12) sinv (e.1 - e4), 

l/I = cot v + l/Io, (2.16) 

with l/Io being constant, (2.14) assumes now the equivalent 
form 

dv = v( - A /2) sinv(e1 + e4
). (2.17) 

Given (2.16) and (2.17), the equations modulo (2.1) are 
now identities. It remains thus to integrate the first structure 
equations (2.1), which if we introduce the I-forms 

r ,: = v( -A /2)cot(v/2)(e l + e") = :r', 

r 2 : = - iv( - A /2)tan(v/2)(e l 
- e") = :r e, 

r 1: = !v( - A 12)sinv(e\ - e4) = : - r\ 

are equivalent to (2.17) and 

dru + !Eal>erh A r e = 0, G,b,··· = 1,2,3, 

or explicitly 

dr , - r 2Ar.1 = 0, dr2 - r 1 Ar i = 0, 

dr\ + r , Ar2 = o. 

(2.18) 

(2.19) 

(2.20) 

We observe also that (2.17) and the definitions (2.18) 
imply 

0=1= - i0 lei A e2 A e.1 A e4 = r , A r 2 A r 1 Ad (cotv). (2.21) 

The real ra 's can now be interpreted as the connections of 
the group 0(2,1 ,JR) and there are many obvious manners of 
expressing the ra 's in terms of three independent group pa­
rameters, say P I,Pl,P.l which together with v can therefore be 
considered as the chart! x I' I = !p I ,P2'P), V I. Some explicit 
parametrizations of the ra 's will be discussed below. At this 
moment, however, it is convenient to summarize the result 
obtained in terms of abstract ra 's and the coordinate v, as­
sumingr, A r 2 A r 1 Ad (cotv)=1= o. The metricgand theelec­
tromagnetic field UJ from (1.4), with A < 0, have the form 

( - A )g = tan2(vI2JF, ® r l + c0t2(V/2JF2 ® r 2 

dv dv 4 
+--®-- - --r,®r1, 

sinv sinv sin2v' . 
V( - A /2)UJ = ie .. 2i1/'''d (e .. 2ico"[3)' 

the invariants of the electromagnetic field being 

E + iB = 2v( - A /2)e" 2''''''e - 2ieol,. 

(2.22) 

(2.23) 

According to (2.16), the principal null directions e.1 and 
e4 of this type D solution of the electrovac equations with A 
are geodesic and possess the common complex expansion Z 
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and shear S given by 

- r 42 , = - r312 = - h/( - A /2)1sinv = :Z, 

(2.24) 

r 422 = r 311 = V( -A /2)(icotv - 1) = :S. 

With Z pure imaginary, the congruences e3 and e4 are diver­
genceless but twisting; for v = n1T, n = ... - 1,0, 1, ... ,Z and S 
are singular. 

The solution described above contains only the con­
stants A < ° and tPo, the last corresponding to the remaining 
freedom of the (constant) duality rotations of the electromag­
netic field. Observe that if one uses in place of v the equiv­
alent variable z defined by 

tan(v/2) = :e'~v/sinv = dz, (2.25) 

the basic formulae which describe our solution assume the 
slightly simpler form 

(-A ).g = e2r, ®r, + e- 2Zr 2 ®r2 

+ dz ® dz - (2coshz)2 r3 ® r3, 
V( - A /2).{U = ie - 2i,p°d (e - 2iSinhzr3)' 

E + iii = 2v - (A /2)e - 2i,po.r 2isinhz, 

Z = - iv( - A /2)·cosh z, 

S = V( - A /2)(isinhz - 1), 

with the values z = ± 00 being singular. 

(2.26) 

3. PARAMETRIZATIONS ra's AND SYMMETRIES OF 
THE E( _) SOLUTION 

Let k A and I A be a pair of real spinors normalized so 
that 

kAIA_k,/2 - kit = 1. (3.1) 

Then 

r, = I AdkA + kAdlA 2k AdIA-2I AdkA, 

(3.2) 

r 2 =k AdkA -IAdIA, r3=k AdkA +IAdkA, 

is the most general analytic form of the SL(2,R) [equivalent­
ly, 0(2, I,R)] connections which satisfy (2.20). Parametrizing 
kA and IA in terms of real u and complex/according to 

ei"/4kA +e- i"/4 IA = [eiu/2/(i_/l)'/2] 

X [(1 - if)o~ - i(1 + if)o~], 
(3.3) 

so that (3.1) reduces to an identity, the connections are 

r 'r 2 e'U d,r r = du _ Ifdl-ld/. ,+/ 2 = --_oj, 1 

1-ff - 1-ff 
(3.4) 
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With the ra 's so understood, (2.26) gives our solution in 
terms of the chart I x!' j = I ull,z j. Equivalently, using the 
chart Ix!'j = ! u,g,g,zj, where 

/ = :ge - iu, 1= :geiU , 

we have 

(3.5) 

r 'r - 2 dg - igdu ,+/ 2 - -' 
r = 1 + gg du _ igdg - gdg 
11_gg l-gg l-gg 

(3.6) 

Working in the last chart, one easily finds that our E( _ ) 
solution always has three Killing vectors; namely, 

(3.7) 
k = e - iU(gau + i[ 1 - gg]ag ), 
2 

which close in the SL(2,a') algebra 

[k,k]=ik,[k,k]= -ik,[k,k]= -2ik. 
'2 2 '2 222 , 

(3.8) 

Therefore, the E( _) solution always has a three parameter 
group of symmetries. 

4. CONCLUSIONS 

The results of this paper correct the conclusions of Ref. 
1 in the form of the following statement: the electrovac with 
A type D solutions with principal null directions aligned 
along real eigenvectors of the electromagnetic field are ex­
hausted by the solutions from two classes; the regular (gener­
al) class with principal null directions being geodesic and 
shearless, consisting of the solutions of Refs. 6 and 3 includ­
ing those of Refs. 7 and 8; and the exceptional class, charac­
terizedbytheconditionI = (E2 + B 2f - (~C(3))2 = 0, where 
the Goldberg-Sachs theorem does not apply. Nontrivial ex­
ceptional solutions exist if and only if A < 0, and are exhaust­
ed by the solutions of type EI + ) with one of the principal null 
directions being nongeodesic, and type EI _) characterized 
by principal null directions being geodesic, nonexpanding 
but shearing and twisting. The Robinson-Bertotti solution is 
a trivial solution with I = 0. 
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A Schwarzschild-like interior solution for charged spheres is presented in this paper. The solution 
is regular everywhere. 

PACS numbers: 04.40. + c, 04.20.Jb 

I. INTRODUCTION 

The study of charged matter distribution in general rel­
ativity has attracted wide attention recently. De and Ray­
Choudhuri I have shown that a charged dust distribution in 
equilibrium will have the absolute value of the charge to 
mass ratio as unity in relativistic units, i.e., c = G = 1. 
Efinger,2 Bailyn and Eimeral3

, and Nduka4 have obtained 
some solutions of static spherical distributions which are not 
free from singularity at the origin. On the other hand, Kyle 
and Martin,5 Wilson,6 Kramer, and Neugebauer,7 Krori and 
Barua,8 and Chakraborty and De9 have presented solutions 
for charged fluid spheres which are very regular. But no 
solution has so far been derived such that it may reduce to 
the Schwarzschild interior solution in the absence of charge. 
In this paper we present a new solution for charged spheres 
which has the interesting feature that it reduces to the 
Schwarzchild interior solution for a fluid sphere in the ab­
sence of charge. But it possesses the peculiarity that in the 
presence of charge, it does not represent a fluid distribution 
because it sustains tangential stress. The solution, however, 
is regular everywhere and is free from any singularity. 

II. DERIVATION OF THE SOLUTION 

We take the interior metric in the form 

ds2 = eVdt 2 _ r(d() 2 + sin2() d¢J 2) - eA dr (1 ) 

wherepr is the radial pressure, Po andp,p are the tangential 
stresses, E = - POI pOI,Fol being the electric field, and the 
suffix 1 indicates differentiation with respect to r. Maxwell's 
equation is give by 

~(,j - g POI) = 41TUV0.J - g, 
dr 

where a is charge density and VI' = 0;,/ ,jgoo' 

(S) 

Now since there are four equations and seven variables 
let us assume 

and 

eV = (A - B v'X)2, 

eA = 1!x, 

E = a2rv' x/(A - B v' x), 

where A,B, and a are constants and 

X = 1 - Kr + Qr4
, 

K and Q being constants. 
With Eq. (1) the Eqs. (2)-(S) give 

(6) 

(7) 

(8) 

(9) 

81T = K (3B v' x - A ) + Qr(A - SB v' x) + a2rv' x (10) 
~ A-Bv'x • 

81TPo = 81TP,p 

= K(3Bv'x -A) + 2Qr(A - SBv'x) - a2rv'x 

A -Bv'x 

81T = 3K _ SQr _ a
2
rv' x 

P A -Bv'x' 

41Ta = [3a - (a/4)r(A.1 + vIlle - (U + v1/4. 

Now at r = 0 (center)we have from (10)-(13) 

K(3B-A) 
81T(Pr)O = 81T(Po)o = 81T(P,p)o = . 

(A-B) 

(11) 

(12) 

(13) 

(14) 

81TPO = 3K, (IS) 

81Tao=6a/~A-B, (16) 

and Eq. (8) gives 

E = O. (17) 

At the exterior since (eV.eA
) = 1, we have 

(A - B v'X I)2/XI = 1. (18) 

where XI' is the value of x at the boundary. With 

A = ~v'XI and B =! (19) 

Eq. (18) is satisfied. Again foreVto be continuous atr = r l we 
have 

(20) 

where m and e are respectively the total mass and charge of 
the sphere. 

From Eq. (19) and (20) we have 
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x. = 1 - 2m/r. + e2/rt. (21) 

With Eq. (19) we have for the value ofp, at the boundary 

8$,). = ( - Q + a2)r. (22) 

since (P,). is zero at the boundary we have 

Q=a2 (23) 

The value of p at the boundary using (19) is given by 

81Tp. = 3K - 6a 2rt. (24) 

For P. to be positive at the boundary we have 

r. «K /2a2)./2. (25) 

The continuity of E at the boundary r = r 1 gives 

Thus from (18) and (26) we have 

e = ari. 

From A = ~VXI we have 

K - [K2 - 4Q(1 _ ~ 2)11/2 
rt= . 

2Q 

(26) 

(27) 

(28) 

The value of r l given by (28) must satisfy the condition (25). 
This is possible if A <~. Againpo;;;.3(p,)o gives A;;;. 1. 
Thus A lies between 1 and ~. From (28) we have 

K=Qrt+(1/rt)(1-~A2). (29) 
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Now from (21), using K from (29) and e from (27), we have 

m=HQri+(1-~2)r.], (30) 

which is the geometrical mass of the charged sphere. It ap­
pears that the charge makes contribution to this mass. 

ACKNOWLEDGMENTS 

The authors are grateful to the government of Assam 
for providing facilities to carry out this piece of work at Cot­
ton College, Gauhati-781001. One of them (B.B.P) is thank­
ful to U.G.C., New Delhi, for financial assistance. 

'U.K. De and A. K. Raychaudhuri, Proc. R. Soc. London, Ser. A 303, 97-
101,0968). 

2H. J. Efinger, Z. Phys. 188, 31-37 0965). 
'M. Bailyn and D. Eimeral, Phys. Rev. D 5,1897-1907 (1972). 
4A. Nduka, Acta. Polon B 8, 75-79 (1977). 
'c. F. Kyle, and A. W. Martin, Nuovo Cimento 50,583-604 (1967). 
oS. J. Wilson, Can. 1. Phys. 47, 24014)4 (1967). 
7D. Kramer and G. Neugebauer, Ann. Phys. (Leipzig) 27, 129 (1971). 
"K. D. Krori and J. Barua, 1. Phys. A 8,508-11 (1975). 
0p. C. Chakraborty and U.K.De, Indian J. Pure Appl. Math. 10,608-16, 
(1979). 

K. D. Krori and 8. 8. Paul 127 



                                                                                                                                    

Jordan-Kaluza-Klein type unified theories of gauge and gravity fields 
T. Bradfield and R. Kantowski 
Department 0/ Physics and Astronomy, University o/Oklahoma, Norman, Oklahoma 73019 

(Received 15 April 1980; accepted for publication 17 June 1980) 

We investigate the generalized Jordan-Kaluza-Klein type scalar tensor theories of gravity with 
gauge fields present for the purpose of restricting the spacetime dependence of the scalar fields. 
These scalars are essential in building Lagrangians for fields with internal degrees offreedom. By 
one rather simple consistency restriction on covariant differentiation we are able to show that the 
scalar fields must be spacetime constants. 

PACS numbers: 04.50. + h 

I. INTRODUCTION 

The fiber bundle structure of the generalized Kaluza­
Klein theory was described by Trautman and its extension to 
contain scalar fields (generalized Jordan Theory) was pre­
sented by Cho and Freund. 1-3 The geometry used here will be 
almost identical with that used in these references. Space­
time, M, is assumed to be endowed with a metric gst and to be 
the base space of a principal G bundle P, for some gauge 
group G. The gauge field is assumed given by a connection 
form w on this bundle. If we denote the action of G on P by 
If/. :P-P for aEG and the projection of Ponto M by 1T, then 
If/:w = ad~ ,ow and 1To lf/a = 1T. To proceed further and do 
physics we must provide equations of motion for, and inter­
actions between, the two given fields g st and w as well as their 
physical interpretation, e.g., we need to supply a Lagran­
gian. We will follow the previous references and construct a 
metric on P and from it a Ricci scalar which will serve as a 
Lagrangian. 1-4 In the next section we try to make clear the 
procedure for building certain tensors on P from tensors on 
M and from tensor fields of type ad' on the bundle. The 
purpose is to enlarge the stage for events from the four di­
mensions of spacetime to include the N internal degrees of 
freedom associated with the gauge group. In Sec. III we de­
fine a metric gp on P and relate its covariant derivatives to 
those of gst on M and those of w. In Sec. IV we go on to show 
that the spacetime scalars that appear in g p are constants. In 
Sec. V the geodesics of g p are projected onto M and seen to be 
classical particle trajectories. We conclude by giving the La­
grangian for the gravity and gauge fields. 

II. LIFTING TENSOR FIELDS FROM THE BASE SPACE 
AND SLIDING OVER ADJOINT FIELDS FROM THE LIE 
ALGEBRA 

The purpose of this section is to show that two types of 
physical fields-those defined as tensors on the base space 
(spacetime) e.g., stress-energy-momentum, and those de­
fined as tensors of type ad', e.g., standard Higgs fields, can 
both be uniquely associated with group invariant horizontal 
or vertical tensors defined onP(e.g., in TPor Tp·, etc.). This 
procedure also allows the introduction of mixed type fields, 
i.e., those with horizontal and vertical components, e.g., 
conserved currents. 

First we lift spacetime tensors. Any form on M can be 

lifted onto P by the pullback of 1T. Given a connection form 
w, any vector field v on M can be uniquely lifted as a horizon­
tal vector field h on P. If h = lift of v from TMx to TPx' then 
w(h ) = 0 and 1T. h = v. Given a coordinate chart, xc, on M we 
denote the lifts of a/axc and dxc by hc and 0 c respectively. 
Any tensor field t on M can be lifted horizontally as a tensor 
field Ton P, 

a 
t(x)=tu··,b ... (x)- ® ... ®dxb ® ... , 

axa 

T(P) = t a· b . ..(1T (P))ha ® ••• ® Ob® .... 

These horizontal fields are invariant under the action of the 
group, i.e., T(lf/aP) = If/a T(P) where vector components 
transform by If/a' and dual components transform by If/:.,. 

Now for adjoint fields. 5 Let A ':P-G' be a G '-valued 
field on P of type ad', i.e., A '(If/aP) = ad~,A ' (P)EG', where 
G' is the Lie algebra of left invariant vector fields on the 
gauge group G and where ad' is the adjoint action of the 
group on G '. We wish to "slide" the fieldA 'back from G 'into 
the vertical tangent space of P. This we can do because of the 
Killing or fundamental map ~ of G '-TP; i.e., to each LEG' 
there corresponds a unique vertical vector field I on P de­
fined by I (P) = pushover of L (e) by the map If/( IP:G-P. The 
unique vertical field A on P can then be defined by 
A (P) = ~ (A ' (P))latp. It is easy to see that the ad' invariance 
of A' implies the right invariance of A, i.e., 
If/a·A (P) = A (If/aP). To "slide" a form field/,:P-G '. of type 
ad' over to the cotangent space Tp· as a vertical form we 
must make use of the connection form w:TP-G '. Define 
fP- TP • by 1;, (Vp) = J; [w( Vp) ]. To clarify the notation, ad' 
can be thought of as an action of G on both G' and G '. (the 
vector space of left invariant forms), 
ad~:G '_G ',ad~:G '·-G '., defined by 

ad~(L) = K, 

ad~(<P) = e, 
where K (e) = ada.L (e), 

where e (e) = ad> <P (e). 

It then follows that/, the slide over of/" is invariant under 
the action of the group on P, i.e.,J(lf/aP) = If/: ,J(P). Given 
any tensor of type ad', t ':P-G I ® • .. G'· ® "', it is now 
straightforward to build a vertical tensor field on P which is 
invariant under the action of the group. It is somewhat more 
instructive to make the general construction by using a basis 
on P constructed from a basis of G' and TM. Let La 
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[a = I,.··,N] be a basis of G' and <p a its dual basis ofleft 
invariant forms, and let fa be the vertical Killing basis on P 
associated with La' i.e., /a =.I (La)' As a basis of the tangent 
space TP we take (ho,fa) and its dual basis becomes (8 a,rP a), 
where 8 a is the lift of dxa and rP a is the slide of <p a. If 
T' (P) = T a ... p ... (P)La ® ••• ® <p P ® ••• is a tensor field of type 
ad' on P, then associated with it is a vertical tensor Ton P 
given by 

T (P) = Ta .. 'p ... (P)/a (P) ® ••. ® rP p (P) ® •.• 

Because T' was of type ad', Twill be invariant under the 
action of the group on the bundle. 

Finally, tensors of mixed type can be defined on P. For 
example the gauge covariant derivative DT' of a tensor field 
T' of type ad', is a I-form (horizontal atthat)onPwith values 
in the same tensor product spaceofG' as T' is. This form can 
now be "slid" back to P as a mixed tensor with one horizon­
tal form index and the rest vertical indices. As an example if 
T':P-G', i.e., T' (P) = T a (P)La' then 
DT' = ha (Ta (P))8 a ® La' This tensor is "slid" back to P as 
the mixed invariant tensor DT = ha (Ta (P))8 ° (P) ® fa (P). 

III. A METRIC FOR P AND COMPATIBILITY OF 
COVARIANT DERIVATIVES 

Ifwe wish to derive equations of motion and conserva­
tion laws from a Lagrangian we must be able to construct 
scalar fields from fields of type ad'. The simplest way to do 
this is to assume the theory contains a non degenerate two­
index-symmetric-tensor field g;; = gaP(P)<P a ® <p/3 of type 
ad', i.e., a metric field of type ad'. When this field is "slid" 
back to the bundle, it becomes a metric on the vertical part of 
TP, 

gG (P) = ga/3 (P)rP a (P) ® rP /3 (P). (3.1) 

At this point it is possible to define a metric on the bundle 
space Pby 

gp = gG + gSI' (3.2) 

where gSI is the horizontal lift of the spacetime metric. This 
metric is invariant under the action of the group and is iden­
tical with the one used by Cho and Freund, and, at this point, 
more general than the one proposed by Trautman. 1-3 We 
intend to use the Ricci scalar of the bundle metric as a La­
grangian as many authors suggest. 1-10 At this point it would 
be appropriate to call this theory a generalized Jordan theory 
because gG (P) will not be a constant on any cross section.6--8 

However, at this point we are in possession of three 
types of covariant differentiation, one from the gauge con­
nection, one from the spacetime metric, and the other from 
the bundle metric. We call them D,.:1, and V respectively. 
Since we have defined a straightforward procedure for relat­
ing physical fields (tensors on spacetime and fields on type 
ad') to fields on P, it is tempting to ask that appropriately 
comparable covariant derivatives agree. By this admittedly 
ad hoc restriction, we mean that if tSI and T' ad are two such 
fields and we wish to compute their change in some space­
time direction Vx ' then we would compute .:1 vJtsl ) and 
Dh,,(T ~d)' where hp is the horizontal lift of Vx (the latter de-
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rivative usually being evaluated only on some cross section). 
~ecause these fields are also defined on P we could compute 
Vh (Ts,) and Vh (Tad)' These two sets of derivatives can be 

p p 

compared by (1) lifting the tensor.:1 (tsl ) from M up the fiber 
to p and comparing it to the horizontal part of V( TsI ) and by 
(2) sliding the G ' valued form D (T ~d) of type ad' back to the 
vertical tangent space at p by the procedure defined in the 
last section and comparing it to the vertical parts ofV(Tad)' 
We find that a necessary and sufficient condition for these 
two pairs of covariant derivatives to agree is that the gauge 
covariant derivative of the group metric field vanish, i.e., 
Dg'a = O. This restriction on the metric reduces it from being 
a set of spacetime scalars to an invariant element of the 
theory.5 

Necessity is relatively easy to show once it is observed 
that the vertical part of V h (g G) vanishes. This directly im-

p 

plies that Dg;; = 0 for consistency. Proof of sufficiency re-
quires more details; we simply write out the connection sym­
bolsforVinthebasisXA = (ha,!a),whereVxAXB =r~AXC' 

rPr = - H2~(7 C~/3 gGY)" + Cpr]' 

r~b = W~b' r~b (P) = L;}(1T (P)), 

r~a (P) = r~o (P) = W~c~~(1T (P))gGua, (3.3) 

r~(3 = rPa = !g';;(7ha(gG(Jv), 

r~a(P) = - ~;(1T (P))hc(gG"')' 

where the various functions on P are defined by 

[la,l/3] = C ~/3lr' 

[ha ,hb ] = - Fab (P) = - F~b (P)la (P), 

gp (P) = gSlu,,(1T (P))8 a (P) ® 8 b (P) 

+ gG"" (P)rP a (P) ® rP (3 (P), (3.4) 

It is straightforward to see that the horizontal part of 
V(t ~;··b .. (1Tp)ha ® ••• ® 8 b ® .•• ) is identical with the horizontal 
lift of.:1 (t :;··b ... (x)JIJxu ® ... ® dxb 

® ... ) without any further 
restriction on the bundle metric. However, when we com­
pare the vertical parts of V ho (T ~d a ... ( P )(3 ... la ® ... ® ¢ /3 ® ... ) 

with those of the "slide" over of 
Dh jT:d a"'(3 ... (P))La ® ... ® f/>(3® ... we see that V h,,(la) and 
Vh)rP(3) can have no vertical parts, i.e., ha(gG"") = 0 is not 
only necessary but also sufficient. Since this is the compo­
nent version of Dg;; = 0 we conclude that a necessary and 
sufficient condition for compatability of all three covariant 
derivatives, spacetime, gauge, and bundle metric, is that the 
group metric field be gauge covariantly constant. 

IV. SPECIAL GAUGES,gG"" = CONST 

In this section we show that Dg'a = 0 is a necessary and 
sufficient condition for finding a gauge (a local cross section 
of P) where the components of g G are constants when re­
stricted to that cross section. Because of the absence of the 
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spacetime scalars it is more appropriate to call this theory 
the generalized Kaluza-Klein theory, rather than the gener­
alized Jordan or Brans-Dicke theory.6,9·w.1I We prove the 
conjecture in two steps. First, the necessary and sufficient 
conditions for hogG"fl = 0 to have solutions is that the inte­
grability conditions [h o ,hb ]ga/3 = 0 be satisfied or 
equivalently, 

(4.1) 

Secondly, we show that Eq. (4.1) is the necessary and suffi­
cient condition for finding a gauge transformation, b:U_G 
(Uis some open neighborhood ofxEM) which would produce 
a local coordinate chart on P, [p = (x,a)], in which 
(alaxC)gG"fI(x,a) = 0 These coordinates are defined by 
x = 1T (P) andp = I/Ia(s(x)) wheres is some local cross section, 
s:U-P, such that 1TOS = idu . If we define the matrix (ad~)~ 
by 

ad~(La) = L/3(ad~)~ 

it follows that in the (x,al coordinate system 

la (PI = La(a), 

and 

hc (P) = ~ - (ad~. fa A ~(x)L/3(a), 
axc 

(J C (P) = dxc , 

¢ a (P) = <P ala) + (ad~. )~A r(x)dxb
, 

gGa# (P) =gY6(x)(ad~)~(ad~)g, 

Fcb (P) = (ad~. faF~b(x)L/3(a), 

where F~b(X) = (alaxc)A b'(x) - (alJxbjA ~(x) 

(4.2) 

(4.3) 

+ A ~(xjA ~(X)C~6' andga /3(x) = gG"p(p = six)). These can 
be compared with equations given by Cho and Freund. 3 The 
vanishing gauge covariant derivative, Dg'a = 0, becomes 

(4.4) 

and its integrability condition Eq. (4.1) becomes 

2F~b(X)g7T(u(x)C;;la = O. (4.5) 

A gauge transformation can be looked at as a simple coordi­
nate transformation 

.x;=x, 

q = b (x)-a (4.6) 

given by a mapping b:U-G. Under such a transformation 

gu./3(x) changes by 

ga/3(x)=gy6(x)(ad;' .(x))~(ad;' .(xM. (4.7) 

By puttingga /3(x) = const, Eq. (4.7) becomes an algebraic set 
of equations for b (x) which can be turned into a set of differ­
ential equations by taking its exterior derivative. 

b *¢ bgyta(x)Cblb = - ~dga/3(x), (4.8) 

where b *¢ {, = dxC(ab 1T laxC) ¢ .I (Nab 1T) in some coordi­
nate system on G. This equation obviously cannot be solved 
for an arbitrary gu./3(x) at any point x, however, from Eq. (4.4) 
we can rewrite Eq. (4.8) as 

(b *¢s -A 6)gytu(x)Ch = 0, (4.9) 
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where A b(X)=A ~(x)dxc and where gaP (x) and A Ii(XJ are re­
stricted by Eq. (4.4). Equation (4.9) can be solved at any point 
x = Xo and its exterior derivative vanishes identically pro­
vided Eq. (4.4) is satisfied. This can be easily checked by 
using d¢ D = - ~C!w¢P I\¢ "'. 

In one of these special gauges we have 

gafJ(x) = canst, A ~(x)gyta C blli = 0 

as well as 

The remaining gauge freedom is restricted by 

b*¢6gytaCbI6 =0. 

(4.10) 

(4.11) 

If the metricgG"fl (P) is invariant then gG 1."C11{' = 0 and no 
algebraic restrictions are placed on the vector potentials by 
Eq. (4.10). Since go is a field of type ad' it follows that 
fy(gGall) = - 2gG,,,, (P)cg 1y , from which we conclude that 
an ad' invariant metric must be constant up the fiber as well 
as along the cross section. This case contains the semisimple 
groups and their "Killing" metrics as Trautman proposed 
and Cho elaborated. 1,2 It, however, contains many more 
groups which possess invariant metrics but whose Killing 
forms are degenerate. One interesting solvable four dimen­
sional case is given in Sec. y, See Patera et al. for invariants 
of low dimensional Lie algebras. 12 The other and most fre­
quent case is that for which gafJ is not invariant and conse­
quently Eqs. (4.10) and (4.11) place restrictions on the com­
bined set of gauge field, vector potentials, group metric, and 
gauge transformations. Examples of this case include the 

non unimodular groups (C~fJ #0) for which no invariant me­
tries exists. As a consequence of Eq. (4.10), however, for all 
cases the metric go (P) must be invariant under the holon­
omy group of the connection. 13,14 

V. GEODESICS AND LAGRANGIANS FOR THE 
GENERALIZED KALUZA-KLEIN THEORIES 

We start by giving the geodesic equations for the bundle 
metric defined in Sec. III. It is found that up to a global gauge 
transformation (action of G on P by 1/1), the geodesics are 
uniquely determined by a spacetime particle trajectory and 
by the "gauge charge" of the particle. The gauge charge be­
inga form of type ad', q' = qa<Pu, whose components qa are 
constant along each geodesic in p, If we use an affine param­
eter A for the geodesic through point pEP and write the tan­
gent vector VIA ) = vOha + qUfa , we have the following geo­
desic equations, 

..!!.- va + vbvC
{ a} + vbq Fa gca = 0 

dA be a bc st 

and 

(5.1) 

whereqa gGaPq.B, The second equation implies dqa IdA. = ° 
producing the conserved gauge charge, and the first tells 
how it must transform under the action of I/Ia in order that 
the geodesic projects onto a fixed particle trajectory, i.e., 
qaF~c has to be constant up the fiber. 
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From Eq. (5.1) it follows that qaqa (and hence vQvQ re­
mains constant along a geodesic. We conclude that the spa­
cetime distance along the curve projected by 1T can be used 
for A in Eq. (5.1). The conclusion is that the projected geode­
sic gives a spacetime curve XU(s) with tangent vector 
vIs) = vQ(s)a/axQ satisfying Eq. (5.1) which is the equation for 
a classical point particle with gauge charge qa (at least from 
the E&M analogy). 10 

For a Lagrangian we use the Ricci scalar of the bundle 
metric, 

!/ = (_gp)1/2R4+ N, 

where ( - gp)1/2 = ( - g"gG)1/2, 

and 

(5.2) 

R4+ N = R s' -1 gG,,{JF~bF~d g<:,C g~; - g't/C~yC~6 
1,.a(3CY CD 10"(3 YDCfT CP -2!5G ,,6 (3Y-46GgG ay (36gG"I" 

This can be compared with Cho and Freund by leaving out 
their cosmological constant term as well as the kinetic ener­
gy of the group metric, and by adding - g't/C ~y C ~6 which 
is present for non unimodular group. 

The volumns Vp over which R4 + N is to be stabilized are 
given by the gauges permitted in Sec. IV and submanifolds H 
of G of finite volume as measured by 
(gc) I 12cp I(a) f\ ... f\ cp N (a). 

1= ((_gp) 1/2R4+N(}of\ ... f\(]3f\</JIf\ ... f\</JN,(S.3) 
Jvp 

where Vp ={I/IQ(X):XEU, aEH}. In coordinates adapted to a 
gauge this becomes 

1= 1" ·IG, 

where 

Is, = J) -gs' (x) g(x))t!2R4+ N(x)dxO f\ ... f\ dx3
, 

I G = L det(ad~)CP I(a) f\ ... f\ cp N (a). (5.4) 

In the above 
gs'(x) = det(gs,(x)ab),g(x) = det(gG (p)a(3)atp =s(x), and 
det(ad~) = det [(ad~)r; ]. Up to a constant factor which de­
pends on H, I is given by 

1= J) -g,,(x))'/2R4+N(X)dxof\ ... f\ dx" (5.5) 

when evaluated in one of the special gauges 
[ga(3(x) = const l. 

As can be seen from Eq. (5.2) most examples of this 
theory will have an undesirable cosmological constant term, 
however, some will not. We conclude by giving the smallest 
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dimensional non abelian group with an invariant metric 
without a cosmological term. It is the four-dimensional 
group whose solvable algebra is given by 

[L4,La] = 0, [L I ,L2 ] = L4, 

(5.6) 

and classified as U312 by MacCallum. 15 The invariant met­
ric is the Lorentz metric, 

o 

o 
o 

and R4 + N simplifies to 

o 
o 
o f) 

R4 + N = R st (x) - ~af3F~b (X)F~d(X)g<:,C(x)g~;(x). 

A somewhat different approach is used by Kopczynski to 
remove the cosmological term. 16 
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Stochastic field equations for linearized gravity are presented. The theory is compared with the 
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I. INTRODUCTION 

Quantum systems which are described by a Schro­
dinger equation allow a stochastic interpretation. The Fen­
yes-Nelson model 1-3 and its generalization4

-6 provide such a 
stochastic description of quantum mechanics. Several field 
theories have been considered in this context,7-11 and the 
results have so far been of some interest. In the present pa­
per, the generalized Fenyes-Nelson model is applied to the 
weak field approximation of Einstein's general theory of rel­
ativity, the so-called linearized gravitational field. 12-14 

It is worthwhile to attempt a stochastic model of quan­
tum gravity for several reasons. First, since the gravitational 
field in the classical theory has the interpretation of a metric 
tensor, it is disturbing that in the usual quantum formulation 
this geometric interpretation is completely obliterated be­
cause the field and its derivatives become abstract operators 
on a rigged Hilbert space. Because of this difficulty it has 
become fashionable to play down the geometric role of grav­
ity when dealing with quantization, as in the formulation of 
Weinberg. 14 A stochastic formulation of the quantized 
gravitational field may revitalize the geometrical interpreta­
tion of quantum gravity. 

Second, the stochastic formulation of quantum me­
chanics, at least in spirit, is a progeny of Einstein's profound 
discomfiture with the complementarity vision of Bohr. Since 
Einstein's views were based at least in part on considerations 
of the general theory of relativity, it seems fitting to pursue a 
stochastic model of quantum gravity. 

Third, the great successes which gauge theories have 
had in the theory of elementary particles suggest that funda­
mental efforts such as the stochastic reformulation of quan­
tum mechanics be concentrated in this general area. 

The linear theory of gravity has been selected for analy­
sis because it avoids the extremely difficult problem of diver­
gences in the full theory, and it is sufficiently simple to allow, 
perhaps, the beginning of a probabalistic geometric interpre­
tation of quantum gravity. 

In Sec. II the linearized Einstein field equations are 
briefly recounted. In Sec. III the usual quantization proce­
dure is outlined. In IV the method of stochastic quantization 
is applied to the linear theory, and in V the curious random 
classical radiation approximation is presented. 

II. THE LINEAR FIELD EQUATIONS 

The Einstein field equations in the linear approxima­
tion may be written 

- hp.v.a a - np.vha{3,a{3 + hp.a,a v + hva,ap. = 161T'GTp.v' (1) 

where the notation of Ref. 13 is followed except that the 
gravitational constant G is not set to unity. Indices are raised 
and lowered via the Minkowski metric np.v' The full metric 
tensor is related to the above fields by 

gp.v = np.v + hp.v' 

hp.v = hp.v - !np.vhaa, 

(2) 

(3) 

hI''' = hI''' - ~np.vh a a' (4) 

where Tp." is the energy-momentum tensor of all nongravi­
tational sources. 

Once the linear theory is solved, classically, the nonlin­
ear corrections of the full theory may be included as a pertur­
bation by introducing a suitable term in the energy-momen­
tum tensor (Ref. 14, p. 165). This procedure has not worked 
so far in the quantum theory because of the celebrated diver­
gences introduced by the nonlinear terms. 

Weinberg has suggested that general relativity be treat­
ed as an ordinary field theory with the linear theory as the 
starting point. This will be the approach taken here, al­
though one of the primary motives for seeking a stochastic 
model of gravitation is to restore a geometric interpretation 
to the quantum theory. 

The linear theory possesses a gauge invariance similar 
to electromagnetism (Refs. 13, p. 439; 14, p. 254). The field 
equations are left invariant under the transformation 

hp.v-.hp.v - a'll'p.laxv - a'll' ..,Iaxp., (5) 

where '(II' is an arbitrary 4-vector field. All observables are 
independent of the gauge, and so gauge conditions may be 
imposed by fiat in order to facilitate solution. We shall work 
in the Lorentz gauge where one requires 

hI' a.a = O. (6) 

The field equations become in this gauge 

- aaaahp.v = 161T'GTp.v' (7) 

The solutions to Eq. (7) may be written as a sum of a 
retarded solution plus a free field solution, 

hI''' = h:v + h~v, (8) 

where 

and 

a aah in = o. (10) 
a 1''' 

The gauge condition [Eq. (6)] does not determine the 
gauge completely. Any additional transformation such that 

aaa a'll' I' = 0, (11) 
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will preserve the Lorentz condition. This gauge transforma­
tion of the second kind can be used to make the free part of 
the field equation both transverse and traceless (Ref. 13, p. 
946). No generality is lost, therefore, by requiring 

h~y =0, 

h\~=O. 

(12) 

(13) 

Periodic boundary conditions in the spatial coordinates 
will be imposed as an aid to quantization. If the length asso­
ciated with this periodicity is L, then wave numbers in a 
Fourier decompositon are restricted to have components 
which are integral multiples of 21T/L. Although the energy 
momentum tensor must also have this periodicity for consis­
tency, no generality is really lost since L will be taken to 
infinity eventually. With these conditions, the Fourier de­
composition of the free part of the gravitational field is 

h t = (l/v2L 3/2)I Eij(A.,kjei"'XQ (A.,k,t), (14) 
..t," 

where we have dropped the distinction between hin and h in, 

since in the transverse traceless gauge they are the same. A. 
denotes the polarization state and it can take on one of two 
values. The E'S must satisfy the conditions 

Eii =0, 

(15) 

The polarization tensors can be chosen real, and, with k in 

and the Hamiltonian may be written as 

H = I(IP 12/4/ + ak2 flQ 12) 
..t," 

=fI UlQ 12 + ak21Q 12). (24) 
..t," 

This must now be compared to the actual energy of the gravi­
tational field to set the scale for quantization. 

The physical energy to be associated with a free gravita­
tional field has been calculated (Ref. 13, p. 955). It is given by 
the 00 component of the stress energy tensor: 

TI'Y = 32~G In (al'h\j)(ayh\j)d 3X , (25) 

where the integration is taken over a three-dimensional cube 
(11 ) of edge length L. One finds 

Too = (1!321TG) In (ht)2d 3X 

= (1!321TG) I WQ 12 + !k21Q 12), (26) 
..t ... 

so that we may make the identification 

f= 1!321TG, 

and therefore, 

P = (1!321TG )Q. 

(27) 

(28) 

thez direction, they can be taken as III. QUANTIZATION 

0 Quantization is achieved by imposing commutation 

'I+I~~~ IJ y2 -1 D (16) rules as follows at equal times: 

0 0 

'IXI~~~ 
1 

D 0 
IJ y2 

0 0 

(17) 

for the two independent states of polarization denoted by + 
and X. The following expression is often useful: 

I Eij(A. )Ekl(A.) = ~( - O~O~I + a:1 ojr + o:roja 
..t 

( 18) 

where 

0:; = oij - k i k/k2
• (19) 

The equations of motion for the field require that the 
Q 's satisfy 

Q + k 2Q = 0, (20) 

so that a Lagrangian may be chosen of the form 

L =f I WQ 12 - !k21Q 12), (21) 
..t ... 

wherefis an as yet undertermined parameter. In the sum 
over k each Q appears twice because reality requires: 

Q (A., - k) = Q *(A.,k). (22) 

The conjugate momenta are 

133 

aL . -a--' = fReQ = ReP, 
ReQ 

aL . 
a ImQ = fImQ = ImP, 

(23) 
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(1!321TG ) [ReQ (A.,k),ReQ (A. ',k')] 
= - iM..t..t, (0 .. , .. , + 0 .. , _ k' ), (29) 

(1!321TG ) [ImQ (A.,k),ImQ (A. ',k')] 
= -iM..t..t.(Ok.k' -Ok,_k')' (30) 

In terms of the fields, the equal time commutation rules 
become 

[!l;j(x),hkl(y)] = - iMijkl(X - y), 

where 

0kl(X - y) = f d 3k eik.(x - YiO (k) 
IJ (217r IJkl' 

and where 

Oijkl(k) = I Eij (A.,k)Ekl (A.,k) 
..t 

(31) 

(32) 

(33) 

is given by Eq. (18). The dynamical relation which fixes the 
quantum theory is 

(34) 

The field theory is equivalent to uncoupled harmonic oscilla­
tors. In the ground state one finds 

(Olhij(x)h~~(Y)IO) 

f d 4k 0 (k)eik 
"(x" - Yei 

= (321TG )ifl __ ijkl , 
4 tx > ty • 

(21T) - k I'kl' + iE 
(35) 
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Using the rule of Gaussian combinatorics, 

(01 TtPl(xtl X ... XtPn(xn)IO) 

= I (01 TtP I (XtltP2(X2) 10) X '''X (01 TtPn_ dXn_ I )tPn(xn)IO), 

(36) 

where n is even, T denotes time ordering, 1T denotes a sum 
over distinct permutations, and the higher order moments 
for the ground state of the quantum field may be calculated. 
The spectral energy density for the field is found to be the 
same as for electromagnetism: 

(37) 

corresponding to an energy of !w for each degree of free­
dom of the field in the ground state. 

IV. STOCHASTIC QUANTIZATION 

The linearized gravitational field as a quantum system 
may be reduced to an infinite dimensional Schrodinger equa­
tion of the form 

[I(-~~~)+ V(Q)] t/J=i~. 
; aQ; at 

(38) 

The dimensionality of this equation can be made finite by 
imposing a cutoff in momentum space. Since much of the 
theory upon which stochastic quantization relies has been 
done for only finite dimensional systems, it is convenient to 
impose a momentum cutoff which may be taken to infinity in 
most expressions of interest. This is not an important limita­
tion and it can be expected that as the theory of Markov 
fields advances it will eventually be eliminated. For the pre­
sent, we shall assume a momentum cutoff. Let us choose the 
following notation 

.::1 _" a2 

Q - ~ aQ;2' 
(39) 

where Rand S are real functions. 
Direct computation shows that the following equation 

is equivalent to Eq. (38) so long as Rand S have a first time 
derivative and a second Q derivative, and so long as z has a 
nonzero real part 

[ _ (~)2 .::1
Q 

+ (V(Q) _ ~2 (Z2 _ 1) .::1::R)] eR+;Slz 

= i(m) i.eR + ;Slz, (40) 
at 

where z is a constant which may be complex. 
Suppose that z is purely imaginary, so that 

z=ilzi. (41) 

Then Eq. (40) is still true if(38) is true, but (40) is only one real 
equation 

{(IZ~Ii)2 .::1 Q + (v + ~(1 + Iz12) .::1::
R 

)}eR +S/lzl 

= _lzlli~eR+S/lzl. (42) 
at 

This equation must be supplemented by another real equa­
tion since the original Schrodinger equation contains two 
real equations. Another equation may be generated by 
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choosing 

Z= -ilzl, 
which leads to 

[(IZ~Ii)2.::1Q + (v+ ~2 (1 + Iz12) L1;:R)]eR_S/IZI 

(43) 

= Izlli ~ eR -s/lzl. (44) 
at 

Equations (42) and (44) taken together are equivalent to 
Schrodinger's equation by direct computation. 

Consider the two real Eqs. (42) and (44). They have the 
mathematical form of the heat equation. Equations of this 
generic form are characteristic of a certain type of diffusion 
problem called generalized Brownian motion or Ito pro­
cesses. In Ref. 4 equations of this form were derived within 
the context of diffusion theory. The fact that Schrodinger's 
equation can be rewritten in the form (42) and (44) is the basis 
for the stochastic interpretation of quantum mechanics. 

The stochastic interpretation rests on the hypothesis 
that all of the experimentally verifiable predictions of quan­
tum mechanics may be deduced from Schrodinger's equa­
tion. This hypothesis shall be assumed true in this paper. 

Stochastic quantization is achieved, following Nel­
son,2.3 by associating with each coordinate Q a stochastic 
process which is defined by the stochastic differential 
equation: 

dQ; = b;(Q,t) + dW;(t), (45) 

where the W's are Wiener processes which satisfy 

E(dW;d~) = 2v8ijdt. (46) 

Processes defined by Eq. (45) go by the name: generalized 
Brownian motion, Ito processes, or multidimensional diffu­
sion processes. The mathematical background contained in 
Ref. 2 is sufficient for an understanding of stochastic quanti­
zation. Other good sources for this subject are Refs. 15-22. 
Since the formalism offorward and backward derivatives 
has been developed only by Nelson,2 a careful reading of his 
book is essential to an understanding of stochastic quantiza­
tion. A method relying on an operator formalism, rather 
than the forward and backward time derivatives was pre­
sented in,4 but it is completely equivalent to the Nelson 
procedure. 

Many existence and uniqueness theorems for the pr'o­
cesses defined by Eq. (45) are presented in Refs. 2, 15-22. 
The most important theorems show that if b satisfies a global 
Lipschitz condition then Eq. (45) has a solution which is a 
continuous Markov process and which is unique (for exam­
ple, Ref. 2, p. 43). 

In Ref. 2 forward and backward time derivatives D and 
D. are defined by 

Df(Q,t) = lim ~E(f(Q(t + h ),t + h) 
h--.o. h 
- f(Q(t),t)IQ(t) = Q), (47) 

D.f(Q,t) = lim ~ E (f(Q (t ),t ) 
h->O+ h 
- f(Q(t - h ),t - h )IQ(t) = Q), (48) 
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and independent of any dynamical assumption, these satisfy 

DQj = hj , (49) 

a 
hj - h j • = 2v aQj In [p(Q,t I], 

a a 
D=-+ Lhj -+vLiQ, 

at j aQj 

a a 
Do = - + Lhj.--vLiQ. 

at j aQj 

The dynamical assumption which leads to Schro­
dinger's equation is 

(50) 

(51) 

(52) 

(53) 

~(DDo +DoD)Qj +!!"(D-Do)2Qj = -~V, (54) 
8 aQj 

where f3 is a constant and where 

v = /i/2v'(1 - f3/2). 

The SchrOdinger wave function is written in the form 
.1, R + izSN 'f/=e , 

where 

and 

z = 1/(1 - f3/2)1/2 

a 
hj =2v-(R +SN)' 

aQj 

(55) 

(56) 

(57) 

(58) 

It is straightforward to show that Eq. (54) implies that (56) 
satisfies (38). 

If v is to be real, then we must demand the condition 

(59) 

It is possible, because ofEq. (55), to choose any value of the 
diffusion parameter v for a stochastic model of quantum me­
chanics. In the limit when v-o, the model becomes deter­
ministic and equivalent to Bohm's hidden variable theory,23 
as was first pointed out in.6 

In applying this formalism to linear gravity, we use the 
Q 's in Eq. (14), but mindful of the condition (22) which re­
lates Q 's for anti parallel wave vectors. Ifwe define 

bij = Dhij", 

bij~ = D.hij, 

then with the aid of the operator 

1 "',k 
Li ij(x t) = ~ cij(A.,k)e,k'x 

, (v'2)L 3/2 £.. 

( a . a ) x ---+1---
aReQ aImQ' 

(60) 

(61) 

(62) 

the forward and backward time derivatives can be expressed 
as 

(63) 

D. =.!... + r bijoLi ijd 3X - v r Li ijLiijd 3X • 

at In In (64) 

If we define a random field by 
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.. 1 
WY(x t) = ~ cij(A. k)e,k.x W (t) 

, (v'2)L 3/2 £..' "',k' 
"',k 

(65) 

where the real and imaginary parts of W""k are Wiener pro­
cesses which are independent of one another and which 
satisfy 

E [d (Re W""k) d (Re W'" ',k')] = 2vt5 AA' (Ok,k' + 15k, _ k' )dt, (66) 

E [d (1m W""k)d (1m W'" ',k' )] = 2vo AA ,(Ok,k' - Ok. _ k' )dt, (67) 

then the stochastic differential equation may be written as 
dh:j = bijdt + dWij' (68) 

With the gravitational field expressed as in Eq. (8), and with 
the retarded solution still given by Eq. (9), the field equations 
for the free part of the field become 

BtDD. +D.D) +V1(D-D.')2-a1a
1]hij =0, (69) 

which is the stochastic version ofEq. (10) in the transverse 
traceless gauge. 

In order to solve these equations, Schrodinger's equa­
tion must first be solved in Q space. Then the b 's are calculat­
ed using Eqs. (56) and (58). Once the b 's are known, Eq. (68) 
can in principle be solved. 

In general, it is more difficult to solve the stochastic 
equations than to solve the usual quantum mechanical equa­
tions. Even for the free field the stochastic processes for ex­
cited states are difficult to calculate. So far, the stochastic 
method has proven useful in practical problems only for sta­
tionary state problems where considerable simplifications 
occur. See, for example, Simon24 for a review of results in 
this area. Although Simon does not explicitly make the con­
nection with Nelson's theory, many ofthe methods he dis­
cusses may be considered as applications of the Fenyes-Nel­
son model to stationary state quantum systems. 

We now illustrate the theory for the ground state field. 
The solution to Schrodinger's equation in Q space for the 
ground state is 

t/J(Q) = II exp[ - IQ (A.,kW lU ], lU = Ikl (70) 
"',k 1112811'G 

up to a normalization constant. The b 's are found from Eqs. 
(56) and (58) with SN = O. One finds for the b 's ofEq. (6) 

b ij(x,t) = - 2v/(v'2)L 3/2 

"',k lU 
X L ~j(A.,k)e'k.X --Q (A.,k,t ). 

ft3211'G 

The stochastic differential equation becomes 

dhij = b ijdt + dWij. 

Using the property of the Wij in Eq. (66), 

E [dWij(x,tx)dWk1(y,ty )] = 2vdtt5ijkl(X - y), 

(71) 

(72) 

(73) 

where the delta function is that of Eq. (32), the stochastic 
equations may be integrated to yield 

E(hij(x)hk1(y)) =ft(1611'G)f d
3

k e,k.(x-y) 

(211')3 
X e -(v/161TGfil[kll'x - t>lt5ijkl (k)llkl. (74) 

Since b ij of Eq. (71) is linear in the Q 's, the process turns out 
to be Gaussian with zero mean so the covariance (74) deter-
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mines all higher moments from the rule (36). The covariance 
may also be written as a four-dimensional integral 

E (h-l}(x)hk11y)) = (321TG-li) f d 4
k 8

iJkl
(k) -e'kolX - y) 

(21Tt k6 + k 2 

X e,A."v/11i161TGI,t. - t'i. (75) 

In expressions (73)-(75) the infinite volume limit has been 
taken. Nelson's value for the diffusion parameter is 

V N = 16JTGIi. (76) 

Comparing Eq. (75) with (35). it may be shown that the sto­
chastic covariance in (75) may be obtained from the quantum 
covariance in (35) by analytically continuing 

tx - - i[ v/(-li161TG)] tx • ty_ - i[ v/(1il61TG) ]ty-
(77) 

This procedure of analytic continuation yields the 
Schwinger function. Using the rule (36), we obtain the gener­
al result: The moments of the stochastic theory are equal to 
the Schwinger functions of the quantum theory with the 
times scaled by the factor V/(1il61TG). When Nelson's value 
for the diffusion parameter is chosen [Eq. (76)] the stochastic 
covariances become equal to the Schwinger functions. This 
result is similar to the results obtained in scalar field the­
ory7,9,10 and in electromagnetism.8 ,9.11 

Examining Eq. (75), we see that the covariance is not 
manifestly Lorentz covariant, even discounting for the fact 
that we have chosen a noncovariant gauge. Lorentz covar­
iance is violated by more than just a harmless gauge transfor­
mation in Eq. (75). This is a surprising and perhaps paradox­
ical result which has been known for some time. 7

-
11 Despite 

this lack of manifest Lorentz covariance in the ground state, 
there is good reason to believe that the experimental predic­
tions of the stochastic theory are consistent with special rela­
tivity and are in fact the same as ordinary quantum theory. 
The argument is as follows. Since for any real value of v we 
have a stochastic model for a given solution to Schrodinger's 
equation, and since we believe that this equation contains all 
of the experimentally verifiable predictions of quantum me­
chanics, then there is reason to think that it is impossible to 
measure the diffusion parameter. Jfthis is true, then all of the 
experimentally measurable predictions of the theory (scat­
tering cross sections, line spectra, etc.) must be constants 
when considered as analytic functions of v. Because of this, 
we may consider analytic continuations to complex v with­
out affecting measurable predictions of the theory. When the 
stochastic theory is continued to 

v = i~161TG), (78) 

then one finds that the moments of the stochastic theory 
become the Green's functions of quantum field theory. This 
result was also found for the scalar field 'o and the electro­
magnetic field. II The stochastic theory can be expressed in a 
mathematical form which is identical to ordinary quantum 
theory when v is continued to the value in Eq. (78) (or its 
complex conjugate). See, for example, Ref. 25 for a deriva­
tion of the operator formalism of quantum mechanics within 
this framework. The methods 0(25 generalized easily to the 
present theory in Q space. 
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Stochastic quantization in the ground state for a field 
theory leads to moments which are analytic continuations to 
imaginary times of quantum moments. The stochastic inter­
pretation suggests that a certain reality be attributed to the 
theory so continued. It is interesting that imaginary time 
continuations have played a surprisingly important role in 
modern physics. Euclidean field theoryZ6 has led to advances 
in constructive field theory. Complex manifold techniques21 

have led to a deeper understanding of gauge theories. Bound 
state problems like the Bethe-Salpeter equation are often 
best solved by making a "Wick rotation" to imaginary times. 
Perhaps the results of stochastic quantization provide an ex­
planation for the usefulness of imaginary time 
continuations. 

V. THE APPROXIMATION OF RANDOM CLASSICAL 
RADIATION 

In electromagnetism it has proven interesting in several 
applications to approximate the ground state of the quantum 
field by a superposition of classical plane waves with random 
phases. This approximation has become known as random 
electrodynamicsz8 and it has been found that the diffusion of 
charged particles in harmonic oscillator potentials and ex­
posed to such radiation leads convincingly to Schrodinger's 
equation with the correct nonrelativistic Lamb shift.z9 We 
present this random phase approximation for the linear 
gravity theory in the hope that it may find similar uses and 
also for comparison with the stochastic theory. 

We first write the metric perturbations as general solu­
tions to the free field equations. We consider only the free 
field in the transverse traceless gauge 

h ij(X t } = 1 " ~j'A k)e'k~Q 'A k t ) , (v2)L 3/2 ~ \' \ , , , \79) 

Q(A,k,t) = 321TGlillkl 

X! cos[liJt + 8,(A,k)) + i cos[liJt + Bz(A,k)]}. 
(SO) 

Reality demands 

8 ,(,1" - k) = 8 1(A,k), 

The (J 's are all independent of one another except for the 
conditions in Eq. (81). They are random phases which take 
on values from 0 to 21T. The averaging process is carried out 
by integrating over these phases. One finds for the 
covariance 

Eo(h i)(x)h kl(y)) 

= 161TG-lif~lk'IX-Y)cOS((U(t -t )8ijkl(k)/lkJ. 
(21T)-' x y 

(S2) 

It is easy to show that this is equal to the symmetrized quan­
tum expectation 

ErAh ij(x)h klly)) = (01 Sym(h ij(xlh k'(YllIO), (S3) 

where Sym denotes the symmetrization operation 

1 
Sym(rP,(x l ) X "'XrPnlxn}) = 2,- rP,(xdX ",XrPn(xn), 

p n! 
(84) 
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and where P denotes a sum over all permutations of the argu­
ments of the fields. 

It can be shown that in the infinite volume limit the 
higher moments of the random phase average satisfy the 
Gaussian combinatoric rule [Eq. (36)]. This is true despite 
the fact that the individual Fourier coefficients in Eq. (79) are 
not distributed normally. The reason is the central limit 
theorem, as the field is a sum of an infinite number of inde­
pendent random variables. Since the symmetrized quantum 
expectations also satisfy the Gaussian combinatoric rule, it 
follows that 

E(J(h iJ'(xd x .. · Xh i,jn(xn)) 

= (01 Sym(hiJ'(xI)X···Xhi,jn(xn))IO). (85) 

A more detailed derivation of this result has been given for 
electromagnetism by Boyer28 whose analysis can be applied 
with little modification to the linear gravity theory to derive 
Eq. (85). It is important to realize that (85) is not true for a 
one-dimensional oscillator or even for a finite dimensional 
oscillator. It can only be derived in the present case in the 
infinite volume limit. Thus the random phase approximation 
does not give a very detailed model of the quantum field 
accurate down to the level of a few normal modes. It is un­
likely, in the author's opinion, that a consistent interpreta­
tion of the full quantum field theory could be obtained from 
a classical random phase approximation for field theory. 
This is in sharp distinction to the stochastic quantization 
theory of Sec. IV which allows a consistent reinterpretation 
of all quantum phenomena. Still, the random phase model 
can be useful when considering the effects of vacuum fluctu­
ations on matter. 

137 J. Math. Phys., Vol. 23, No.1, January 1982 

'I. Fenyes, Z. Phys. 132, 81-106 (1952). 
'E. Nelson, Dynamical Theories of Brownian Motion (Princeton U. P., 
Princeton, N. 1.,1967). 

'E. Nelson, Phys. Rev. 150, 1079 (1966). 
4M. Davidson, Physica A 96, 465-486 (1979). 
'M. Davidson, Lett. Math. Phys. 3, 271-277 (1979). 
"D. Shucker, Lett. Math. Phys. 4, 61-65 (1980). 
7F. Guerra and P. Ruggiero, Phys. Rev. Lett. 31,1022 (1973). 
"F. Guerra and M. I. Loffredo, Lett. Nuovo Cimento 27, 41-45 (1980). 
9S. M. Moore, Found. Phys. 9, 237-259 (1979). 
'OM. Davidson, Lett. Math. Phys. 4,101-106 (1980). 
"M. Davidson, "Stochastic Quantization ofthe Electromagnetic Field," 

1. Math. Phys. 22,2588 (1981). 
12A. Einstein, The Meaning of Relativity (Princeton U. P., Princeton, N. 1., 

1979). 
Dc. W. Misner, K. S. Thorne, andI. A. Wheeler, Gravitation (Freeman, San 

Francisco, 1973). 
"s. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972). 
"p. Levy, Processus Stochastique et Mouuement Brownien (Gauthier-Vil-

lars, Paris, 1965). 
161. L. Doob, Stochastic Processes (Wiley, New York, 1953). 
17K. Ito, Lectures on Stochastic Processes (Tata, Bombay, 1961). 
'"K. Ito and H. P. Mckean, Ir., Diffusion Processes and Their Sample Paths 

(Springer-Verlag, Berlin, 1965). 
19W. Feller, An Introduction to Probability Theory and Its Applications (Wi-

ley, New York, 1971). 
20L. Breiman, Probability (Addison-Wesley, Reading, Mass., 1968). 
"E. B. Dynkin, Markov Processes (Springer-Verlag, Berlin, 1965). 
220. W. Strook and S. S. Varadhan, Multidimensional Diffusion Processes 

(Springer-Verlag, Berlin, 1979). 
"D. Bohm, Phys. Rev. 85,180-193 (1952). 
24B. Simon, Functional Integration and Quantum Physics (Academic, New 

York,1979). 
2'M. Davidson, Lett. Math. Phys. 3, 367-376 (1979). 
'6B. Simon, The P(¢J ), Euclidean (Quantum) Field Theory (Princeton U. P., 

Princeton, N. 1., 1974). 
"D. E. Lerner and P. D. Sommers, Complex Manifold Techniques in Theo­

retical Physics (Pitman, London, 1979). 
'~T. H. Boyer, Phys. Rev. 0 11, 790-808, 809-830 (1975). 
'"L. de la Pena and A. M. Cetto, 1. Math. Phys. 20, 469-483 (1979). 

Mark Davidson 137 



                                                                                                                                    

The continuum limit of a classicaI3-component, one-dimensional Heisenberg 
model is Brownian motion on the surface of a sphere 

D. Isaacson a) 

Rutgers University. New Brunswick. New Jersey 08903 b) 

(Received 23 October 1979; accepted for publication 18 July 1980) 

We show by explicit computation that when the temperature Tis chosen as a function of the 
lattice spacing E so that the correlation length stays fixed at one as E-G, then the correlation 
functions of a classical one-dimensional Heisenberg model converge as E-G to the correlation 
functions of Brownian motion on the surface of a sphere. We remark that this provides a 
"statistical mechanical" construction of Brownian motion on the surface of a sphere. 

PACS numbers: 05.40. + j 

I. INTRODUCTION 

In this section we define the correlation functions (or 
moments) for Brownian motion on a sphere, and for the clas­
sical one-dimensional Heisenberg model with lattice spacing 
E at temperature T. 

In Secs. 2 and 3 we give formulas fotthe moments, and 
we show that the temperature may be chosen as a function of 
the lattice spacing so that as the lattice spacing goes to zero 
the correlation length stays fixed at one. With this normal­
ization the correlation functions of the Heisenberg model 
approach the correlation functions of Brownian motion on 
the surface of the three sphere (S 2). 

This computation was inspired by the scaling limit con­
jecture ofGlimm and Jaffe (see Ref. 1 where the conjecture is 
explained and proven for ¢ ~ and references are given to the 
papers of Glimm and Jaffe). We note that the conjecture has 
been extended to IcI»l~ in Ref. 2. 

The proof given in this paper is for S 2 however with 
slight modification it holds for S" for when n ;;;'1. When 
n = 0, SO is just two points and we get Brownian motion on 
two points (a Bernoulli process) as a limit of the spin 1/2 
Ising model. ' We comment on weak convergence of the asso­
ciated measures at the end of Sec. 3. We do not prove weak 
convergence here. We give a direct proof of the convergence 
of all correlation functions using only elementary properties 
of the spherical harmonics. 

To establish notation we briefly describe Brownian mo­
tion on S 2.3 Let's introduce coordinate functions on S 2 by 

w, = w,(O,¢ )= cos</JsinO, 

W 2 = w2(O,¢ )= sin¢sinO, 

W3 = w3(O,¢ )= cosO. 

O,¢ < 21T, (1 ) 

We next define the correlation functions for the one­
dimensional, 3-component, classical Heisenberg model.4-6 

The one-dimensional Heisenberg model describes the 
behavior of a line of particles with spins, a",K = 0, 

"Research partially supported by N.S.F. Grant No. MCS-77-03568. 
blPresent address: Rensselaer Polytechnic Institute, Math Dept .• Troy, 
N.Y. 12181. 

The Laplacian on S 2 is given by 

..::1 = (sinO)-'alaOsinOalaO + (sinO)-2a 2Ia¢2. (2) 

We denote the kernel of e'12.:1 by P(t;u,v). Thus, for t > 0 
and U,VES 2 

alat P(t;u,v) = (..::1/2)P(t;u,v), 

where tJ (u,v) is defined by 

1 tJ(u,v)h (v)dIJ (v)-h (u). 
s' 

Here h is any smooth function on S 2 and 

dIJ (v)=(l/41T) sinOv dOvd¢v' 

(3) 

(4) 

(5) 

An interpretation of P (t;u,v) is that if a particle begins 
Brownian motion on S 2 at u when t = 0, then the probability 
it will be in BCS 2 when t = 7> 0 is 

P(7;u,B )= iP(7;U,V) dIJ (v). (6) 

The semigroup property el' + s)12.:1 = e'/2.:1e'/2.:1 is reflect­
ed in the Markoff property 

PIt + s;u,v) = 1 P(t;u,z)P(S;Z,v) dIJ (z), (7) 
s' 

which has the interpretation thattheprobability PIt + s;u,B) 
of finding the particle at time t + s in the set B is the 'sum" 
over all regions dIJ (z) of the product of the probability for the 
particle to go from u at t = 0 into dIJ (z) at time t, with the 
probability that a particle starting in dIJ (z) goes into B at 
times. 

The correlation functions B" ( ... ) for the coordinates of 
the particle undergoing Brownian motion on S2 are (for 
t"t2, .. ·,t") 

(8) 

± 1, ± 2, ... , where 

a" = (01 ,~,o'l) and 1a"1 = 1. (9) 

We assume the particles are located on lattice points of 
spacing E apart (see Fig. 1). 

For any point t we make the definition 
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FIG. 1. Typical configuration with lattice spacing E. 

(10) 

The n-point correlation functions for the Heisenberg 
model at temperature T ==f3 -\ are 

EL4Hn(t l,· .. ,tn;jl,· .. Jn;/3,€) = (uj.(ttl,,·uj.!tn)p,£ (11) 

==limzii I j ... fu. (tl)···u. (tn) 
N J10'- NI ~ I...I~I ~ I 10 J. 

P Nf I a".a" + I 

Xe '~·N dIJ(u-N) ... dIJ(~), 

where 

We may now state 
Theorem 1: If the temperature f3 - I is chosen so that the 

correlation length 5 = 1, then 

(13) 

and 

The proof is given by direct computations in the next 
three sections. 

II. CORRELATION FUNCTIONS FOR BROWNIAN 
MOTION ON 52 

Let Y;" = Y;"(O,r/J ) denote the spherical harmonics? 
normalized so that 

(15) 

Thus 

Y;"(O,r/J) = N;"P Im l (cosO )ejm~, 
N;" = [(21 + 1)(/- Im!)!!(1 + 1m!)!] 112. (16) 

The Y;" for 1 = 0,1,2, ... and Iml..;;1 are a complete orth­
onormal set of eigenfunctions [on L 2(S 2)] for the Laplacian, 
i.e., 

.1Y;"= -/(/+l)Y;". (17) 

We next use the Funk-Hecke theorem8 to write 

e(PO'··a" ") = f ± cl ({3)Y;"(u")y7'(u"+ I), (24) 
I~Om~ -I 

where, if PI(t) denotes the 1 th Legendre polynomial 
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The spectral theorem applied to e',j 12 yields the formula 

"" I 
P(t;u,v) = I I e-tl(I+ l)12 y;,,(u) Y;"(v). (18) 

I~Om~-1 

Ifwe substitute (18) into (8) we get the formulas (assum­
ing 1'j==tj+ I - tj forj = 1, ... ,n - 1) 

Bn(tl ... tn;jl .. jn) (19) 

= L exp( - n~l 1')j(lj + 1)/2 )(OOlwj.l/l.m l) 
' •. .In 1 -J- 1 

X (/lmllwj, 1/2m 2 ) .. ·(/. _ I mn _ I Iwj" 1(0) 

where 

(20) 

We remark that the series (19) reduces to a finite sum. 
In the next section we give an analogous formula for the 

correlation functions H n ( .. ·) of the Heisenberg model. 

III. CORRELATION FUNCTIONS FOR THE HEISENBERG 
MODEL 

The partition function ZN and two-point function 
(O'(O).O'(t) P.I were computed explicitly in Ref. 4, where it 
was pointed out that the Heisenberg model is exactly solv­
able. It follows from Ref. 4, and from the formulas given in 
the rest of this section, that 

ZN = [ sinh,B 1f3]2N 
(O'(O).O'(t )P.£ = r £s -'(11£], (21) 

where 5 is the "correlation length" given by 

5= -€[ln(coth,B-f3-I)]-I. (22) 

We express the correlation functions in a form suitable 
for proving Theorem 1. Observe that if we let kj == [t;l€], 
then 

1 "'1 0' (ttl· .. u (t ) Icr N I = t lofi I = 1 )1 i.. n 

X eXP(f3
k 
:f..INu"·u" + I) dIJ (0'- N) ... dn (~) 

= 1 "'1 . a'J.· ... u:.: exp(f3 kf 1_ 1)u".u" + I 
1a"'I~1 IO'''I~I k~k. 

X [1 '1'1. exp(f3 k'f 1 u".u" + I) 
10' 'I~I 1a"1=1 k=-N 

X exp(f3 ~ u".u" + I) dIJ (0'- N)./.dIJ (~)] 
k k .. 

XdIJ (u"') ... dIJ (Uk,,) 

(here the I means omit the variables u" with kl ..;;k..;; k.) 

(23) 

(25) 

We substitute (24) into the integrals in (23) ofthe form 
(when a and b denote consecutive kj ). 
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If we substitute this into H ~ .. ) and use the notation 
DIIP )-IP I sinh f3 )cllP) then 

Hn (tl,· .. ,tn ;jl,· .. ,jn ;/3,E) 

L DI, IP )k, - k, ... DI" ,IP )k" - k. I 

ml···mn I 

X (OOIO"j, I/lm l ) (/ImIIO"j, 112m2 ) 

oo.(/n ,- I mn _ I 100j" 1(0). (27) 

We now prove Theorem 1 by showing that if f3 = f3 (E) as 
in (13) then 

lim DIIP )kj' 1- k, = e - T/II + 1)12, 

€- ... 0 
(28) 

where'Tj = tj + I - tj" 

Proof: We have that (13) 

(eP+e-P)/(eP-e- P) -f3- 1 =e- E
• (29) 

We find the Laurent expansion for f3 (E) by taking E small on 
the right and f3large on the left. Thus 

1 -f3 -I + 0(e- 2P ) = 1 - E + el2 + O(~) (30) 

which implies that 

f3(E) = E- 1 + 0(1). (31) 

We study ClIP) for largef3 by integrating by parts twice 

ClIP) = ! f lePtPI(t) dt 

= (ePPI(I) - e -PPI( - 1))12/3 

- (ePP;(l) - e-pp;( - 1))/2/3 2 + O(eP 1f33). 
(32) 

The Legendre polynomials satisfyH 
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PI(l) =1, PI(-l)=(-l)l, P;(1)=/(/+1)I2, 

PI( - 1) = 1(1 + 1)/2( - 1)1+ I. (33) 

Since DI(/3) = cl (/3)(/3 Isinh{3) 

D (/3) = eP - e - P ( - 1 )1 _ I (l + I) 
I eP-e-P 2f3 

X + 0(/3 -2). [ 
eP - e - P ( - 1)1 + I ] 

eP-e- P 

Now use (31) in the above to find 

D I (/3(E)) = 1 -ill + l)E/2 + o (E2). 
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(34) 

(35) 

(26) 

Thus 

lim D
I
(/3 )k" , - k j 

E .0 

= lim[ 1 -I (I + l)d2 + 0 (E2)] [t,. ,IEJ - [tIEJ 
, .0 

=e- T
/

II + I
)/2. (36) 

This concludes the proof of Theorem I. 
We remark that the techniques of the above proof could 

be used to prove weak convergence of the associated prob­
ability measures on the space of functions on the sphere. 

We thank the referee for pointing out that another ap­
proach to proving weak convergence of the probability mea­
sures associated with the discrete time Markov semigroup 
p. (t ), induced by the Heisenberg model (acting on functions 
on the surface of the unit sphere and defined for t = 0, E, 

2E,00.), would be to show that p.(t) converges strongly to the 
Markov semi group P (t ) of Brownian motion by showing that 
(P.(E) - I)IE~P(O) = - (1/2) (Laplacian on surface of 
sphere) and using Chernoff's "generalized Trotter product 
formula"q which essentially says that 
[P.(t)] = [P,(Et )r/·~p(t) if (P,(E) - I)IE~P'(O). 
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A cluster expansion in field theory a) 

James Kowall and H. M. Fried 
Physics Department, Brown University, Providence, Rhode Island 02912 
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A cluster expansion is proposed for the calculation of certain Green's functions in field theory. 
The results presented are for J..cfJ 4 theory, expanded in the number of scalar closed loops through 
the introduction of the composite field, X = ivlJ.. /12 cfJ 2. As an intermediate step, Feynman path 
integrals are used to perform the functional integration over the field degrees of freedom. The 
cluster expansion that results is equivalent to perturbation theory, but at lowest order sums up all 
the infrared behavior of the theory. Higher orders systematically include ultraviolet effects. 

PACS numbers: 11.10. - z 

It is well known that the infrared behavior of abelian 
field theories (as in QED) shows a simple exponentiation 
with the soft part of every Feynman diagram summing up to 
an eikonal form. I This infrared exponentiation is easily de­
rived by a number of approaches, but the systematic inclu­
sion of ultraviolet corrections has not been dealt with within 
these schemes. 2 An exception to this is the work of Fradkin, 
Esposito, and Termini, 3 who have obtained modified pertur­
bation series expressions for Green's functions in external 
potentials. At lowest order these solutions show infrared ex­
ponentiation, but systematically include higher order cor­
rections to this effect. 

The present paper proposes a cluster expansion, which 
at lowest order sums up all the infrared behavior and shows 
the simple exponentiation of Feynman graphs. Higher or­
ders in the cluster expansion systematically include ultravio­
let effects. This expansion has the property, that at kth order 
it reproduces up to kth order in perturbation theory exactly. 

The calculation will be limited to J..cfJ 4 theory expanded 
in the number of scalar closed loops through the introduc-

tion of a composite field X = ivlJ.. 112cfJ 2. These Green's 
functions are of interest as the n = 0 limit of the n-compo­
nent 0 (n) invariant scalar field theory. As an intermediate 
step, Feynman path integrals are introduced to enable the 
functional integration over the fields to be performed, and 
the scalar field is represented as a particle coordinate. The 
path integration is performed exactly to obtain the perturba­
tion series expansion of these Green's functions. From these 
expressions the cluster expansion is derived. 

The field theory that is considered hereJ..cfJ 4 theory in D­
dimensional Euclidean space. The Lagrangian density is 

X'= -~(VcfJ)2-!M~cfJ2- ~~cfJ4, 
with x a D-dimensional vector in Euclidean space. The inte­
gration notation used is 

f dx=fdDX, fdk=f~· 
(21T)D 

The generating functional for Green's functions is given 
by the functional integral 

alSUpported in part by the U. S. Department of Energy under Contract No. 
DE-AC-02-76 ER03130.AOO5 Task A-Theoretical. 

.2" [j] = f .@ [cfJ ] exp (f X'(x) dx + fj(X)cfJ (X) dX)' 

This is evaluated through the introduction of a composite 
field, X = ivlJ.. 112cfJ 2, by the identity 

exp ( - <IrJ..of cfJ 4) 

= f .@[X] exp ( -!fX2+i(J..oI12 )ll2fcfJ2X ) 

It is convenient to consider 

.2" [j,k ] = f .@ [X] f .@ [cfJ ] 

X exp ( -! f X2 + f kX + fjcfJ - ! f cfJG - IcfJ ). 

with 

G -I(x,ylx) = {- V2 + m~ - i(J..oI3)1/2X(X)}8D(x - y). 

The scalar field integration is now Gaussian, and is evaluat­
ed to give 

.2" [j,k ] = f D [X] exp ( -! f X 2 + f kX 

X + ! fjG [X ]j + L [X ] ). 

with 

L [X] = -! Tr In [ - V2 + m~ - i(J..oI3) 1I2X ] 

representing the sum of all one scalar closed-loop graphs 
interacting with the composite field X (x). 

The Green's functions that are considered here are the 
scalar propagator 

8 8 
G(x-y)= --In.2''l· 

oj(x) oj(y) J~k~O' 

and the composite field propagator (which is simply related 
to the scalar four-point function), 

o 0 
D(x-y)= ----In.2''l· k 

ok (x) 8k(y) J~ ~o· 

These propagators will be considered in an expansion in the 
number of scalar closed loops via the power series 
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eL(X] = ! J,(L [X]t, 
n=O n. 

which results in a loopwise expansion of the theory. 3a] This 
expansion is a simple limit of the theory, and gives the n = 0 
behavior of the n-component scalar field theory 

¢ = (rP"rP2, .. ·,rPn)' 
with 

This limit is of importance to the excluded volume problem 
of polymer physics, and to the random potential problem in 
solid state physics.4 

with 

and 

The expansion in the number of closed loops results in 

G(x - y) = f G(n)(x - y), 
n=O 

D(x - y) = f D1n)(x - y). 
n=O 

D (O)(x - y) = I5 D (x _ y), 

D (I)( ) f R. - Ifx' x - Y = = [X]X(x)X(v)L [x]e , 

f lfx' 
G (O)(x - y) = f» [X]G (x,yix)e . 

Only these Green's functions will be considered in the ra­
mainder of this paper. 

In order to carry out the functional integration, proper 
time representations for these expressions are now intro­
duced. These take the form 

G(x,yix) = 1"0 dse-,;m6p(s;x,y), 

L [X] = !f" 1 e-,;
m6f dxp(s;x,x), 

with the density matrix 

p(s;x,y) = (xie -,; [- v' - i(AoI3),nxliy). 

This may be represented as a Feynman path integral. 5 

p(s;x,y) = {X(s)=x f»[P(S)]f»[x(s)]eiS>'-p' ~: 
L(OI=y 

- (' ds[p'(s) - i~A,';3 xlx(s)) 
Xe Jo , 

where all particle trajectories are integrated over subject to 
the endpoint constraints. 4a\ The composite field integration 
is now Gaussian, and is performed to give 

G(O)(x - y) = 1"0 dse- sm6ff 

i
X(S)=x 

X f»[x(s)]e-S(x 1, 
x(O)=y 

and 
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X roo ds e - sml, {S ds, (S ds
z 
ff 

Jo s Jo Jo 
X r f» [x(s)]e - S Ix1e - ik,·x(s,) + ik,.x(s,), 

JX(O)=X(S) 

where the particle action is given by 

S [x] =! rs 
dS( dX)2 + 11,0 rs 

dJs ds'I5D (x(s) _ xis')) 
Jo ds 6 Jo Jo 

and the normalized by 

N = f f» [p(s)] e - r dSP'IS). 

Note that the particle action includes a point nonlocal selfin­
teraction for the scalar particle as it moves on its trajectory. 
The closed-loop nature of the composite field propagator is 
reflected in the constraint of periodic orbits. 

These Green's functions are now to be expanded in per­
turbation series, with 

G(O)(x-y) = f ~(-AoIWG~)(x -y) 
n = 0 n. 

and 

D Ol(x - y) = f ~ ( - li0l6)" + 'D ~')(x - y). 
n =0 n! 

There then follow the identifications 

and 

D~')(x -y)= f dkf dk'elk.X-ik'·Y1"O 1 e-sm~ 
X f ds fds'fdS; .. ·fdsn 

X fdS~'Nf dk'·"f dkn 

xi D (x(s)]e - S"(x] - Ik·x(s) + tk'.xls') 

x(O) = xis) 

where 

Sn (x] = l (S dS( ~)2 - it [x(Sj) - x(s/l]okj . 

Jo ds j=' 

Written in this form all the path integrals are now 
Gaussian, and may be evaluated. The result of this integra­
tion gives for the Fourier transforms of these Green's func­
tions the expressions 

- 2p i IS, - S;)ki - 2 i mi}<tkj 
Xe i=1 i>j=\ 

and 
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where 

mij==(s; - s;)8(s; - sj) - (s; -sj)8(s; - Sj) 

+ (s; - sj)8 (s; - Sj) - (s; - sj)8 (s; - sj), 

and 

{

I, x>O, 

8 (x) = ~, x = 0, 
0, x<O. 

These expressions explicitly determine the contribution of 
all Feynman diagrams at nth order to these Green's func­
tions in terms of parametric integrals. It may be observed 
that the k; integrals label the momentum flowing through 
the n vertices at nth order, while the S; integrals label the 
proper times at which the vertices are arranged, and so deter­
mine the ordering of propagators in every Feynman dia­
gram. The final integration over p in the composited field 
propagator is the integration over the closed-loop momen­
tum, while So and sb label the proper times at which the 
extemallegs are attached. 

There is a natural cluster expansion that suggests itself 
from the form of these parametric integrals. Defining the 
quantity 

1".. = - 2m,}<.k) _ 1 
Jij-e , 

the fully interacting propagators may be written as 

G(O)(p) = roo dse - s(m?, + p') ! ~ ( _ Ao)n 
Jo n ~o n. 6 

n is is J . 2 • X II dSj ds; d kj.e - Is) - Sj Ik) + 2(s) - s) )p.k) 
j~ I 0 0 

n 

X II (1 + /;j)' 
i>j= I 

and 

j)(t)(k) = - ~o JdP J i e- slml,+P'lf dsofdSb 

X e - Is" - s(,lk' + 2(s" - S(,)P.k! ~ (_ Ao)n 
n ~ 0 n. 6 

X IT {S dSj (S ds;Jd kje - Is) - s; Ik; + 2{js) - s;)p - m,,)<h) 
j~ IJo Jo 

n 

X II (1 +/ij)' 
i>j= 1 

Notice that the mij are bounded 

Imijl<s, 

while on dimensional grounds in the above integrals it is 
expected that 
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0(5)-l/p2. 

This then indicates that the/;j are small for small momentum 
transfers; that is, 

I/;j I <1 for all Ik; 1<lpl, 

and that an expansion in the/ij will sum up the effect of soft 
exchanges at lowest order. Sa) 

This expansion is now performed. Following the usual 
treatment of statistical mechanics,6 a cluster expansion is 
defined, which at lowest order sums up all infrared effects 
and in higher orders systematically includes ultraviolet ef­
fects. The result for the scalar propagator is 

GIO)(p) = roo dse - dm~expi p'llexp [ ! (_ AO)'bl(s,P)] , 
Jo ,~ I 6 

where the b, are cluster integrals,) 

b, = ~[sum of all possible I-clusters], 
I! 

and the I-clusters are 1- particle graphs with each particle 
attached to at least one line and directly or indirectly to all 
other I - 1 patricles. Some examples are 

b l =<D= is dSlis ds; J d kle - Is, - s;lk; + 2(s, - s;)p.k, 

b2 

= ~t<D-G) 1 = ~ {S dS
I 

{5 ds; {5 dS
2 

(S ds2fd klJd k2 
2! 2! Jo Jo Jo Jo 
X/12 exp [ - Is I - s; I ki - IS2 - S2 I k~ + 2 

X(SI -s;)p·kl + 2(S2 -s2)p,k2], 

b3 = ;! rc~-~+~+cY~~+A]. 
etc. 

This result clearly shows the exponentiation of Feynman 
diagrams that is characteristic of summing the soft part of 
every graph. However, this result goes far beyond the simple 
infrared exponentiation; it is exact. The expansion to k th 
order in the cluster expansion will give up to the k th order in 
perturbation theory, exactly. The rules for writing down the 
cluster integrals are also very simple. 

The result for the composite field propagator is similar 

j)(t)= _ AoJdP{oo dS e - s [ml,+p'l{S dso{S dsb 
6 Jo s Jo Jo 

X exp {- Iso - sb Ik2 + 2(so - sb)p·k} 

X expt~J - ~O),C/}' 
where these cluster integrals are given as 

CI = is dsli
s 

ds; J d kle - Is, - silk; + 2k,.[(s, - s;)p - m",k l, 

c2 = ~ II [{S ds;{S ds;Jdk;e-IS,-S;lk; 
2.;~ 1.2 Jo Jo 

xik.!ls, - s;)p - m",kl ]/12' etc. 

Similar expressions may be written for all the n-point 
Green's functions ofthe theory. 

The techniques presented here depends upon the possi-
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bility of replacing functional integrals over field degrees of 
freedom by Feynman path integration.5 The expansions gen­
erated are systematic ones, and should be applicable to a 
variety of problems with more ease than those of Fradkin, et 
a/.3 

'F. Block and A. Nordsieck, Phys. Rev. 52, 54 (1937); D. R. Yennie, S. 
Frautschi, and H. Suura, Ann. Phys.13, 379 (\961); H. M. Fried, Function· 
al Methods and Models in Quantum Field Theory (MIT Press, Cambridge, 
Mass., 1972). 

2H. M. Fried, J. Phys. Lett. 40, 89 (1979); Nucl. Phys. B (to be published) 
Brown Univ. HET preprint. 
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"E. S. Fradkin, V. Esposito, and S. Termini, Rev. Nuovo Cimento, Ser. I, 
Vol. 2, 498 (1970). See also E. S. Fradkin, Nucl. Phys. 76, 588 (1966). 

" ·'This loopwise expansion should not be confused with the ordinary loop 
expansion in field theory. The number of closed loops here refers to the 
propagation of the </J field in the presence of the composite X field, with the 
effective interaction of the form </J 2X· Note that the X propagator is a ti 
function. 

4V. J. Emery, Phys. Rev. B 11, 239 (1975). 
4 "'Here the integration measure follows Feynman's original formulation; 
see Feynman and Hibbs, Quantum Mechanics and Path Integrals, 
(McGraw-Hili, New York, 1965). 

'For a different application of the loopwise expansion and use of Feyman 
path integrals see J. Kowall, "A Semiclassical Calculation of the Photon 
Propagator in Two·Dimensional Scalar QED," Brown Univ. HET Pre­
print 406. 

'u'Note that one difference here from the usual statistical mechanics case is 
that the!., are unbounded. 

OK. Huang, Statistical Mechanics (Wiley, New York, 1963). 
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Similarity solutions of nonlinear Dirac equations and conserved currents 
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Nonlinear Dirac equations in one space dimension and three space dimensions are studied. Using 
the continuous symmetries of the nonlinear Dirac equations we reduce the system of nonlinear 
partial differential equations to a system of nonlinear ordinary differential equations, applying 
group theoretical methods, and give solutions of these equations. Moreover, we determine 
conserved currents using the continuous symmetries of the nonlinear Dirac equation. 

PACS numbers: 11.30. - j, 02.20. - b, 02.40. + m 

t. INTRODUCTION 

Recently, several authors 1-4 have investigated nonlinear 
Dirac equations with fourth-order self-coupling. In the case 
of one space and one time dimension exact localized solu­
tions have been described. 1.2 Solutions have also been given 
in four-dimensional space-time.3

•
4 Takahashj3·4 has shown 

that stringlike and ball-like soliton solutions exist in four­
dimensional space-time. 

The purpose of the present paper is twofold. First of all 
we demonstrate how with the knowledge of continuous sym­
metries, solutions of nonlinear Dirac equations can be ob­
tained. We compare the solutions with those given by the 
authors cited above. For investigation of the continuous 
symmetries we adopt the modern approach due to Cartan. 
This means we cast the field equation (i.e., a system of partial 
differential equations) into an equivalent system of differen­
tial forms5

-
R and calculate the Lie derivative of these differ­

ential forms with respect to the infinitesimal generators (i.e., 
symmetry generator). As symmetry generators we consider 
space and time translations and an infinitesimal generator 
which is associated with a gauge transformation. The second 
purpose of the present paper is to derive conserved currents 
and conservation laws. Here we adopt the Hamilton-Cartan 
formalism 9

-
11 (jet bundle formalism) for first-order Lagran­

gians. In this approach the field equations, i.e., the nonlinear 
Dirac equation, is derived from a two-form when we study 
one space and one time dimension and from a four-form 
when we study three space and one time dimension. 
Noether's theorem can easily be formulated within this ap­
proach. II With the help of an example we show that con­
served currents and conservation laws can also be obtained 
without the knowledge of a Lagrangian and a symmetry gen­
erator. Only the differential forms which are equivalent to 
the field equations are taken into account. The approach is 
similar to that given by Estabrook and Wahlquist. 12 More­
over, we describe a third possibility which to our knowledge 
is not known so far for obtaining conserved current, namely, 
taking into account the symmetry generator and the differ­
ential forms which are equivalent to the field equation. 

The case with one space and one time dimension is de­
scribed in detail, while the case with three space and one time 
dimension is only briefly studied since the approach is the 
same. 

Throughout, the type of nonlinearity is given by the 
scalar interaction. However, the extension to other types of 
interactions like vector, tensor, axial vector, or pseudoscalar 
interaction is straightforward. 

II. NONLINEAR DIRAC EQUATION 

The Dirac equation with rest mass mo can be written as 

3 a a I Ii- (YktP) - ili- (Y4tP) + moctP = 0, (2.1) 
k~ 1 aXk aX4 

where X4 = ct and tP = (tPl,tP2,tP3,tP4)T (Tmeans transpose). 
Y I' Y 2' Y 3' and Y 4 are the following 4 X 4 matrices 

r,~(~ 
0 0 

-~) 0 -i 

0 a ' 
a 0 0 

r,~( ~ 
a 0 

- ~) a 1 

1 0 a ' 
- 1 0 0 a 

r,~(~ 
a -i 

i) 0 0 

a 0 

-i 0 

r.~(~ 
0 0 

J) a 
a -1 
0 a 

Throughout we assume that mo > O. 
Introducing the quantity 

A = Ii/moc 

which has the dimension of a length, we obtain 

(2.2) 

(2.3) 

3 a a 
A I - (Yk tP) - Ai - (Y4tP) + tP = O. (2.4) 

k = 1 aXk aX4 

In the following we study the nonlinear Dirac equation of 
the form 

3 a a -
A I -(Yk tP) - A.i - (Y41/t) + tP + A. 3EI/t(tPI/t) = 0, 

k ~ 1 aXk aX4 
(2.5) 
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where e is a real parameter (coupling constant) and 

¢=(,pT, ,p!, - ,pt, - ,pt). This means that we investigate 
scalar Fermi interaction. We mention that the extension of 
the following approach to other Fermi interactions such as 
vector interaction, pseudoscalar interaction and so on is 
straightforward. Now we put ,pj(x)=uj(x) + iVj(x), where 
j = 1, ... ,4 and x-(x., X2, X3' x4). uj(x) and Vj(x) are real 
fields. Ifwe insert ,pj (x)=uj (x) + iVj(x) into the partial differ­
ential equations (2.5) we obtain a real system of partial differ­
ential equations. In the following we mainly investigate the 
case with one space dimension [x=(x., x4)]. In this case we 
have 

a a -
A - (y.,p) - Ai - (Y4,p) + ,p(1 + A€,p,p) = 0. (2.6) 

ax. aX4 
Then we obtain the following nonlinear coupled system of 
eight partial differential equations; 

A av4(x) +A av.(x) +u.(x)[l +A€K] =0, 
ax. aX4 

A av3(x) + A av2(x) + u2(x) [1 + A€K ] = 0, 
ax. aX4 

_ A av2(x) _ A av3(x) + u
1
(x) [1 + A€K ] = 0, 

aX I aX4 -

_ A av.(x) _ A av4(x) + u4(x)[ 1 + A€K ] = 0, 
aX I aX4 

_ A au4(x) _ A aul(x) + v.(x)[ 1 + A€K] = 0, 
ax. aX4 

_ A au3(x) _ A au2(x) + V2(x) [ 1 + A€K] = 0, 
aX I aX4 

A au2(x) + A au3(x) + v3(x)[ 1 + A€K ] = 0, 
aX I aX4 

A au.(x) + A au4(x) + V4(x) [ 1 + MK] = 0, (2.7) 
aX I aX4 

where 
2 4 

K (u(x),v(x))_ I (u~(x) + vJ(x)) - I (uJ(x) + vJ(x)) 
j=l j=3 

(2.8) 

III. NONLINEAR DIRAC EQUATION AND SYMMETRIES 

Now we use group theoretical methods for reducing the 
nonlinear system of partial differential equations (2.6) into a 
nonlinear system of ordinary differential equations. For this 
purpose we cast the system of partial differential equations 
into an equivalent set of differential forms. 5

-
8 We put 

aU,.(x)laxr-+Pij and aV,. (x)/aXj-rJij (i,j = 1,2,3,4). Then we 
find 

F.(u ., ... ,v4,P •• , ... ,q44) 
==A (q4. + q.4) + u.(1 + MK (u,v)) = 0, 

F2( ........ • ............ ) 

==A (q3. + q24) + u2(1 + MK (u,v)) = 0, 

F3(·· .. · .. ····· .. ····· .. ) 
==A ( - q2. - q34) + u3 ( 1 + MK (u,v)) = 0, 
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F4(·················· ... ) 
A ( - ql. - q44) + u4(1 + A€K (u,v)) = 0, 

F,( ..................... ) 
=A ( - P4. - P14) + vl(l + A€K (u,v)) = 0, 

F6(·····················) 
_A ( - Pli - P24) + v2(1 + A€K (u,v)) = 0, 

F7(······· .... ····· .... ·) 
=A (P21 + P34) + v3( 1 + A€K (u,v)) = 0, 

FR(· ...... ···· .... · .... ·) 
A (PI I + P44) + v4( 1 + A€K (u,v)) = 0, (3.1) 

and 

a,.=du,. - Pi! dX I - P,.4 dx4' 

(3,.=dv,. -q,..dxl-q"4dx4' (3.2) 

where i = 1,2,3,4. Instead of considering the nonlinear 
Dirac equation (2.5) we consider the differential system giv­
en by Eqs. (3.1) and (3.2) for investigating the symmetries. 

A comment about the approach is in order. We consider 
the nonlinear system of differential equations within the jet 
bundle formalism9

- •• (compare also Sec. 5). The quantities a,. 
and (3,. are called contact forms. 

In a previous paper5 the authors have shown that the 
differential system (3.1) and (3.2) is invariant under the in­
finitesimal generator 

- 4 (a a ) Z = I Uk - - Vk --
k = I aVk aUk 

4 4 (a a ) + I I Pk,.--qk"-· 
k = 1 ,. = 1 aq ki ap ki 

(3.3) 

It follows that the nonlinear Dirac equation is invariant un­
der the transformation group generated by the infinitesimal 
generator Z = 2 k (u k alavk - vkalaud. Zis the once-ex­
tended vector field of Z. 

Moreover, the nonlinear Dirac equation is invariant un­
der space and time translation, since the partial differential 
equations do not depend explicitly on time and space coordi­
nates. The infinitesimal generators taken the form 

X=~, T=~. (3.4) 
aX 1 aX4 

The once-extended infinitesimal generators are of the same 
form. Instead of considering the infinitesimal generators X 
and T for deriving conserved currents and similarity solu­
tions we can take the infinitesimal generators 

4 (a a ) U= - I Pil -+qi!-
i= 1 au,. av,. 

and 

4 (a a ) V= -.I Pi2 -a +q"2 -a . 
1=1 U,. ~ 

We notice thatXJa,. = UJa,.,XJ(3,. = UJ(3,.,and 
TJa,. = VJa,., TJ(3,. = VJ(3,.. 

IV. SIMILARITY SOLUTIONS 

(3.5a) 

(3.5b) 

In this section we derive similarity solutions to the non­
linear Dirac equation (2.6). For this purpose we consider a 
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linear combination of the infinitesimal generators X, T, and 
Z, i.e., 

a a (4 a a) Y=a l -+a4-+aS I Uk--Vk-
a 

' 
ax , aX4 k=1 aVk Uk 

(4.1) 

where ai' a4, as E R The contraction of the one-forms ai' ... , 
a 4 , /31' ... , /34 by the vector field Y yields the zero-forms 

Y Ja i = - alPiI - a4Pi4 - aSvi> 

Y Jf3i = - a l qil - a4 qi4 + aSui, (4.2) 

where i = 1, ... ,4. In order to obtain a similarity solution to 
the nonlinear Dirac equation we consider the linear partial 
differential equations which are given by s*( Y Jai) = ° and 
S*(YJf3i) = ° where i = 1, ... , 4. s is the mapping 
six) = (x,u(x), v(x), pix), q(x)) and s* is the pull ba~k ~ap­
ping induced by s. We obtain a linear system of partial differ­
ential equations of first order, namely 

au (x) aui(x) 
a l -'- + a4 -- + aSvi(x) = 0, 

ax , aX4 

avi(x) avi(x) () ° a l --+a4---a,ui x = 
ax , aX4 

(4.3) 

for i = I, ... , 4. 
Let a l #0. Then we find as a solution to Eq. (4.3), 

ui(x I'X4) = .f(1])cos (a 5x';a I) - gi(1])sin (asx';a.l, 

vi(x I'X 4 ) = J;(1])sin (a 5x.fa.J + gi(1])COS (a,x.fa I), (4.4) 

where 1]=a IX4 - a4x 1.f1(1]) and gi(1]) are smooth functions. 
Now let a4 #0. Then we find as a solution to Eq. (2.10), 

u,(X I ,X4) = .f(1])cos (a sx4/a4) - gi(1])sin (a,x4Ia4), 

v,(x I'X4) = .f(1])sin (a,x4Ia4) + gi(1])COS (a,x4/a4). (4.5) 

Now the theory tells us that when we insert the functions U i 

and v into the nonlinear Dirac equation (2.6) we obtain a 
syste~ of ordinary differential equations, where the inde­
pendent variable is 1]. Consequently, taking into account 
symmetry generators we have reduced a system with two 
independent variables to a system with one independent 
variable. The quantity 1] is called the similarity variable. 

Inserting Eg. (4.4) into Eg. (2.6) and after some algebra­
ic manipulation we obtain the following coupled nonlinear 
system of ordinary differential equations: 

A (- a, dl, + a4 dl4 + as g4) + gill + ,1EK(J,g)) = 0, 
d1] d1] a l 

A (a l dg
, 

_ a4 dg4 + as 14) + /,(1 +,1EK(J,g)) = 0, 
d1] d1] a, 

A (a 4 dl, - a, dl4 + as g,) - g4( I + ,1EK (J,g)) = 0, 
d1] d1] a, 

A (- a4 dg, + a, dg4 + as I,) -/4(1 +,1EK(J,g)) = 0, 
d1] d1] a, 

A ( - a, dl2 + a4 dl, + as g,) + g 2( 1 + MK (J,g)) = 0, 
dT/ dT/ a, 

A (a, dg2 
- a4 dg, + as I,) + 12( I + MK (J,g)) = 0, 

d1] dT/ a, 

A (a 4 dl2 
- a, dl1 + a5 g2) - g3(1 + ,1EK (J,g)) = 0, 

dT/ dT/ a, 
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where 

K(J,g)=/i +~ +/~ +~ -I; -~ -/~ -~. 
Inserting Eq. (4.5) into Eq. (2.6) and after some algebra­

ic manipulation we obtain the following coupled nonlinear 
system of ordinary differential equations: 

A (a l dl
, - a4 dlt _ as g,) - g,(1 + ,1EK (J,g)) = 0, 

d1] dT/ a4 

A (a l dg
, 

- a4 dg4 + as II) + /1(1 + ,1EK (J,g)) = 0, 
d1] d1] a4 

A ( - a4 dl, + as dl4 - as g4) +'g4( I + MK (f,g)) = 0, 
dT/ dT/ a4 

A ( - a4 dg
, + a, dg4 + as It) -1t(1 + ,1EK (J,g)) = 0, 

dT/ dT/ a4 

,1(a2 dJ; -a l dl, +aSg3)-g3(1+,1EK(f,g))=0, 
dT/ dT/ a2 

A (a 2 dg2 - a, dg3 - as /1) +!J(I + ,1EK (J,g)) = 0, 
dT/ dT/ a2 

A ( - a l dl2 + a2 dl3 + as gz) + g2(1 + MK (J,g)) = 0, 
d1] dT/ a2 

A ( - a, dg2 + a2 dg3 - as 12) - fz( I + MK (J,g)) = 0. 

dT/ dT/ az (4.7) 

In the following we are only interested in localized (confined) 
solutions. Hence we require that for x I- ± 00 the functions 
u, and Vi (i = 1, ... ,4) vanish. We consider solutions of the 
type given by Eq. (4.5). This means we study solutions with 
oscillation in time. Thus we have to investigate the Eqs. (4.7). 
It is obvious that the general solution of this coupled system 
of nonlinear ordinary differential equations cannot be given 
explicitly. However, for particular cases we can find solu­
tions which can be given explicitly. For example, let 
I,(T/) = h,(1]) = g2(1,I) = g3(1]) = ° andlt(1]) = gl(1]) = 0. 
Moreover, we put a I = 0. We obtain the following system of 
ordinary differential equations: 

df.. = _ as g4 + _1_g4(1 + ,1E(fi _ ~ )), 
d1] a~ a4,1 

dg4 = as II + _1_1.(1 + ,1E(f7 - ~ )). (4.8) 
d1] a~ a4,1 

Since a, = 0, we obtain T/ = - a4x I and therefore 

dl, = (as _ ~)g4 - g4E((7 _ ~), 
dx, a4 A 

dg4 = (- as _ ~)/' _ I,E((7 _ ~), (4.9) 
dx , a4 A 

wh~re 11k = - a,la4. k has the dimension ofa length and is 
a positive quantity. In the following we put E < ° (attractive 
force) and 1/,1 > 1/k since we consider confined solutions. 
We find as a solution to Eq. (4.9), 

(
2(1/,1 - 11k) )'12 

l.(x.J = 2 2 ' 
- E cosh CzX,(1 - C, tanh C2X I ) 
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where 

C, = ((k - A )I(k + ,,1.))'/2 

and 

C
2 

= (11,,1. 2 _ Ilk 2)'/2. (4.11) 

As a consequence we obtain 

lIN; = I~ + ~ = 2( II A - II k ) 
-E 

1 + C~tanh2C2x, 
X--------------~----
cosh2C~,(1 - C~tanh2C~,,2 

(4.12) 

and 

¢t/J = If _ ~ = 2( II A - Ilk) 
-E 

The quantity k is determined by the equation 

f-00 t/Jtt/Jdx, = 1. (4.14) 
+00 

We see that both t/Jt t/J and ¢t/J vanish rapidly as x r--+ ± 00. 

We have found the solutions given by Lee et al.,' where 
the solutions given by these authors have been written in a 
somewhat circumstantial manner. In order to find further 
solutions ofEqs. (4.7) we must solve these equations 
numerically. 

V. CONSERVED CURRENTS 

We now calculate the local conservation laws which are 
associated with the symmetries described by the vector fields 
(3.3) and (3.4). Our approach to the calculus is based on the 
theory of jets. The theory ofjets\is applied to the calculus of 

I 

variations.9
-', 

Let us briefly describe the approach. Let Mbe an orient­
ed manifold of dimension m, with local coordinates Xi and 
volume m form n given in these coordinates by 
n = dx,Adx2 A .. ·Adxm • Let Nbe an n-dimensional mani­
fold with local coordinates Zj and let (E, 1r, M) be a fiber 
bundle with fiber N. The k jet bundle oflocal sections of(E, 1r, 

M) is denoted by J k (E ). 
In the case with one space dimension we have M = R2, 

N = Rg
, and (E, 1r, M)==(M XN,pr" M). Let (xi,zj) be a co­

ordinate system on E and (xi,zj ,zji) the corresponding co­
ordinatesonJ '(E). The Cartan fundamental form (an n form) 
defined on J '(E) is given by 

e = (L - ± ± aL Zji)n 
j=' i=' aZji 

+ jt, it, :~ dZ
j A(a~i In ). (5.1) 

where n = dx, A dX2 and L:J '(E )-H. In physics L is called 
the Lagrangian density. 

In order to adopt the notation of the Secs. 2 and 3 we set 
X = (x"x2) = (x"x4), (Z,,. .. ,z4) = (u''''',u4) = u, (zs,· .. ,Zg)-
= (v''''''v4) = v, (z""",Z44) = (P""",P44) = P, and (zS" .. ·,z84)­
= (q""",q44) = q. 

For the nonlinear Dirac equation L takes the form 

L =,,1. (- u4qll + V4PII - u3q2' + V3P2' 
- U2Q3' + V2P3' - U,Q4' + V, P4' 
- U,Q'4 + VIPI4 - U2Q24 + V2P24 
- U3Q34 + V3P34 - U4Q44 + V4P44) - K(l + AEK), 

where 
(5.2) 

2 4 

K (u,v)= I (uJ + vJ) - I (uJ + vn· 
j=1 j=3 

We mention that the exterior differential systems generated 
by ! V Jde J, where V denotes the vector fields on J '(E) 
which are vertical over M, is equivalent to the Euler-La­
grange equations for L. 

A straightforward calculation yields 

(5.3) 

(5.4) 

= A (v4du l Adx4 + v3du2Adx4 + v2du3Adx4 + v l du4Adx4 - v,du,Adx , - v2du2Adx I - v3du3Adx I - v4du4Adx I 
- u4dv i A dX4 - U3dv2/\dx4 - u2dv3/\dx4 - u 1dv4 A dX4 + u ,dv, /\ dx , + u2dv2 Adx I + U3dv3/\ dx , + u4dv4/\dxtI· 

In order to determine the conserved current we have to calculate the Lie derivative of the two-form 

e = - K(l + AEK)dx,/\dx4 + A (V4 du , - U4 dv , + V3 dU 2 - U3 dV2 + V2 dU3 - U2 dV3 + VI dU4 - UI dv4) Adx4 
+ A (u l dv , - VI du, + U2 dV2 - V2 dU2 + U3 dV3 - V3 dU3 + U4 dV4 - V4 du4) /\dx, (5.5) 

with respect to the vector fields X, T, and Z given by Eqs. (3.3) and (3.4). We find 

Lxe = 0, LTe = 0 (5.6) 

and 

Lze=o. (5.7) 

In order to obtain the conserved currents we have to calculate the contraction X J e, T J e, and Z J e. We obtain 
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4 

XJ8= -X(l+liEX)dx,,-1i L (U,dvj-viduJ. 
i=l 

4 

TJ8 =X(l +liEX) dX 1 -Ii L (VS-i du, - US_, dvJ. 
'=1 .. 

(5.8) 

(5.9) 

ZJ8 = - U (UIU" + U2U3 + VIV4 + V2V3) dX4 + Ii (L (uf + vi)) dxl · (5.10) 
i= 1 

Consequently, the conserved currents are given by 

[ 

4 (aV(X) au.(x))] 
-s*(XJ8)= Ii L u;(x)-' --vi(x)-'- dX t 

;=1 aX4 aX4 

[ 

4 (av.(x) au.(x)) ] 
+ Ii L ui(x) -' - - v,(x) -' - + K (u(x).v(x))( 1 + MK (u(x).v(x))) dx4 • 

i=1 aX4 aX4 

[ 

4 ( aui(x) av;{x)) ] -s*(TJ8) = Ii L VS_i(X)--- us_,(x)-- -K(u(x),v(x))(1 +liEK(u(x),v(x))) dX 1 
i= 1 aX I aX t 

[ 

4 ( aui(x) av,(x))] + Ii.L Vs - ,(x) -a- - Us - i(X) -a- dx4 , 
,=1 X4 X4 

and 

where s is the following mapping: sIx) = (x,u(x),v(x), 
au{x)lax,av(x)lax); s* is the pull back mapping induced by s. 
Notice that s*d (o)==ds*(o). We are interested in solutions 
ui(x),v;(x)(i = 1,2,3,4) which vanish at infinity, i.e., we are 
looking for localized solutions. Then we have 

d f+OO 4 (au(x) au.(x)) - L u;(x) -' - - v;(x) -' - dX 1 = 0, 
dX4 - 00 ;= 1 ax.. aX4 

(5.11) 

~ f + 00 [A ± (VS _ ,(x) au;(x) _ Us _ ,(x) av;(x)) 
dX4 - 00 ,= 1 aX I aX I 

- K (u{x),v(x))( 1 + AEK (u(x).v(x)))] dx I = 0, 

df+00[4 ] - L (U7(X) + V7(X)) dX 1 = 0. 
dx.. - 00 ;= 1 

(5.12) 

(5.13) 

Instead of considering the vector fields X and Tfor obtaining 
the conserved currents we can also find the conserved cur­
rents with the help of the vector fields U and V which are 
given by Eq. (3.5). By a straightforward calculation we find 

Lu 8 = ;t pil [a~; (K(l +AEK))]dX1I\dX4 

+ ;tl qjl [a~j (K(l +AEK))]dX t l\dX4 

4 

+ A L (Vi dpil I\dxI - Pil dVi I\dx l ) 
i= 1 

4 

+ A L (Pil dvs - i 1\ dX4 - Vs _ ,dpil 1\ dx4) 
i=l 

4 

+A I (-u,dqi/l\dxl+qildUjl\dxd 
i=1 

4 

+ A I (- qjl dus _; I\dX4 + Us _ ;dq;, I\dx4). 
i= 1 

Owing to the identities 
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4 a L {-(K (l + liEK ))la; 1\ dx4=d (K (l + MK )dx4) ,=, au; 

- ;t/i1(a~; K(l +AEK)~Xll\dX4' 
Pildxl= -a; +du; -P;4 dx4, 

dpi' I\dxl== - da - dP;4 I\dX4' 

dUi I\dxl==a; I\dxl - Pi4dxll\dx4, 

and so on, where a; is given by Eq. (3.2), we obtain 

L u 8 = dX modulo (contact forms a;J3i ), 

where 

x = K (I + AEK ) dX4 
4 

+ L ( - uiqil dx, + V;Pil dx, 
i= 1 

+ Us _ iqil dX4 - Vs - iPil dx4) 
4 

+A L (U i dVi - Vi dUi)' 
i= 1 

The conserved current is given by X - U J 8 and we find the 
result given by Eq. (5.8). 

In the following we show that conserved currents can 
also be obtained without the knowledge ofthe two-form 8 
and therefore without the knowledge of the Lagrangian den­
sity L. The approach is as follows (compare also Estabrook 
and Wahlquist I2

): We make the ansatz 

W =!I(U,V) dx, + nu,v) dx", (5.14) 

where!1 and}'; are smooth functions. Let 

J ==(F,,. .. ,Fg, dF" ... ,dFg, a " ... ,/34' da " ... ,d(34) (5.15) 

denote the ideal generated by F, .... ,df34. F" ... ,df34 are given 
by Eq. (2.7). The condition for obtaining the conservation 
laws is as follows: If 

dWE(F" ... ,F8, dF" ... ,dFg, a " ... ,/34' da l ,. .. ,d(34),(5.16) 
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then 

s*dw = 0, (5.17) 

where s is the mapping sIx) = (x,u(x), v(x),p(x), q(x)). We do 
not describe a general treatment, but we show that the one­
form given by Eq. (5.10) can be derived. For this purpose let 
us construct a convenient two-form which is an element of 
the ideal generated by F,,00.,d/34' 

Let 
0', = /3, A dx, - /34 A dx4 , 

0'2 = /32 A dx, - /33 A dx4 , 

0'3 = -/33Adx, +/32 Adx4 , 

0'4= -/34Adx,+/3,Adx4, 

0'5= -a,Adx,+a4Adx4 , 

0'6 = - a 2 Adx, + a 3 Adx4, 

0'7=a3Adx,-a2Adx4, 

O'x=a4 Adx,-a,Adx4. (5.18) 

It is obvious that the two-forms O';(i = 1,00.,8) are elements of 
the ideal. Since both!, and!2 do not depend onpji and qj; we 
have to eliminate the terms which contain Pj; and qji' There­
fore, we consider the two-forms 7j ==AO'j - Fj dx, A dX4 

which are elements of the ideal. We find 

7, =A(dv,Adx, -dv4Adx4) 

-u,(1 +A€K(u,v))dx, Adx4 , 

72 = A (dV2 A dx, - dV3 A dx4) 
-u2(1 +A€K(u,v))dx, Adx4 , 

73 = A ( - dV3 A dx, + dV2 A dx4 ) 

- u3(1 + A€K (u,v)) dx, Adx4 , 

74 = A ( - dv4Adx, + dv, Adx4 ) 

- u4(1 + A€K(u,v)) dx, Adx4 , 

75 = A ( - du, Adx, + dU4 Adx4) 

- v,(1 +A€K(u,v)) dx, Adx4 , 

76 = A ( - du2Adx, + dU 3 Adx4) 
- v2(1 + A€K (u,v)) dx, A dx4, 

77 = A (du3 Adx, - du2Adx4) 

- v3( 1 + A€K (u,v)) dx, A dx4, 

7 x = A (du4 Adx, - du, Adx4) 

- v4(1 +A€K(u,v)) dx, Adx4. (5.19) 

We notice that the conditions S*7j = 0 (j = 1, ... ,8) lead to 
the Eqs. (2.6). It is worthwhile to mention that in the ap­
proach described by Harrison and Estabrook6 the two-forms 
given by Eq. (5.19) are the starting point for investigating the 
symmetries. 

We consider now the two-form 

7 = A (V,7, + V272 - V373 - V474 - U,75 - U276 
+ U377 + U47x) (5.20) 

which is again an element of the ideal. It follows that 

7 = U ct, (V; dv; + u;du;) AdX,) (5.21) 

+ U ( - V, dV4 - V2 dV3 - V3 dV2 - v4 dv, 

- U, dU4 - U2 dU 3 - U 3 dU 2 - U4 du4 ) A dx4· 

150 J. Math. Phys., Vol. 23, No.1, January 1982 

Now the two-form 7 can be represented as the exterior de­
rivative of the one-form w, i.e., , = dw, where 

4 

ft(u,v) = A L (u~ + v7), (5.22) 
i-I 

!2(U,V) = - 2A (u,u4 + U2U3 + v,v4 + v2v,). (5.23) 

Finally, we mention that the two-form 8 can be expressed 
with the help of the two-forms 7;(i = 1,00.,8), namely 

8 = - U,7, - U272 + U,73 + U 4'4 - V,7, 
(5.24) 

It follows that 8E(F,,00.,d/34)' but d8 #0 and therefore 8 
cannot be obtained as the exterior derivative of a one-form. 
For field equations which can be derived from a Lagrangian 
density it is obvious that 8E(F,,00.,d/34)' 

Thus far we have derived the conserved current given 
by Eq. (5.10) applying two approaches. In the first one we 
have taken into account the Cartan form 8 which contains 
the Lagrangian density and the symmetry generator Z. In 
the second approach we have only considered the differen­
tial forms which are equivalent to the nonlinear Dirac equa­
tion. Now we describe a third approach for obtaining the 
conserved current given by Eq. (5.10), where we take into 
account the symmetry generator Z and the differential forms 
which are equivalent to the nonlinear Dirac equation. Hence 
we consider the differential forms given by Eq. (5.19). 

First of all let us consider the two-form 
H 

X = I hj(U,V)7j , 
j~ , 

(5.25) 

where the two-forms 7 j are given by Eq. (5.25). hj are smooth 
functions. Let Z be the symmetry generator given by Eq. 
(3.4) and let Tbe the ideal given by Eq. (5.19). 

If ZJdXJ. then taking into account 

Lz(T)CT (5.26) 

and the identity 

(5.27) 

it follows that the one-form ZJX is conserved current since 
d (ZJX)EJ. Now we have to determine the unknown func­
tions hj(u,v) with the help of the equation Z J dXEJ. This con­
dition gives the solution 

h,(u,v) = U" h2(U,V) = U2, 
h,(u,v) = - U3' h4(U,V) = - u4, 

h5(U,V) = v" h6(U,V) = v2 , 
(5.28) 

h7(U,V) = - v3' hx(u,v) = - v4· 
Consequently, we findX = 8, where 8is given by Eq. (5.24). 

A comment about the different approaches is in order. 
For obtaining conservation laws due to Noether's general­
ized theorem" we use the whole contact ideal, including all 
differential consequences of the given field equation. If the 
field equation admits a Lagrangian formulation there exists 
a well-defined correspondence between symmetries and con­
servation laws." Therefore Noether's generalized theorem 
is superior to other approaches for finding conservation laws 
of field equation in Lagrangian form. The approach due to 
Estabrook and Wahlquist'2 only uses a sub ideal Tofthe con­
tact ideal J. Therefore this method requires fewer variables. 
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The reason for this is that this approach tends to determine 
the conservation w = II dx I + 12 dX4 from the condition 
dwEJ. This condition leads to a differential equation for the 
quantities/l and/2• This differential equation which is highly 
overdetermined looks similar to the determining equations 
for the symmetries. The same holds true for our third ap­
proach which is also based upon the condition dweJ. Howev­
er. we take into account known symmetries of the field equa­
tion under consideration. 

The merit of the second and third approach is that they 
are applicable to the case where the field equation under 
consideration admits no Lagrangian formulation. To see this 
let us consider an example. For the diffusion equation 

U, = Uxx + U 

there is no Lagrangian density. Now we determine conserva­
tion laws. First of all we put U I = U. Ul = U x' X I = x. and 
X 2 = t. Let us express the diffusion equation by two-forms 

71 = dU I /\dXl - u2dx I /\dx l • 

72 = dU I /\dxI + dU z/\dx2 + uldx l /\dxz· 

We make the ansatz 

w = 1,(x l.xz.u l .u2) dX I + 12(xl.x2'ulOuz) dX2 

which is an extension of the ansatz given by Eq. (5.14). We 
obtain with the technique described above that 

w = ( - a sinxl + /3 cosxl)u, dX I + ((a cosx, + /3 sinxl)u l 
+ ( - a sinxl + /3 COSXI)U2) dX2 

is a conservation law ofu, = U xx + u. where a and/3aretwo 
arbitrary constants. Taking into account the in variance of 
the diffusion equation under the infinitesimal generator 

a a 
- 2xl - +XIU I -. 

aX I aUI 

we obtain by the third approach that 

w = x, exp( - x 2)u, dX I + (XI exp( - x 2 ) - l)u z dX2 
is a conservation law. 

VI. FOUR-DIMENSIONAL SPACE-TIME 

In this section we show in four-dimensional space-time 
how solutions can be obtained using continuous symmetry. 
We consider a particular case. demonstrating how cylindri­
cally symmetric solutions can be derived. Such solutions 
have been considered by Takahashi.4 Now we study the non­
linear Dirac equation with scalar coupling. namely 

3 a a -L ,1- (rk 1/1) - iA - (r41/1) + 1/1(1 + EA 31/11/1) = o. 
k~ I aXk aX4 

(6.1) 

Again we put I/I)x) = uj(x) + ivj(x). where uj(x) and Vj(x) are 
real fields. In the same manner as in Sec. 2. we cast the sys­
tem of partial differential equations into an equivalent sys­
tem of differential forms. To investigate the continuous sym­
metries we study the Lie derivative of the differential forms 
with respect to infinitesimal generators. 

Let us consider now cylindrically symmetric solutions 
whose axis lies along the X3 direction. We recall that the 
rotation group on the plane (x,.x l ) has the form 
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- xla/axz + Xla/aX I. Now we consider the infinitesimal 
generator 

a a a a 
R= -XI-+X2-+UI--VI-, (6.2) 

&1 &1 ~I ~I 

We calculate the once--extended infinitesimal generator and 
require that the zero-forms FI ..... Fs are invariant under this 
once-extended infinitesimal generator. This requirement 
leads to the condition that u3(x) = v3(x) = O. Consequently. 
the derivatives of these fields with respect to x 1,. .. ,x4 also 
vanish. Then the zero-forms FI ..... Fs take the form 

FI~ (- P41 - q41 - P14) + vl(1 +,1 3EK) = O. 

Fl~ (P43 - P14) + ul(l + A 3EK) = O. 

F3 A (P13 - Pli + qll) = O. 

F4~ (PII - qll - P13 + P44) + v4(1 + A 3EK) = O. 

Fs~ (q14 - q41 + P42) - ul(l +,1 3EK) = O. 

F6~ (q43 - q24) - ul(l +,1 3EK) = O. 

F 7-A (qll - P22 + ql3) = O. 

F8=A (qll + Pl2 - q23 + q44) - u4(1 + A 3EK) = O. 
(6.3) 

where 

K = ui + vi + u; + v; - u~ - v~. (6.4) 
Let R denote the once-extended infinitesimal generator of R. 
We find 

LifFI = -F5' 

LifF4 = O. 

LifFs = Fl' LifF6 = O. 

LifF7 = F 3.LifF8 = O. 

(6.5) 

(6.6) 

Since we study cylindrically symmetric solutions whose axis 
lies along the X3 direction the fields do not depend on x 3. 
Thus in Eq. (6.3) the termsPi3 and qi3 can be omitted. More­
over. we assume that uz(x) = 0 and ul(x) = O. This means we 
require that the differential forms are invariant under a/ aUl' 
Then the zero-forms given by Eq. (6.3) take the form 

FI=A ( - P41 - q42 - P14) + v,(l + A 3E(ui + vi - u~ :- v;)) 

=0. 

F4 A(P'I-q,z+P44)+v4(1 +A 3E(ui +vi -u; -v~)) 
=0. 

F5 A ( - q'4 - q41 + pd - ul(l + A 3E(U~ + v~ - u~ - v!)) 

=0. 

Fx=A(qll +P,2+q44)-u4(1 +A 3E(ui +vi -u~ -v~)) 
=0. (6.7) 

The conditions (j = 1.4) 

s*(RJaj ) = O. 

s*(R J/3j) = 0, (6.8) 
lead to the following linear partial differential equations 
[x = (X"X2,X4)]: 

Xl au,(x) _ Xl aul(x) - vdx) = 0, 
aX2 aX I 

Xl av,(x) _ X
2 

avl(x) + UI(X) = 0, 
aX2 aXI 
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X I aU4(X) - X
2 

aU4(X) = 0, 
aX2 aX , 

XI aV4(X) _ X
2 

aV4(X) = O. 
aX2 aX , 

(6.9) 

The solution to the linear partial differential equations is 
given by 

UI(X I,X2,X4) = UI(P,X4)X I + VI(P,X4)X2, 

VI(X I,X2'X4) = VI(P,X4)X I - UI(P,X4)X2' 

U4(X I,X2,X4) = U4(P,X4), 

V4(X I,X2,X4) = V4(P,X4), (6.10) 

wherep2 _x~ + x~ is the similarity variable. When we insert 
the Eq. (6.10) into the nonlinear Dirac equation we obtain a 
nonlinear system of differential equations with two indepen­
dent variables, namely P and X 4• The dependent variables are 
UI(P,X4), VI(P,X4), and so on. 

Let us now further reduce the nonlinear Dirac equa­
tion. We use the fact that the Dirac equation is invariant 
unller the transformation group which is associated with the 
infinitesimal generator 

a a a a a 
Z = a4 - - U t - + VI - - U4 - + V4-, 

aX4 av , au, aV4 aU4 
(6.11) 

where a4 is a constant which has the dimension of a length 
(a4 =1= 0). The conditions s*(Z J aj ) = 0 and s*(Z J/3j) = 0 
(jEll,4l) lead to the following linear system partial differen­
tial equations: 

aut(x) 
a4 -- - vt(x) = 0, 

aX4 

avt(x) 
a4 --+ ul(x) = 0, 

aX4 

au4(x) 
a4 -- - v4(x) = 0, 

aX4 

av4 (x) 
a4 --+ u 4(x) = o. 

aX4 

(6.12) 

The solution to the partial differential equations is given by 

udx t,X2,X4) = ut(Xt,X2)Cos(x4Ia4) + Vt(xtox2)sin(x4Ia4)' 

vt(X t,X2'X4) = Vt(Xt,X2)Cos(x4Ia4) - Ut(Xt,x2)sin(x4Ia4)' 

u4(X t,X2,X4) = U4(Xt,X2)Cos(x4Ia4) + v4(Xt,x2)sin(x4Ia4)' 

v4(x t ,X2'X4) = v4(x t ,X2)COS(X41 a4) - u4(x I ,x2)sin(x41 a4)· 
(6.13) 

NowEq. (6.10) and Eq. (6. 13) can be combined. We find 
that 

UI(X I,X2'X4) = ul(P)(X I cos(x4Ia4) - X2 sin(x4Ia4) 

+ VI(P)(X2 cos(x4Ia4) + XI sin(x4Ia4)' 

VI(X I,X2,x4) = VI(P)(X I cos(x4Ia4 ) - X2 sin(x4Ia4) 

- UI(P)(X2 cos(x4Ia4) + XI sin(x4Ia4), 

U4(X toX2,X4) = 174 (p) cos(x4Ia4) + v4(p) sin(x4Ia4), 

V4(X I,X2,X4) = v4(p) cos(x4Ia4) - u4(p) sin(x4Ia4 ). (6.14) 

Thus, the similarity form of the solution can be written 
as a sum of products, where in each term the time coordinate 
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is separated from the space variables. Thus with group theo­
retical methods we have derived the separation ansatz (6.14). 
Inserting Eq. (6.14) into the nonlinear Dirac equation [com­
pare Eq. (6.3)] we obtain a nonlinear system of ordinary dif­
ferential equations where the independent variable is the 
quantity p. By a straightforward calculation we find 

A~~:I +2171 + ::) +v4[1 +A3€(u~ +v~ -u~ -v~)] 
=0, 

,1(:4 - :4 171) +PUI [I +,1 3€(U~ + V~ - u~ - V~)] 
=0, 

A ~: + 2VI - ::) - 174 [1 + A 3€(U~ + v7 - u~ - vm 
=0, 

A (:4 + :4 VI) - PVI [1 + A 3 €( U~ + V~ - U~ - v~ ) ] 
=0. (6.15) 

If we put ul(p) = v4( p) = ° or vdp) = u4(p) = 0, then we 
obtain a system of two coupled differential equations (com­
pare also Takahashi4

). 

Finally we mention that we can derive conserved cur­
rents with the help of the symmetry generators given by Eqs. 
(6.2) and (6.11). In the present case we have 

L = A ( - u4q I I + V 4 P II - U I q 41 + V I P 41 

- U4PI2 - v4ql2 + U I P42 + VIQ42 

- U IQl4 + VI PI4 - U4Q44 + V4P44) 

-rUT +vT -u~ -v~)(1 +A3€(u~ +vT -u~ -v~). 
(6.16) 

Consequently, the Hamilton-Cartan form is given by 

8= -(uT +vT -u~ -v~)(l +A3€(u~ +v~ -u~ -v~)) 

Xdx l Adx2 Adx4 

+ A (V4 du I + VI dU4 - U4 dv , - U I dv4) A dX2 A dX4 

+ A (u4 du , - U I dU4 + V4 dv , - VI dv4) Adx , Adx4 

+A(vidu l +v4du4-Uldvl-U4dv4)AdxIAdx2' 
(6.17) 

(6.18) 

We notice that the infinitesimal generators Rand Z form a 
basis of an abelian Lie algebra. 

VII. CONCLUSION 

We have demonstrated for a nonlinear Dirac equation 
how the knowledge of infinitesimal symmetry generators 
can be used for deriving similarity solutions and conserved 
currents. With the help ofinfinitesimal symmetry generators 
we are able to reduce the system of nonlinear partial differen­
tial equations to a nonlinear system of ordinary differential 
equations. For particular cases we are able to find solutions 
which can be given explicitly. Moreover, we have described 
three different approaches for obtaining conserved currents. 
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In the first one the infinitesimal symmetry generator and the 
Hamilton-Cartan form has been taken into account. In the 
second, the starting point was only those differential forms 
which are equivalent to the nonlinear Dirac equation. In this 
approach the Hamilton-Cartan form (which in the present 
modern formulation plays the role of the Lagrangian densi­
ty) and the infinitesimal symmetry generators are not taken 
into account. Finally, in the third approach, we have used 
the infinitesimal symmetry generators and the differential 
forms which are equivalent to the nonlinear Dirac equation. 
The Hamilton-Cartan form is not used in this approach 
either. 
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T matrix for Coulomb-nuclear admixtures 
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A model is proposed for calculating the T matrix for Coulomb-distorted separable nuclear 
potentials without the use of the Gell-Mann-Goldberger two-potential theorem. Analytical 
expressions for the Jost function and T matrix are presented for the Yamaguchi plus screened 
Coulomb potential treated in the Ecker-Weizel approximation. 

PACS numbers: 21.30. + y 

The Gell-Mann-Goldberger (GG) two-potential theo­
rem I has been extensively used to construct expressions for 
Coulomb-distorted nuclear T matrices. Such studies are of­
ten tailored to be appropriate for their possible usuage in 
nuclear few-body problems, as, for example, in the work of 
van Haeringen and van Wageningen2 and references therein. 
Applicability of the two-potential formula is directly related 
to the existence andlor completeness of wave operators for 
the scattering system.3 The presence of long-range forces in 
addition to the nuclear potential tends to pose serious prob­
lems with respect to this.4 With this in mind, we present a 
coordinate-space approach to the Coulomb-nuclear prob­
lem, which does not make explicit use of the GG theorem. In 
general, the method proposed will work for Coulomb plus 
separable potentials of arbitrary rank. However, for a model 
calculation we choose to work with the following 
interaction. 

(i) The Yamaguchi potential5 is used to represent the 
basic nuclear interaction. 

(ii) The pure Coulomb field is replaced by a screened 
potential, which we treat in the Ecker-Weizel 
approximation.6 

Consider the s-wave SchrOdinger equation 

(1) 

where 

d (k) = A. 1'" e - Uj(k,s) ds. (2) 

Here Vo and ft are related to the coupling constant and 
screening parameter for the Coulomb field, and A. and a to 
the strength and range of the nuclear interaction. To solve 
Eq. (1) with Jost boundary conditions7 we employ the stan­
dard substitutions 

by 

a = - (i/ft}[k - (k 2 - Yft2)1/2], 

b = - (ilft) [k + (k 2 - Yft2)1!2] , 

C = 1 - 2ik 1ft and 0" = (a + ik )/ft· 

In writing Eqs. (4) and (5) we have treated 

- Y = Vo(l - y)/1ny 

(5) 

(6) 

as a constant in the spirit ofthe Ecker-Weizel approxima­
tion, certain features of which have been discussed by Lam 
and V arshni. 9 

The Jost solution associated with the complementary 
function ofEq. (4) has been obtained by one of us. 10.11 Fol­
lowing a suggestion given elsewhere 12. 13 we regard d (k) as a 
constant and obtain a particular integral in the form8 

11 P(y) = 
d(k) a 
2 k 2 Lv - ria + da,b;c;y) ]. 

a + 
(7) 

The relation betweenla and generalized hypergeometric 
function is given in Eq. (6.18) of Ref. 8. The complete primi­
tive ofEq. (1) is 

f(k,y) =y-ikll'[l - riIla,b;c;y)] 

d(klY- ikllL a . + 2 k 2 Lv - rfa + I (a,b,c,y)], (8) 
a + 

where the first term stands for the screened Coulomb Jost 
solution. 1O

•
11 Interestingly f(k,y) in Eq. (8) satisfies the Jost 

boundary condition since fa (a,b;c;y)-o asy-o (r-+oo) for 
Re 0" > 0,8 which is true in our case. 

Our immediate concern is to determine the value of 
d (k). To that end we combine Eqs. (2) and (8). This gives 

d(k)= _A._[_I_ _ Y 
D(k) a-ik c(a-ik+ft) 

X4F(1 l+a l+h 1+0"*1 1)], 
3 2 1 + c 2 + 0"* (9) 

I(k,r) = eikr11(r) and W = -lny (3) with 

and arrive at a nonhomogeneous hypergeometric differen­
tial equation 

d 211 d11 
y(l-y)- +[c-(a+b+1lY)- -ab11 

dy2 dy 

= d (k ) fya - I _ ya] (4) 
ft2 

studied by Babister.8 The parameters a, b, c, and 0" are given 

D(k)=I- __ A. __ 
2a(a 2 + k 2

) 

yA.ft2 

(2a + ft)(a + ik + ft)(a + ik + cft)(a
2 + k 2) 

(
1 1 + a + 0" 1 + b + 0" 1 + 0" + 0"* 1 ) 

'4F3 1. (10) 
2+0" l+c+O" 2+0"+0"* 

The results in Eqs. (9) and (10) have been obtained by em-
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ploying an integral used in Ref. 11. The 4F3 hypergeometric 
function occuring here is absolutely convergent. 14 

The Jost function7 obtained from Eq. (8) is given by 

d(k) 
f(k ) = [1 - riI(a,b;c; 1)] + 2 2 [1 - rfu + da,b;c; 1) ]. 

a +k 
(11) 

The functionf in Eq. (11) can be written in terms of gamma 
functions employing Eq. (6.185) of Ref. 8 and a genereliza­
tion of the Dixon's theorem of Ref. 14. A useful check on the 
fairly complicated formula (11) is that it yields the well­
known Yamaguchi-Jost function when the Coulomb field is 
turned off. In possession of the Jost functionf(k ) the on-shell 
T matrix can be determined from 

T (k ) = (I(k ) - f( - k ))/hrf(k ). (12) 

We conclude by noting that Fuda and WhitinglS have shown 
how to write the half-off-shell T matrix in terms of the off­
shell Jost function. The off-shell Jost solutions for the 
screened Coulomb field are now available. II Thus in princi­
ple the half-off-shell T matrix can also be obtained by the 
method presented here. However, the fully off-shell case 
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will need some further consideration. The treatment of the 
unscreened Coulomb field within the framework of this ap­
proach is an interesting problem with which to deal. 
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A compact analytical form, suitable for any analytic continuation, is obtained for the following 
bound-bound N-photon transition matrix element, 

Inlm_"'I''''' =(n'/ 'm' \ iV! Fr:!; }i"G(E;) \nlm), 

where G (E ) is the Coulomb Green's function. We show that I "Im-~"'/'m' is a "linear superposition" 
of matrix elements yl(g)nTm'~"lm of some irreducible representation yl of a semigroup G;: 1 

contained in the four Euclidean conformal group G = SU*(4)::::; SOo(1,5) , This "linear 
superposition" is understood in the general framework of the theory of the distributions on a Lie 
group. The final result is a linear combination of special functions known as "generalized Euler 
functions. " 

PACS numbers: 32.80.Kf, 31.15. + q, 03.6S.Fd 

INTRODUCTION 

It has become possible over the past two decades to 
observe, with sufficiently large intensity of the light source, 
interaction processes with atoms in which each electronic 
transition involves the net absorption, emission, or scatter­
ing of more than one photon. 1 

But, the evaluation of transition probabilities for multi­
photon processes requires tedious calculations of matrix ele­
ments issued from the time-dependent perturbation theory. 
In the specific case of interaction of light with the H-atom, 
the latter arise in the general form (for a N-photon process) 

I"lm~"'I'm' = (n'['m'I&lnlm) = (tP"'I'm,,&tP"lm)Li(1n' 
(1) 

tP"lm ,tPn'l'm' are H-bound state wave functions, and & is the 
operator 

N -IT Aiik"G (E;), 
i= 1 

where G (E) is the Coulomb re~olvent (;2 12m - E - glr) - 1 
and Ai = P'E; or 1-Ei' with E,·k; = O. 

It should be noted that the last factor G (EN) in & can be 
removed from (1) by using the evident equality 

G(EN)tP"lm = (E" - EN)-ltP"/m' (2) 

However, we prefer to keep it for writing convenience. 
Exact analytic expressions for the matrix element (1) 

have been known for a long time in the two-photon case, in 
the dipole approximation or with retardation effects, be­
tween bound or continuum states. 1-8 In more recent works, 
Coulomb Green's function4 or Sturmian techniques5 have 
been used to obtain analytical expressions for transition am­
plitudes of multiphoton processes for N> 3 in the dipole 
approximation. 

This work generalizes to an arbitrary N a group theo­
retical technique already used to obtain a compact form for 

a)Permllnent addre~s: Laboratoire de Chimie Physique, 11 rue Pierre 
et Marie Curie, 75005 Paris, France. 

the two-photon matrix element, with retardation effect. 6 We 
show that I"lm .n'l'm' is a "linear superposition" of matrix 
elements yl{g)n'I'm',nlm of some irreducible representation 
y I of a semigroup, denoted by G :: 1, contained in the four 

Euclidean conformal group G = SU*(4)::::; SOo(I,5) 

Inl"'~"'I'm' = ( dS(g) yl(g)n'/'m',nlm, JG ~ I 

where f G ., dS (g) symbolizes a product of differential/inte-
gral operators involving the g variable of the special function 
yl(g)n'!'m',nlm' It should be underlined that by its use of the 
SU*(4) group and the "distribution theory on Lie groups" 
outfit, our method differs from the SO(4,2) techniques used 
in the past by Fronsdal/ Huff,S or Barut9 for treating the 
one- or two-photon problems. Rather, the claim of the pre­
sent paper is to illustrate Some of the practical aspects of a 
very general and meaningful group theoretical structure of 
the quantum mechanics which has been displayed in a recent 
work. 10 Also, we should like to point out that somewhat 
esoteric mathematics can sometimes playa nonnegligible 
part in some practical computations of Physics. 

In the first section, we define the Fock transformation 
which permits to introduce the Hilbert space L ~ (SU(2)), and 
we describe it with the aid of quaternionic conformal 
actions. 

In Sec. II, we present the group G = SU*(4), the sub-

groupG < = Sp(I,I)::::; SOo(I,4), and asemigroup G", -:::>G <' 

Then, we define the representation Y 1 of G :: 1. 

In Sec. III, the tempered vector distribution on G, with 
support in the semigroup G;; I, are introduced. Useful and 
concrete examples of such distributions are given in Sec. IV, 
as also in Sec. V their connection with physical operators of 
interest. 

Finally, in Sec. VI, the matrix element I"lm~"'/'m' is ex­
plicated in terms of "generalized Euler integrals," extending 
the familiar hypergeometric functions occurring in the two­
photon case. 
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1. FOCK TRANSFORMATION1ct-12 

Let Po be a real momentumlike parameter. In the mo­
mentum representation, a one-particle wavefunction ¢, the 
Fourier transform of tf;, will be viewed as a function of the 
4-vector x = (P0,iJ). 

We denote by l!...p". + I the space of the complex functions 
square integrable with respect to the scalar product 

(tf;(Po,tf;'(po))p". + I = f dp ¢*(Po,jJ) [(P6 + jf)/2P6 l¢(Po,jJ)· 

(3) 

l!...p". + I is a Hilbert space. There exists an isomorphism Y Po' 

called Fock transformation, mapping l!...p". + I onto 
E;..=L ~(S3;:::::SU(2)), provided with the scalar product: 

(¢J,¢J ')~=f dIL(S) ¢J *(S)¢J '(S), 
SU(2) 

where dIL(S ) is the 0(4)-invariant measure on S 3 or equiv­
alently the Haar measure on SU(2). 

Y p" is defined in the following way: 

Y p". (tf;(Po))(s) = 4P612 1! + SI-4¢(S(PO)'s) (4) 

where 1 = (1;0), Ixl is the Euclidean norm in R 4, and 
(Po,jJ) ;;; s(Po)·s is the stereographic projection of SE S 3. This 
"Fock stereographic projection" is conveniently described 
by identifying the four Euclidean space with the quaternion 
field lHI. Any quaternion x will be written x = (xo,X) where Xo 
is the scalar part and x the vector part, or yet: 

x = xo! + xli + x2e2 + x 3e3 , 

with ei~ = ek , (i,j,k) being an even permutation of(I,2,3). 
The conjugate x is defined by x = (xo, - X). Any scalar 

A will be confounded with the quaternion A = (A,O). 
Let g = (~~) be a 2 X 2 quaternionic m~trix. Its confor­

mal action on 1HI is given by 

g.x=(ax+b)(ex+d)-I. (5) 

The projection s( Po) is the special singular conformal action 

s(Po) = 1 e~o i). (6) 
~2po -

It establishes a one-to-one correspondence between 
S 3;::::: SU(2) and the compactified hyperplane of the quater­
nions having the same scalar part Po. 

Our purpose is to compute (1) by using the transforma­
tion Y p" with different values of Po and a certain representa­
tion of the conformal action (5) which will now be explicated. 

2. A SEMIGROUP REPRESENTATION 

G -SU*(4) is the simple, simply connected, Lie group 
of the 2 X 2 quaternionic matrices which are elements of 
SL(4,q, 13 precisely: 

G= 

{g = e : ),a,b,e,dElHI, Iclld lIae- I - bd - II = I}. 

(7) 

SU*(4) is also the universal covering ofSOo(I,S). A semi­
group, denoted by G" ' is defined as the maximal subset of G 
preserving the unit ball in 1HI under its conformal action: 
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G" = {gEG, Ixl~I~lg·xl~l}. (Sa) 

It can be shown that 

G" = {g = e :)EG, Ibd - acl~ld 12 - lel
2 

- I}. 

(Sb) 

The simple, simply connected, subgroup 

G < Sp(I,I);::::: SOo(I,4) 14 is contained in G,,: 

G < = {h = e : )EG, Jh + J = h - I } , (9a) 

where 

h + = (a
b
= c) (1 d' J= 0 Q ). 

- 1 ' -
G < can be defined equivalently by 

G < = {hEG" ,Ixl = 1~lh.xl = I}. (9b) 

Thus G < preserve the interior of the unit ball and sepa­
rately its frontier S 3 under its conformal action. 

The above characterizations can be understood along 
the following partition of G in three sheets: 

G =JV<u./I/·>U/Y= 

withJV<'>'= = Ig=(~~);lcl<,>,= Idll·ForallgEJV<, 
we have the factorization: 

g = tn(K )dn(t )h (10) 

h is an element of G < ' dn(t ) is the conformal dilatation, 

(
e
lI2

O ) 
dn(t) = 0 ~-I12' (11) 

and tn(K ) acts conformally on 1HI as a simple translation: 

tn(K) = (~ J' K = (bd - aC)e' . (12) 

It is apparent that G < C G <. CA'" <. It should be noted that 
the stereographic projection s( Po) is an element of JV = . 

An irreducible bounded representation yT, TEe, of G < 

is given by 

¢JE E;.. = L ~ (SU(2)), hEG < ' 

:fT(h )¢J (s) = [a(s,h )] - 2T¢J (h -I·S), (13) 

where a(x,g), xElHI, gEG, is a mUltiplier defined by 

a(x,g) = lex + d I ifg- I = e :) (14a) 

and verifying 

a(x,glg2) = a(x,gl)a(gl- I'X,g2)' (14b) 

We extend yT to G:: I by means of the "harmonic exten­
sion" of ¢J 

¢J~, gEG:: I, yT(g)¢J(S) = [a(s,g)]-2T<1>(g-l.s ), (15) 

where 

<1> ( ) - 1 1 f;" 1 - Ixl 2 
, 

X - 2-2 dJL(~) Is' 14 ¢J (s ), 
7r SU(2) - X 

Ixl < 1, (16) 

and 

<1> (ps)--+</J (s ) almost everywhere. 
p-->L 
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(I/2r)(1 - Ixl2)11s '_ Xl4 is the Poisson kernel in ]R4.1S We 
recall that its integral on SU(2) is equal to 1. In the following, 
we are interested exclusively in the T = 1 or 2 case. 

3. TEMPERED VECTOR DISTRIBUTION ON G 
A. Schwartz space Y (u, §l 

The Lie algebra SU*(4) of G is the set of 2 X 2 quater­
nionic matrices X with (TrX)o = O. It will be denoted by g. 
The Killing form on 9 is given by 

(X, Y)Eg X g-B (X,Y) = 8[Tr(XY)](). 

The Cartan involution is defined by 

We put IIX 112 = - B (X,8X). 
Let g = k (g) expX (g), the Cartan decomposition of G; 

k (g) E Spin(5) and expX(g) = fg+g]'12. 
We introduce with Harish-Chandra,16 

a(g)=IIX(glll· (17) 

The "seminorm" (7 takes into account these elements which 
do not belong to any compact subgroup of G:a(g) = 0 for 
gESpin(5). 

For instance a(dn(t )) = 21 t I, where it is whorthwhile to 
note that dn(t), given by (11), is an element of the Cartan 
subgroup Aof G. 13 We have also a(/(t)) = 21t I, where 

/ (t )=(COsht /2 sinht /2)EA 
sinht /2 cosht /2 < 

( 18) 

A < is the Cartan subgroup of G < .14 The following proper­
ties should also be noted: 

a(g) = a(g+) = a(g-I), 

(19) 

for all gl,g2EG. 
Now, any element X of g is identified with the left invar­

iant (resp. right invariant) vector field X (resp. X) on G 17 

/EC""(G), gEG, 

(X/)(g) = (d/(g(exptX))/dt)lt~O (20) 

[resp. (X/)(g) = (d/((exptX)g)ldt)lt~o]. 
We extend in the usual manner (Birkhoff-Witt) the iso­

morphism X-X (resp. anti-isomorphism X-X ) to an homo­
morphism Z_Z (resp. antihomomorphism Z-Z) of the en­
veloping algebra @ of 9 into the algebra of the differential ... 
operators on G. That extension is unique and it is clear that Z 
and Z I commute for all Z,Z I in @. 

Let Ube an open subset of G. The "Schwartz space" 
Y(U,qcc OO(U,q is the Hausdorff complete locally con­
vex space of the functionJU-C, provided with the semi­
norms (r:>O): 

VZ.Z',r(f) = s'tpl(ZZf)(g)1 [1 + a(g)]'. (21) 

In the same way, we define Y(U,E), the space of the 
functionsJ U-E, satisfying (tfJ,J)EE.Y( u,q for all tfJEE, 
provided with a "weak" topology induced by that of -
Y(U,q: 
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1: --+ 0 in Y/( U,~ )¢:>(tfJ,.f)E --+ 0 inY(U,q, 
;"+00 -i~+'X: 

for all tfJ~. 

B. Tempered §-distribution on G 

By "tempered E-distribution Ton G " we shall under­
stand an element of Y(Y(G,E ),E), i.e" a continuous linear 
map from .Y(G,~) to F;,; wher~ the continuity is defined in a 
weak sense: 

/EY(G,~)~(T,J)= LdT(g)/(g), 

and Tis such that the map/-(tfJ (T,J»)E is continuous for 
illtfJ~~ -

We denote the convolution product by 

(S*T,J)-L dS(gdLdT(g2)/(glg2)' 

We designate by Y' the space of the tempered E-distri­
bution. [Also Twill eventually denote an element of 
2'(2"(G,q,q, i.e., a scalar distribution. Thus, we shall not 
distinguish between (tfJ,(T,J»)E and (T,(tfJ,J)E)'] 

It is important for the following to note th-at there exists 
a natural isomorphism 17: ZE@-TzEY"lel between @ and 
the algebra of the scalar distributions with support [e l , 
where e is the unit element of G, such that 

Tzz ' = Tz*Tz ', T1z.z'l = Tz*Tz ' - Tz,*Tz 

-[Tz,Tz '], (Tz,J) = (Z/He) = (Z/He). (20 /) 

Now, Y'," (*) designates the space of the tempered ~-distri­
bution on G, with support in G ~. I, provided with the convo­
lution * (not defined everywhere), 

Let us define the subspace ~I c~: 

~I = {tfJ;g=(tfJ l,y-l(g)tfJ )~:y-(<P,·<P)E Y(U,q 

X for all open UC G . __ 1 and for all tfJ '~}. 

Lemma: EI is dense in E. 
Prool Indeed, thes3 harmonics Yn/m (Appendix A) are 

elements of ~I' This fact can be proved by considering some 
properties of these basis elements in the Hilbert space E. 

-First, it is easy to check that for all Z,Z ' in @, there 
exists a constant Cz,z' such that 

I(ZZ'A )(s,g) I <Cz,z,A (S,g) 

for all SESU(2) and gEG, with A (S,g)=[a(S,g)]-2. 

-There exists ZnlmE@ such that 

Ynlm(S) = (Tz"/~,A (S), 

where A (S )(g)==A (S,g)· 
-Afterwards, we have the equalities 

y-l(g)Ynlm(S) = .'TI(g)(Tz",~,A (S) 

= (Tz",~,(yl(g)A )(S) 

= (ZnlmA (S ))(g). 

(21') 

(22) 

(23) 

-Consider now yl(g) Ynlm (S ) as a function of g. Then, 
from (21) and (23) 

(ZZ,Y1Ynlm(S))(g) = I(Z~lmZ'A (s))(g)I<Cz " z,A (S,g), 
"'~ 

(24) 
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where Z ~Im = ZZ"lm' 
-For all ¢E/b the Schwartz inequality entails 

1(¢,(Zi,YI Y"lm )(g))lfl <CZ~'mz' IIA (g)lllfll¢ 111f, (25) 

where A (g)(S) = A (S,g)· 
-IIA (g) liE can be easily evaluated from properties of 

the Poisson kernel; for g-I = (~~ )EG.;;, 

(26) 

The last inequality results from the Definition (8b) of 
the semigroup G < . 

-Finally, if we define d(g- i) by g-I = (~~Ig'))' 

vZ.Z .. r((¢,YI Y"lm)E) = supl(¢,(Zi 'y l Y"lm)(g))E I [1 + O'(g)]r 
- geU -

Now, it can be shown easily that [1 + O'(g)] rid (g- I) 1- I is 
bounded for any gin G ;: I; it is sufficient (and trivial) to 
check that bounded ness for g = dn(t ), t < 0, and g = I (t ) for 
all t. Q.E.D. 

The above lemma is important since it permits one to 
associate to any tempered E-distribution Ton G with sup­
port in G '-: I, a linear operator denoted by y'(T), construct­
ed with the aid of a suitable smoothing. Let g be an element of 
G ,-: I. From Eq. (lO),g-1 = tn(K )dn(t )h, hESp(I,I), t<O. We 
define: 

l
e(exp - (1 - t 2)-I), Oq< 1 

s(g) = 0, t;;d, 

1, t <0. 

Then, for all ¢Ei£1 and TEY:. (*), 

.ry'(T)¢ _(T,:r¢) 

= LdT(g)S(g)y-l(g)¢ 

- ( dT(g) .:1'-I(g)¢. 
JG ' 

We have the fundamental property 

y-I(S*T) = ,yl(S),rl(T). 

4. MINIMAL GLOSSARY FOR PRACTICAL 
COMPUTATIONS 

(27) 

(28) 

(29) 

(a) Particularly important are the following three ele­
ments of g, the Lie algebra of G: 

D=~(l 
2 0 i). L = +G 1) fl = ~( 1 

o ' 2 - 1 !J 
- -

(30) 

Note that D 2 = L 2 = * I, fl2 = O. 
These three matrices generate a Lie algebra isomorphic 

to sl(2,R): 
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[D,fl] = L, [L,fl] = fl, [D,L] = fl - D. 

By exponentiating we obtain 

exptD = dn(t ), exptL = I (t ), 

exptfl =w(t) = (
1 + t 12 t /2 ) 
.=...1.Ll 1 - t 12 

Now, we introduce flj=flej for defining w{x): 

.. ( (I,xI2) 
eXpX°fl =w(x) = 

(0, -xI2) 
(0,xI2) ). 

(1, - x12) 

(31) 

(32) 

(33) 

The matrices I (t ) and w(X) occur in the I wasawa-Cartan 
decompositionl 4 of G < = Sp(I,I) = K < A < N <: 

hEG <' h = kl (t )w(X), kESpin(4) = K < . (34) 

(b) Distribution TD and Coulomb-Sturmian operator 
910 -I: It should be noted that yl(TD) = a,yl(dn(t ))1,= o. 

in our framework, since dn(t )EG ;:' I for t;;;'O. The generator D 
has a special importance with regard to its connection with 
the restriction of the four-dimensional Laplace operator to 
S 3. We define the operator 910- I by 

910- I¢ (s) = ~ { d,u(s ')Is - s '1- 2¢ (s '). (35) 
211 JSU(2) 

91 0- I is a compact self-adjoint operator on L ~ (SU(2)), with 
eigenvalues lin, n = 1,2, .. ·. Its link with the Coulomb-Stur­
mian operator6,10 is well known since Fock. 18-20 

Then .'TI(TD) = - 910 (on EI)' The *-inverse of TD is 
defined by -

(T;;l,f) = - 1+ 00 

dt/(dn{t)). 

Then .71 (T;; I) = - 91 0-
1 (onlU Explicitly, 

91
0
- I¢ (s) = - Sa + 00 dtyl(dn(t ))¢ (s) 

= - 1+ 00 dte-'cP(e-'s). (36) 

The operator 910 is interwinning for the representation ,r l 

and its "contragradient", namely, 

91o,7
1{g) = yl(Jg+ J)91o. (37a) 

We have also, 

(37b) 

for all g-I = (~~ )EG.;;. On the other hand, it can be shown 
that 

,71+(h -I) = Y2(h) 

for all hEG < . 

Thus, ,:1'-I{TD *t5{h )*T;; I) = jr-:!(t5{h I), 

where t5 (g) is the Dirac distribution on G. 

(37c) 

(37d) 

From the above it should be noted that the representa­
tions yl and 3-1 of G are equivalent to one complementary 
series unitary irreducible representation. 21 

(c) Distribution Tn and T L : fl is also very useful because 
we have 

jr-I(Tn*T;; I)¢ (s) = (l + So)¢ (s) = !Il + s12¢ (s). 
(38) 
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More generally, 

yl ([TD,Tn.l*T D l)<,b (S) = Si¢ (S). (39a) 

It may be possible to simplify the above relation by using Eq. 
(31); 

[TD,Tn,] = T[D,fl, 1= TL" 

where Li =Lei · 
But the matrix 

( 
cos(t 12) 

exp tL- = 
I sin(t 12)e; 

sin(t 12)e;) 
-Itt) 

cos(t 12) -

is not an element of G :: I for all t. 
Nevertheless, 

yl (TL, * T D l)<,b (S) = - a" ~ 0 LX> dtyl(((t ')dn(t))¢ (S) 

makes sense, because at! > 0 fixed, ((t ')dn(t) is in G :: I for t / 
satisfying (1 + sint ')Icost / ,e'. 

Thus 

(39b) 

(d) Operator yl(Tx ), XEg: More generally, let 
t-g(t) = exptXbe a one parameter subgroup ofG such that 
g(t )EG :: I for O,t < E. We put 

g-I(t) = exp _ tX = (a(t) b (t)) 
c(t) d(t) 

or 

(
a(O) b (0)) 

-X= c(O) d(O)' 

with b (0) = c(O) = Q, a(O) = d (0) = l. Then 

yl(Tx)¢(S) = at~O' yl(exptX)¢(s) 

= [ - 2((d (Ollo + 6(0).x)( 1 + x·ax) 

+ (a(O)x + xd (0) + b (0) 

+ IxI26(0)).ax ]<1>(X)IX~5' (40) 

wherex·x' = (xx/)o = xoXb + x·x /, and ax = (axo'Vx ). 
Let u be a quaternion. We define the operators C (u), 

C /(u), 2"(u), 2'(u), acting on L ~ (SU(2)), by 

C(u)¢ (s )==(u·s)¢ (s), 

C'(u)¢ (s )=(u·axl<1> (x)lx ~ 5' 

2"(u)¢ (S )=(xu·ax )<1> (x)lx ~ 5' 

2'(u)¢ (S )=(ux.ax )<1> (x)lx ~ 5' 

(41a) 

(41b) 

(41c) 

(41d) 

Then, 

yl(Tx ) = - 2((d(0)loI + C@O)))(J + 2"(l)) 

+ 2'(a(O)) + 2"(d (0)) + C '(b (0) + 6(0)). 
(42) 

It should be noted that I + ..2"(1) = 9(0 (on Ed. 
(e) Basis in L ~ (SU(2)) and ~atrix eleme-;'ts: We choose 

as basis inL ~(SU(2)) the setoftheS 3 harmonics Ynlm , eigen­
vectors of the operator 9(0- I: 

9(o-IYnlm = (lIn)Ynlm . (43) 

Recall that these functions are given in Appendix A. 
In Appendix B we explicit the matrix elements of the 

operator yl(g), gEG :: I. 
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y-l(g)nlm,n'I'm' 

= f dll(S)Y~/m(S)lcS+dl-2~n'I'm,(g-I.S), (44) 
JSU(2) 

where '?II nlm is the harmonic polynomial ("solid harmonic") 
deduced from the surface harmonic by the homogeneity 
formula 

,)Ij nlm (x) = I x I n - I Ynlm (xlix I). 

Likewise, we give in Appendix C the matrix elements of 
the operators C (u), C /(u), 2" o;.2"jj. The latter are defined by 

:fo; = H2'(l;) + :fIl,I] 
=xoa; -x;aOIX~5' (45a) 

'Yjk = H2'(e;) - :fIe;)] 
=xjak -xkajlx~s' (45b) 

where (i,j,k) is an even permutation of(1,2,3). 

5. LITTLE LEXICON FOR PHYSICAL OPERATORS 

In this section we examine the diverse dynamical varia­
bles A occurring in physical calculations, their respective 
Y po -transform Apo = YpoAYpo ' and the distribution 
T(ApJ defined formally by 

Apo = LT/(T(Ap..l) (on ~I)' (46) 

The operator identity (46) displays a sort of completeness 
property: any "physically reasonable" dynamical variable A 
has its Fock transformApo in the linear span generated by the 
representation operators ,;TI(g) for g varying in the semi­
group G:: 1.10 

A. Free resolvent 

We start with the free particle Hamiltonian resolvent 
(Ho - E)-I = 2m(p~ + jJ2)-1 for E = - P6/2m <0. 

Its Fock transform is simply 

2m,'/ (P2 + jJ2) - I Y- I = 2m 11 + £' 121 4p2 (47) 
Po II Po _ ~ 0' 

and by using the Eq. (38), 

2mYpo (P6 + jJ2)-IYp~,- 1= (mlp6)yl(Tn*T D I). (48) 

B. Scalar product 

As a direct consequence, it should be noted that the 
usual L ~ (R3

) scalar product is Y Po -transformed in the fol­
lowing way: 

(t/J,t/J/)Li(R'1 = (¢,(1 + So)¢ /)~ 

= (¢,yl(Tn*T D I)¢ /)~, (49) 

C. Yukawa-Coulomb potential 

The Fock transform of the Yukawa potential (and its 
Coulomb limit Il = 0) is 

Yp.,(e-Wlr)Yp~ I 

= - (Polli)yl (TD*T [} I*O(W( IllilPo)*T D I)). 
(50) 

The Coulomb-Sturmian operator is (Ho - E) - I( 1/r). 
This operator is compact although not symmetrical. 

Jean-Pierre Gazeau 160 



                                                                                                                                    

Its Fock transform is compact self-adjoint on I£. From 
(49) and (SO), 

2mYpo(p~ + iJ2)-'(l/r)Yp~ 1 = - (mlpoll)Y'(T;; I) 

= (mlpofl)Wo- I. (51) 

D. Coulomb-Green function 

The Coulomb resolvent is defined by 

G(E) = [p212m - E -glrJ- I 

= [I - 2mg(p~ + p2)-I(l/r)] -'2m(p~ + p2)-I, 

Po = (- 2mE)'!2. 

We have for E <0: 

.7 G(E)5-- ' Po PH 

= (mip~)Y'((8(e) + vT;; 1)-I*Tn*T;; I), 

where v = mgipofl. 
Now, the *-inverse of 8 (e) + vT;; I exists in y~ (*). It 

is given by'Y 

with 

[8(e) + vT;; I] - 1= 8(e) + vToy ' 

(Toy .!)= Sa + 00 dte yt I(dn(t)). 

It is trivially verified that 

T D 1*(D(e) + vTo,) = - To". 

Hence, 

.'7 G(E)Y-' 
Po Po 

= - (mip6)Y'(TD*Tov*Tn *T;; I). 

E. Galilean boost eil
:
1 

(52a) 

(52b) 

For practical purposes, it is possible to extend formally 
the representation /7' so that the singular conformal trans­
formations s( Po) and s - 1 ( Po) and the Fock transformation 
are included in our formalism; 

¢ = ,'7 ;,~ I¢J = ~ Po r(s(po))¢J, 

¢ = .7p,,¢ = 1 .;il(S-I(pO))¢' (53) 

~Po 
The action of the operator eik., on a momentum wave­

function ¢( jJ) can be written 

eikr¢( jJ) = ¢( jJ _ fI;;) 

= (./,""C!(tn(O,fI;;))¢)(fJ). (54) 

tn is defined in Eq. (12). From Eqs. (53), (54), and (37d) we 
obtain 

,,/ eik-r,'7 - 1 = .?f"(w(fI;; Ip )) 
PI! Po 0 ~ 

= y-'(TD*8(w(flk Ipo))*T;; I) (55) 

where 

w(flk ipo) = s-'(po)tn((O,flk ))s(Po) 

is defined by Eq. (33). 

F. Scalar boost or "tilt"22 

The expression ,7 Po:7 p;' 1 does not mean anything. On 
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the. other hand, Y ,72(truirvl' ))..7 --: I makes sense, where 
Po ~ Po 

,Joo' = Po - p~ and 

(Y2(tn~))¢)(po,Pl = ¢(P~.jJ). 
By using (53) and (37d), we obtain 

Y Y2(tnl,J,))Y--: I 
Po \:.UQ Po 

= (pblpo)'/2r(/ (Aoo')) 
= (pbIPo)Il2yl(T o *8(l (Aoo' ))*T;; I). 

(56) 

where 

I (Aoo') = S-I( po)tn~)s( pb) 

I (Po + pb Po - Pb) 

= 2(Popb)'I2\pO - pb Po + pb 

= expAoo·L, Aoo' = Log(Polpb). (57) 

G. Operator r 
From; = - i V keik"1 k = ii and from (55). we obtain 

immediately. 

H. Operator p 

(58) 

From the relation i = 2poPl(p~ + jJ2) if 
S = (Soi) = S-I(pO)-(PD,j)) and from Eq. (40), we can write 

Y jJY- 1 =Poyl(TD*T Ii '*Ti*T;; I). (59) PI! Po 

I. Coulomb bound states 

Finally, we recall the well-known relation between the 
Coulomb bound states tP nlm and the S 3 harmonics 

Jpo,,¢nlm = Yn1m , (60) 

with PDn = ~ - 2mEn = mgilln. 
En is the nth level energy. 

6. N-PHOTON TRANSITION MATRIX ELEMENT 

We return now to our initial motivation: the calculation 
of the matrix element (1). By using the scalar product trans­
formation (49) and the Eq. (60) that expression becomes 

(tPnTm' ,{ftPnlmILt:IR') 

= (Yn'I'm·,yl(Tn*T D 1)..'7PO"{fy-lp,,"Ynlm)~' (61) 

where 

,7 {f Y - 1 = Yr(tnl,J , ))Y - I 
POll' POll PUn ~ PUI 

with 

X[nN ..7 AY-'Y e'k,.rY-IY G(E) 
PH, ( PUt PIli Ptf! PUs I 

i= I 

X.'7 - I ,7 Y2(tnl A .... ))Y - 1 Y - I l, 
Po, POI ~ Pu Po, I I 

.:In·l =POn' -POI' .:lii+l =POi -POi+1 

PDN+ I PDn' POi = (- 2mEi)I!2. 

(62) 

The operators r(tnl.::L:u..t)) ensure the connection be­
tween the ith and (i + 1 )th processes. 

We introduce 
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to;T;; '*T •. i for A,. = E.,;t, 
T(A;) = .' ,"}, 

- (l'fzIPo;)Tli"ii for A; = E;'Y, 

then, from (52), (55), and (56), we obtain 

I n,m_ .n"f"m' = Y-'(S )n'I'm',nlm 

(63a) 

(63b) 

= (dS(g)(Y'(g))n"'m',n'm' (64a) JG ' 
S is the distribution 

S = [( - mIN ICfI,p~;) ] (POnIPOn' )'/2{To *t5(1 (An" ll* 

X Lv, (*)TA ,*t5(w(Ii.(lpo; ))* Tov,] 

*To *t5(/(Aii+' ))*T D I}, (64b) 

with 

An" = 10g(POn./Pod, A;;+, = 10g(Po;lpo;+,), 

Commutation rules and simplifications 

Each distribution with punctual support Tx , XEg in­
volved in Eq. (64b) can be brought to the left (or to the right) 
of the expression of S by using the following property: 

Y'(t5(g,)*TX *t5(g2ll = J1=0' Y'(g,(exptX)g2) 

= J1=0' Y'((exptg,Xg,- ')g,g2) 

= Y'(Tg,xg, ,*t5(g,g2))' (65) 

On the other hand, we have a specific and very useful com­
mutation rule 

(66) 

This rule permits one to eliminate systematically the 
cumbersome presence of the factor T ;;' in expression (63). 

We have also 

I (Aoo' )w(lik Ip~)1 (Ao'O" ) = I (Aoo' )w(M Ip;;) 

= w(M IPo)1 (Aoo' ). (67) 

Finally, from '[E,p,e;k.,] = 0 when E.k = 0, we deduce 

[T 11 '*T •. i,t5(w(M Ipo))] = O. (68) 

Let us consider now the (usual) situations where we have 
Ai = Ed for all i ("situation P) or A; = E;,1for all i ("situa­
tion R "). 

C = [( - mt l;fIto; ](Pon,IPon)'12, (P) 

C = [(ilim)N Itlt~; ](Pon,IPon)'12. 

Then, by using (52a), (65), and (66), we obtain 

S=C (+00 dt",,(+oo dtN[.IT(*)eV;ls;] 
Jo Jo ,=, 

where 

with 

162 

*o(gn)*To*T;; " 

X; = g;E; ,Lg;- " (P) 

,x, = g;E;.iig,.-', (R) 
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(R) 

(69) 

g, = I (An")' 

g; ~ 1 = g;w(Ii(IPOi )dn(!;)1 (A;, + , ), 

gn =gN+ ,. 

The explicit form of the matrix element Y1(S)n'I'm',nlm is 
evidently intricate 

,y-I(S )n'I'm',nlm Ci + 00 i + 00 ( N ) = - - dt,'" dtNexp L v,t; 
n ° 0 ;=, 

X nN,tmN,r'CV,(*)Sl'I'm',nNINmN 

X,r'(t5(gn )*To )n"'NmN,nlm' (70) 

Let us remark that the matrix element 

Y,(V, (*)S;) n"f"m',nN/~N 
N 

" IIY'(S")n, L.. II, 1m , pn,l,m, 
n"l"m, i= 1 

(nolomo-n'I'm') 

is equal to 0 except if InN - n/l, liN -1/1, ImN - m/I.;:;! fN' 
This fact is easily understood from Eq. (42) and the expres­
sions of the matrix elements given in Appendix C. 

On the other hand, the last integral in t N can be carried 
out since the relation (2) implies 

- (mlp6N)yl(TovN*To*o(/(ANnllYnlm 
= - (mlpoNPon)Y'(TovN*O(/(ANnll*To)Ynlm 
= (En -EN)-IY'(/(ANnllYnlm' (71) 

Finally, we make the change of variables 
-I 

Z; =e '. 

Then, from the general structure of the matrix element 
Y'(g)nlm.n'l'rn' given in Appendix B, it is apparent that the 
final expression of Inlm~n'I'm' is afinite linear combination of 
"generalized Euler integrals,,23: 

:§,(p"q;;r;g) = (I dz,'" (' dzs [.rr t;' - '(1 - Z; )q, - ,] 
Jo Jo ,= 1 

I d (g(z, ,",Z2) - ') I - 2" (72) 

where g-I = (~~Ig 'I )€G.;;, r;;' 1. In our specific case, 
s = N - 1, r.;:;n + n/ + N, and 

[N~' ( k}] ( kN) g= .II I(A;_I;)W Ii_I nIt;) I(AN_1n)W Ii- , 
,=, POI Pan 

(73) 

with Ao, = An'" 
In the two photon case we recover well-known formulas 

with hypergeometric or Appell functions, '--6 It should be not­
ed that all these expressions can be analytically continued to 
positive energies Ei = P~i > 0 or equivalently to purely 
imaginary values of Vi' 

CONCLUSION 

As a final comment, let us emphasize that the above 
result can be thought of as illustrating particularly a phe­
nomenon which we conjecture to be a general feature of the 
interacting one- (and surely multi-) particle quantum me-
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chanics. As we have already asserted lO
, the completeness of 

the operatores yl(g) in the sense that 
YpoAYp--;' I = f G Z' dT A (g)yl (g) for any physically "rea­
sonable" operator A, makes it strongly tempting to claim 
that any matrix element of a dynamical variable A between 
two arbitrary square integrable physical state tPi,tPf always 
has the form 
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APPENDIX A 

-Coulomb bound states in configuration space. 

.1, (;II = N ~ ,; ~ Ponrl" 
( 

2,p )1 + 312 
'f' nlm ' I nl Ii e 

L 21+ I (2Pon )y (A) 
n ~ I ~ I Ii r 1m r, (AI) 

with 

Nn' = (_l)n~l~ I((n -/- 1)!!2n(n + 1)!)1/2, 

yl(g)nlm,nTm' = r dll(5)Y~lrn(5)le5 +dl-2~n'l·m.(g-I·5) 
)SU(21 

POn = ~ - 2mEn . 

-Coulomb bound states in momentum space. 

.7, ( ;t\ - I f dn ~ (if"IN.I, (;II 
'f'nlrn PI - (2pli)3/2 e 'f'nlm ' I 

= {4P6~2/(P~n + p2nYnlm (5n)' (A2) 

5n = s~ I(POn )'(POn,ft) 

(P~n - p2 2PonP ) 
= P~n + p2' P~n + p2 . (A3) 

-S 3 - Harmonics. 

Ynlm (5) = Mn,C~~I,~ I (cosa)(sina)'Y'm(8,'P)' 

5 = (a,8,'P ), 

Mn' = (_ i)Il!21+ I( (n -/- l)!n )1/2. 
(n + / )!21T 

Our present definition differs from that given in Ref. 6: 
we have included the phase factor ( - i) I. The Ylm 's are the 
normalized S 2 -harmonics defined in Edmonds.24 The C ~ are 
the Gegenbauer polynomials defined in Magnus et al. 25 

APPENDIXB 

Representation matrix elements yl(g)nlm.nTm' are de­
fined for g~ I = (~~ )6/V<, i.e., for lei < Id I: 

= [(21 + 1)(21 + I) : r2 I. ( - I Y + / ~ m, ~ m, ~ I (j 
m

"
rn 2 m. 

j /) (I 
m m; 

I 
-m~ 

where 

. n - I ., n' - I 
J= -2-' J = -2-' 

is a 3j-coefficient.24 

yl(g). " .. 
jm"m1J mlm2 

with 

gl = a, g2 = b, g) = e, g4 = d, 
dm = W - m)!(j + m)!]~1/2, 
(jj = (jj (jj . 

m 1 m! m 1 m~' 

mi.mi 

(B2) 

the .,@j(x)m,m, are the homogeneous harmonic polynomials 
on H extending the usual matrix elements of the unitary irre-
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ducible representations of SU(2): 

.,@j(x)m,m, 

(BI) 

= (- l)m, ~ m, I. (xo + ix It ~ m, ~ I (xo - ix'y + m, - I 

c7m,m, I (j - m 2 - t)! (j + m l - t)! 

X 
(X3 + iX2)' (- X3 + iX2)(' + m, ~ m,1 • 

t! (t+m2-m l)! 
(B3) 

x--to + i.xl - X3 + iX2) . ER+ XSU(2):::::H. 
3 + IX2 Xo - IX I 

For gESL(2,R)rvY<, the matrix element YI(g)nlm.n'I'm' is re­
duced to a hypergeometric polynomial. 

YI(g)nlm,nTm' = OIl'Omm,(n'/n)1/2[(n> -/- l)!(n> + I)! 
/(n< -I-I)!(n< +I)]ll2d~(n,+I+11 
an< ~I~ 1{[r(b,eW' ~n< 

x/In> - n< )!}2FI(/ + I - n< ,n> 
+1+ I,n> -n< + l;be/ad), 

{
b if n> = n' 

n~ = f:f(n,n'), r(b,e) = . 
- e If n> = n 

withg- I = e ;). 
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APPENDIXC 

-Operator C(u). 
For UElHI we write 

C(U) = uoC(!) + Lu,C(e;), , 

C (!)nlm.n'l 'm' 
= DwDmm' [Dn.n, _ 1 a(n',I) + Dn.n, + 1 a(n,l)], 

with 

a(n,l) = H(n + I)(n -1- I)ln(n - 1)]112, 

C(el)nlm.n'I'm' 
= iDmm, { - Dn,n' _ 1 [D I.I , _ la(n',I')b (/',m') 
+ DI.I' + 1 a(n', - /' - I)b (I' + I,m')] 

(CI) 

+ Dn.n, + I [DI,I'_la(n' + 1, - /')b(/',m') 
+ DI,I'+ la(n' + 1,1' + I)b (/' + I,m')]), (C2) 

with 

a(n,1) = H(n + I)(n + 1- I)/n(n - 1)]I/z, 

b (I,m) = [(I + m)(/- m)l(21 + 1)(2/- 1)]1/2, 

C (ez) I 'I'm' = li(Dm.m, _ I V;;;:n'I' - Dm,m' + I V nl,n":';')' 
n m,n 2 (C3a) 

C(e3 ) I 'I'm' = - zl(Dm m' _ 1 V::'I:n'l' + Dm.m, + I V nl,;;,)· 
n m.n. (C3b) 

We have introduced here, 

with 

V;;;:n'l' = Dn,n' _ I [DI,/' _ I a(n',I')c(/',m') 
- D/,/,+ la(n', -I' - I)c(/' + 1,1 - m')] 
- Dn.n, + I [D/,/, _ I a(n' + 1, - /')c(/',m') 
-D/./'+Ia(n' + 1,1' + l)c(/' + I,l-m'))' 

c(/,m) = [(I + m)(1 + m - 1)/(21 + 1)(2/- 1)]1/2. 

-Operator C '(u). 
We have the relation 

(C3c) 

C'(u)n/m,n'/'m' = 2n'Dn,n' -I C(U)nlm,n'I'm" (C4) 

-Operators .!/ 0" 

(oY'Otlnlm,n'I'm' = - iDnn,Dmm, [DI,/'_lb(/',m')d(n',I') 
+ D/. I, + I b (I' + l,m')d (n',I' + 1)], (C5) 

where d (n,l ) = [(n + I)(n - I)] 1/2. 

(.!/ 02)n/m.n'/',m' 
= - ~iDnn' (Dm,m' _ 1 A ;;;:n'l' - Dm,m' + I A nl,n":';')' (C6a) 

(.!/ m)nlm,n'/'m' = !Dnn, (Dm,m' - I A ;;;:n'l' + Dm,m' + 1 A nl,n~',)· 
(C6b) 

We have introduced here, 

A ;;;:"'1' = - DI,I' _ 1 c(/',m')d (n',I') 
+ D/,/, + I C(/' + 1,1 - m')d(n',/' + 1). (C6c) 
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-Operators .!/ ij' 

(,Y 23)nlm,n'/'m' = im'Dnn,DII,Dmm" (C7) 

(oY 3tlnlm,n'/'m' 
= VDnn,D II , {Dm,m' _ 1 [(I' + m')(/' - m' + 1)]1/2 

+ Dm,m' + 1 [I' + m' + 1)(/' - m')]1/2}, (C8) 

(.!/ dnlm,n'/'m' 
- !Dnn,DW {Dm,m' _ 1 [(I' + m')(/' - m' + 1)]1/2 

- Dm,m' + I [(I' + m' + 1)(/' - m')]1/2}. (C9) 
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A method of generalizing a class of invariants for a time-dependent linear oscillator is developed 
for the motion of a mass point in one dimension with a general time-dependent nonlinear 
potential. Formulas are derived for the allowable time-dependent potentials and for the 
corresponding invariants. The method by which these conclusions are reached is interesting 
theoretically and is explained in detail. 

PACS numbers: 46.10. + z 

I. INTRODUCTION 

The question of the existence of invariants (constants of 
the motion or first integrals) is one of central importance in 
the study of any dynamical system, be it classical or quan­
tum. If a sufficient number of invariants be known, the mo­
tion may be describable without actually integrating the 
equations of motion. For many systems the Hamiltonian 
provides a first integral; but there are systems of practical 
importance for which the Hamiltonian is time-dependent 
and, therefore, is not an invariant. Such a Hamiltonian oc­
curs in the description of the motion of a charged particle in a 
time-dependent electromagnetic field. I 

Various methods have been used to obtain approximate 
solutions for such time-dependent problems. The usual 
methods are the adiabatic approximation, the sudden ap­
proximation and time-dependent perturbation techniques. 
A simple time-dependent problem of interest has the Hamil­
tonian 

(Ll) 
An adiabatic invariant for (1.1) was given at the first Solvay 
Congress in 1911 when (1.1) was used as an approximate 
Hamiltonian for the slowly lengthening pendulum. 2 An ex­
act invariant was used by Courant and Snyder in discussing 
particle accelerators. I That invariant was obtained indepen­
dently by Lewis3 by applying Kruskal's asymptotic method4 

to (1.1) in closed form. By a systematic application of Krus­
kal's method, Sarlet5 generalized the work of Lewis by elabo­
rating classes of Hamiltonians which are susceptible to a 
particular closed-form treatment. Leach6 showed that time­
dependent linear canonical transformations could be applied 
fruitfully to (Ll) and, indeed, to the whole class of time­
dependent quadratic Hamiltonians. Recently, the formal de­
velopment of nonlinear time-dependent canonical transfor­
mations in series form has been undertaken,7 but it appears 
that they will not be of practical use.!! Two other methods, 
the method of the Lie theory of extended groups and 
Noether's theorem, provide an indirect approach via the de­
termination of the generators of symmetry transformations. 
To each generator there corresponds a constant of the mo­
tion. These methods have been applied to one-dimensional 

linear systems,9 to n-dimensional linear systems lO and to 
some nonlinear systems. II The systematic development of 
the study of Ermakov systemsl2

•
13 is also providing useful 

results. 
It appears that the series method and Kruskal's method 

may have reached the limits of their ability to provide exact 
solutions for time-dependent problems. The Lie and 
Noether approaches have been criticized on the grounds that 
they are indirect methods and involve considerable calcula­
tion.14 Although Ermakov systems, which are coupled sec­
ond-order equations, provide a direct method, it is necessary 
to guess what is often called the auxiliary equation. IS Be­
cause there are important practical problems for which exact 
solutions would be desirable, it is appropriate to seek a new 
method. In this article we return to the starting point of the 
discussion of canonical transformations. In particular, we 
consider the Hamiltonian for the motion of a mass point in 
an arbitrary, time-dependent, one-dimensional potential 
and examine canonical transformations which are a general­
ization of that found by Lewis3 for the quadratic Hamilton­
ian (1.1). Our basic result is that this generalization extends 
considerably the class of Hamiltonians for which an exact 
invariant can be found. The Ermakov systems treated by 
Ray and Reid 12 are included in the class. Apart from any 
practical value of our result, the method of obtaining it is of 
interest for the theory of canonical transformations. It may 
also be possible to find invariants for an even wider class of 
Hamiltonians by generalizing the method. Our result has 
been used in plasma physics to derive a class of exact, nonlin­
ear, time-dependent solutions of the Vlasov-Poisson 
equations. 16 

We consider the problem of transforming the Hamil­
tonian 

H = !p2 + V( q,t) 

to a new Hamiltonian 

K=K(P,p), 

by means of a canonical transformation of the form 

Q = Q( q,p,p,p), 

P= P( q,p,p,p), 

(1.2) 

(1.3) 

(1.4) 
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wherep = p(t) is a function oft which is to be determined. A 
dot over a symbol denotes differentiation with respect to t. 
The functions Q and P are not to depend on t except implicit­
ly through dependence onp andp. Equations (1.3) and (1.4) 
are of the form found by Lewis3 for the case in which V ( q,t ) is 
quadraticinq: V( q,t) = (l/2)fJ 2(t )q2. In thatcase,p(t )isany 
particular solution of a certain differential equation and each 
such p(t ) gives a specific function P which is an invariant. 

It might seen that the choice (1.2) is unnecessarily re­
strictive in that, for example, it excludes the so-called Kanai 
Hamiltonian 17 for the damped harmonic oscillator. Consid­
er, however, the class of Hamiltonians represented by 

H( q,p, t) = !I(t )p2 + g( q,t), (1.5) 

which includes the Kanai Hamiltonian. Hamilton's equa­
tions are 

dq 
- =/(t)p, 
dt 

dp 
-= 
dt 

_ Jg(q,t) 
Jq 

The change of time variable from t to a variable 1', 

l' = L I(t ')dt I, 

renders (1.6) as 

!!1.. = p, 
d1' 

dp 

d1' 
where 

JV(q,t) 

Jq 

V( q, t) = g( q, t)1 I(t). 

The system (1.8) is of the form (1.2). 

( 1.6) 

( 1.7) 

(1.8) 

(1.9) 

I t turns out that a crucial feature of our analysis is solv­
ing a partial differential equation which can be obtained by 
requiring that the time rate of change of Q be consistent with 
H, K, and the transformation (1.4). From (1.3) and (1.4) we 
have 

dQ JK 
-=-
dt JP 

and (1.10) 

dQ . JQ . JQ + . JQ +" JQ - =q- +p- p- p-. 
dt Jq Jp Jp Jp 

requiring the equality of these two expressions for dQ I dt and 
using Hamilton's equations for 4 and p, we have 

JQ JV JQ . JQ .. JQ JK 
p- - - - +p- +p-=-. 

Jq Jq Jp Jp Jp JP 
(1.11) 

The solution of our problem is intimately connected with the 
integration of the linear first-order partial differential equa­
tion (1.11). 

In Sec. II, we discuss canonical transformations for 
which the generating function is only a function of the old 
coordinate, the old momentum and time and in which the 
new canonical variables are given from the outset as func-
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tions of the old canonical variables and time. Results of the 
discussion are applied in Sec. III to transformations whose 
explicit time dependence is of the form (1.4). General condi­
tions, which are necessary in order that such transforma­
tions be canonical, are derived and satisfied. In Sec. IV, we 
examine the determination of Q (q, p, p, p) and P (q, p, p, p) in 
more detail and find the conditions which govern the class of 
allowable potentials. Although the class of allowable poten­
tials does not consist of all functions of the independent var­
iables q and t, it is described by an arbitrary function of a 
single argument and includes time-dependent potentials 
which can be arbitrarily nonlinear in q. In Sec. V we obtain 
formulas for Q (q, p, p, p) and P (q, p, p, p) and in Sec. VI we 
discuss our results with some illustrations. 

II. CANONICAL TRANSFORMATIONS WITH 
GENERATING FUNCTIONS F(q, p, t) 

A canonical transformation between two sets of canoni­
cal variables is usually discussed IH in terms of a generating 
function which is a function of a mixture of the old and new 
variables. This is not always satisfactory. For example, when 
it is desired to obtain one set of variables as explicit functions 
of the other set, there can be difficulty in inverting the func­
tions. 19 Here we discuss the transformation in terms of a 
generating function which is a function only of the original 
variables.20 

Consider a canonical transformation 

Q = Q (q,p, t), P= P(q,p, t). (2.1) 

In order that the transformation be canonical, the Poisson 
bracket between Q and P must be unity 

(Q,P] = JQ JP _ JQ JP = 1. (2.2) 
q.P Jq Jp Jp Jq 

The Lagrangian of the system expressed in terms of (q, p, t) 
can differ from the Lagrangian expressed in termsof(Q, P, t) 
by at most a total time derivative calculated along a phase 
trajectory.21 Therefore, 

dq dQ dF 
p- -H=P- -K+-, 

dt dt dt 
(2.3) 

where K is the transformed Hamiltonian and F (q, p, t) is the 

p 
C I 

2 

q 

Fig. 1. Paths C ; and C i in the (q. pi plane which define the paths C, and C2 

in the (Q. PI plane. C, and C2 are the images of C; and C i. respectively. 
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generating function of the transformation. Notice that Q, P, 
and F are functions only of the old variables and time. By 
writing this equation explicitly in terms of(q, p, t ) and setting 
to zero the coefficients of dqldt, dpldt and the part not in­
volving either, we obtain the conditions which must be satis­
fied in order that Hamilton's principle give the correct equa­
tions of motion in terms of the new canonical variables: 

aQ aF 
p-P---=O, 

aq aq 
(2.4) 

paQ + aF =0, 
ap ap 

(2.5) 

aQ aF 
H+P- -K+ - =0. at at (2.6) 

Provided Q and F are sufficiently well-behaved to permit the 
interchange of the order of differentiation (an assumption 
which is maintained for all functions in this work). the ca­
nonical requirement (2.2) follows directly from 
(ala q)(2.5) + (ala p)(2.4). 

Using (2.4) and (2.5) we can obtain an expression for 
F (q, p, t) in terms of Q and P. From (2.4), 

(q 8Q 
F(q,p,t)=p(q-qo)- Ja P-, dq'+tft(p,t), (2.7) 

q" 8q 
wheretPt(p, t ) is an arbitrary function ofp and t, andq = qo(t) 
is an arbitrary function of t. Substituting (2.7) into (2.5) and 
making use of the Poisson bracket requirement on Q and P, 
we see that tPt(P, t) satisfies 

atPt = _ P aQ I . (2.8) 
ap 8p q~q" 

We integrate (2.8) and substitute the result into (2.7) to obtain 

F{q,p, t) 

f
q 

aQ , fP aQI ' 
= p( q - qo) - 10 P -, dq - L P -, d p , 

q" aq p" 8p q = q" 

(2.9) 

in which Po = Po{t) is an arbitrary function of t. Alternative­
ly, we could integrate (2.5) first, and substitute the result into 
(2.4). In this way we find the following different, but equally 
valid, expression for the generating function, 

i
q 

aQ I F (q, p, t) = Pol q - qo) - P -, dq' 
q" 8q p=p" 

_ (P P a~ dp', 
Jpo ap 

(2.10) 

The equivalence of these two expressions for F(q, p, t) can be 
verified by manipUlating (2.9) to obtain (2.10), or vice versa. 
The basic reason why the two expressions for F{q,p, t) given 
by (2.9) and (2.10) are equivalent is that the area in the phase 
plane bounded by a closed curve is invariant under a canoni­
cal transformation. This can be seen as follows. Equations 
(2.9) and (2.10) may be written as 

F( q,p, t) =p( q - qo) + L, PdQ (2.11) 

and 
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F( q,p, t) =Po( q - qo) - r PdQ, 
Jc, 

(2.12) 

where the integrals are line integrals along paths C2 and C 1 in 
the (Q, P) plane, and where Ct and C2 are the images in the 
(Q, P) plane ofthe paths C; and C 2 in the ( q,p) plane which 
are shown in Fig. 1. Subtracting (2.12) from (2.11), we have 

(p-Po)(q-qo)= -l,+c,PdQ. (2.13) 

In order to show that this equation is an identity, we trans­
form the right-hand side. Let iI and p be unit vectors in the 
directions of increasing q and p, respectively. Define z by 
z = iI X P and a gradient operator by V = iI(a I aq) + pial ap). 
Using Stokes' theorem, the line integral in (2.13) can be 
transformed to a surface integral 

f PdQ = r dl.(qp 8Q + pP 8Q ) 
Jc.+c, Jc;+c; 8q ap 

= ( dl·PVQ 
Je; + c; 

= L. dqdp[Vx(PVQ)).z 

= ldqdP[VP xVQ )).z 

= ( dqdP( ap aQ _ 8P aQ ) 
JR' aq ap ap aq 

= - f dqdp = - (p - Po)( q - qo), (2.14) 
JR' 

where d I is a differential line element along the path 
C; + C 2' Thus, (2.13) is an identity based on the area-pres­
ervation property of canonical transformations. 

III. APPLICATION TO THE TRANSFORMATION 
Q = Q(q, p, p, p), P = P(q, p, p, p) 

We now consider the particular problem which is of 
interest to us. We take the old Hamiltonian to be 

H = !p2 + V( q,t), (3.1) 

with V ( q,t ) arbitrary, and we consider canonicaItransforma­
tions of the form Q = Q(q,p,p,p), P = P(q,p,p.p) which 
produce a transformed Hamiltonian 

K=K(P,p). (3.2) 

The explicit time dependence of Q, P, and K is given in terms 
of the as yet unknown function p(t) and its first derivative 
pit ). 

Equations (2.4) and (2.5) have been satisfied by solving 
forF(q,p, t). The remaining equation to be solved is (2.6). We 
can postpone dealing with the term aF lat in (2.6) by using 
(2.4)-(2.6) to derive two conditions which do not involve F. 
One condition is obtained by differentiating (2.6) with re­
spect to q and using the time derivative of (2.4) to eliminate 
a 2 F I aqat; the other is obtained by combining the derivative 
of(2.6) with respect to p with the time derivative of(2.5). The 
two conditions are 
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aK ap 
ap aq 

= av +p[ap aQ _ ap aQ ] 
aq aq ap ap aq 

+p[ap aQ _ ap aQ ], 
aq ap ap aq 

(3.3) 

aK ap 
ap ap 

= p + p [ ap aQ _ ap aQ ] 
ap ap ap ap 

+ p[ ap aQ _ ap aQ ]. 
ap ap ap ap 

(3.4) 

We do not consider the casep(t ) equal to a linear function of t; 
that would be equivalent to considering the most general 
time-dependent canonical transformation. Furthermore, in 
the domain of t over which the equations of motion are to be 
solved, we assume thatp cannot be expressed as a function of 
p, and that p and p cannot be inverted to give t as a function 
ofp andp. All quantities in (3.4) exceptp manifestly involve t 
only through p and p. Therefore, either the coefficient of p 
must vanish, or p must be expressible completely in terms of 
p and p, or both. If p were expressed completely in terms of p 
andp, then (3.3) would require that the time dependence of 
av /aq be expressed completely in terms ofp andp. This 
possibility will be treated in a subsequent publication. In the 
present paper, we consider that at least part of the time de­
pendenceofaV /aq is not expressed in terms ofp andp, butis 
given explicitly in terms of t. Furthermore, we shall assume 
that the time dependence of av /aq does not involvep. Be­
cause explicit dependence of a v / aq on t is allowed, the coef­
ficient of pin (3.4) must vanish, 

ap aQ _ ap aQ = O. (3.5) 
ap ap ap ap 

In terms of the gradient operator V in (p, p) space, (3.5) is 

(VP)X(VQ)=O. (3.6) 
The general solution of (3.6) is 

p=r(Q,q,p), (3.7) 

where r is an arbitrary differentiable function. 
In (3.3), the first and third terms involve t only through 

q, p, p and p. For this to be true, we must have 

av ,,[ ap aQ _ ap aQ] =/( .) (38) aq +p aq ap ap aq q,p,p,p,. 
where/is arbitrary. Substituting for P from (3.7) into (3.8), 
we obtain 

/ _ av "ar aQ. - a,; +Pa,; ap' (3.9) 

that is, p satisfies the second order differential equation 

p = (/ _ av) ,,(ar a~). (3.10) 
aq 1\ aq ap 

Clearly, the right-hand side of(3.1O) must be independent of 
q and p. This is a condition off, r, and Q, the implications of 
which we now develop. 
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Substituting (3.7) into (3.3) and (3.4), we have 

aK ( ar aQ + ar) = / + p( ar aQ _ ar aQ) 
ap aQ aq aq aq a pap aq 

(3.11 ) 

and 

aK ar aQ . ar aQ ---=p-p--. 
ap aQ ap ap ap 

(3.12) 

Substituting (3.7) into the Poisson bracket requirement for 
the canonical variables Q and P, we obtain 

aQ ar = _ 1. 
ap aq 

Using (3.13) in (3.12) we have 

aK ar ar. ar -- = -p- -p-. 
ap aQ aq ap 

(3.13) 

(3.14) 

Since the left-hand side of(3.14) is manifestly a function of Q, 
q, andp only, the right-hand side must also be a function of 
Q, q, andp only. Therefore, the (p, p) dependence of the 
right-hand side is only the result of the dependence ofQonp 
and p. This is equivalent to 

(VQ)X{V(p ~~ +p ~:)} =0, 

where again V is the gradient operator in (p,p) space. This 
simplifies to 

aQ ar _ aQ ar = o. 
ap aq ap ap 

(3.15) 

Equations (3.14) and (3.15) are a pair of equations linear in 
ar /aq and ar /a p whose solution is 

ar = _ [aK aQ /(p aQ +p a~)] ar ,(3.16) 
aq ap apt \: ap ap aQ 
ar = _ [aK aQ_ I( aQ + . aQ)] ar .(3.17) 
ap ap apl \.p ap p ap aQ 

Combining (3.13) with (3.16) and (3.17) we have 

ar = _ l/aQ , (3.18) 
aq ap 

ar =( aQ .aQ) /r aK (aQ )2] (3.19) 
aQ p ap + Pap /l ap a p , 

ar = _ aQ Il( aQ )2. (3.20) 
ap apt I ap 

The left-hand sides of(3.18)-(3.20) are functions ofQ, q, 
andp only. Hence their right-hand sides depend onp andp 
only through dependence on Q. Applying this to (3.18) yields 

aQ a2Q aQ a2Q 
ap ap2 = ap apap' 

which is equivalent to 

.i.. ( aQ /aQ ) = _ .i.. (aQ ar) = O. (3.21) 
a pap a p ap a p aq 

From the second relation in (3.21) it follows that the denomi­
nator of(3.1O) is independent ofp and hence/is independent 
ofp. Requiring that the right-hand side of(3.20) be a function 
only ofQ, q, andp and using (3.21), we obtain 
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~(a~ laQ ) = _ ~(a~ ar) =0. (3.22) 
ap ap,/ ap ap ap aq 

Thus the denominator of (3.10) is also independent of p. Ma­
nipulation of (3.19) does not produce any additional infor­
mation; the requirement that the right-hand side of (3.19) be 
only a function of Q, q, andp can be combined with (3.21) 
and (3.22) to give (3.21) again. 

Equations (3.21) and (3.22) are equivalent to the first­
order partial differential equation 

a~ _ h (q,p) aQ = 0, (3.23) 
ap ap 

where h is an arbitrary function. The general solution is 

Q( q,p,p,p) = R (S, q,p), 

where S is defined by 

(3.24) 

S = P + h (q, pjp. (3.25) 

By using (3.24), we can rewrite (3.18)-(3.20) as 

ar = _ IjaR (3.26) 
aq as' 

ar = s lI(aK aR) (3.27) 
aR I ~ ap as ' 
ar jaR ap = - h (q,p) as' (3.28) 

Because r is only a function of R, q, andp, the right-hand 
sides of(3.26)-(3.28) must be expressible in terms of S, q, and 
p only. 

We now write the condition (1.11) in terms of the inde­
pendent variables (q, S, p, p) instead of (q, p, p, pl· 

pis-hpj aR ah +(s-hp) aR _ av aR 
as aq aq aq as 

. 2 aR ah . aR ( . t) aR h _ aK 
+ p as a p + P a p + g p, p, as - ap' 

(3.29) 

where we have taken p to satisfy the equation 

p = g(p,p, t), (3.30) 

in which, at present, g is an arbitrary function. We now as­
sume that h (q,p) aR laS does not vanish identically. In this 
case, because we have assumed that av laq does not involve 
p, we see immediately from (3.29)thatglP,p, t ) can be written 
as 

g(p,p, t) =go(p, t) + gl(p, t lP + g2(P, t)p2. (3.31) 

Now (3.29) is a quadratic function ofp and the coefficient of 
each power of p must vanish separately. These three condi­
tions are 

ah ah 
h - - - = g2h, (3.32) 

aq ap 

(
f:- ah + g h) aR _ h aR + aR = 0 (3.33) 
!> aq I as aq ap , 

S aR + (goh _ av) aR = aK . (3.34) 
aq aq as ap 

From (3.32) and (3.33) it is apparent that g2 and g I must be 
functions of p only; they cannot depend on t. 

169 J. Math. Phys., Vol. 23, No.1, January 1982 

IV. THE CLASS OF ADMISSIBLE POTENTIALS 

Equation (3.32) may be solved by the method of charac­
teristics. The solution is given by 

FI (qo, hoI = 0, (4.1) 

where FI is an arbitrary function of its arguments, 

qo = q + aho, ho = h I~; , (4.2) 

and a = alP) is such that 

g2(P) = - - -. d
2
a/da 

dp2 dp 
(4.3) 

It is more convenient to work in terms of alP) rather than p. 
From (3.30) and (3.31), a is seen to satisfy the second-order 
ordinary differential equation 

ii = fo(a, t) + afl(a) (4.4) 

where· denotes differentiation with respect to t and 

da 
lo(a, t) = go (p(a), t) - , Ida) = gl( pia)). (4.5) 

dp 

It is implied in (4.3) that daldp=j:.O; therefore, about any 
given value of p there exists a neighborhood in which alP) 
may be uniquely inverted to give pta). In terms of a and ho 
instead of p and h, Eqs. (3.32), (3.33), and (3.34) become 

h aho _ aho - 0 (4.6) 
o aq aa - , 

(
f:- aho +fh ) aRo _ h aRo + aRo = ° (4.7) 
!> aq I 0 as 0 aq aa ' 

f:- aRo + (I' h _ av) aRo = aK (4.8) 
!> aq \,,0 0 aq as ap , 

where 

Ro (s, q, a) = R (S, q, pia)) (4.9) 

and now h ° is taken as expressed in terms of q and a instead of 
q andp. 

In light of the characteristics of(3.32) given by setting qo 
and ho equal to constants in (4.2), we rewrite (4.7) in terms of 
the variables S, u and a where 

u = F 2( qo, ho), (4.10) 

F2 being any arbitrary function of qo and ho which is func­
tionally independent of Fp i.e., 

F2( qo, hol=j:.G (FI( qo, hoJJ· (4.11) 

In the discussion which follows it is assumed that Eqs. (4.1) 
and (4.10) are at least locally invertible so that qo and ho may 
be expressed as functions of u. The condition for this is that 

aFI aF2 _ aFI aF2 ~O. ..,... (4.12) 
aho aqo aqo aho 
Writing 

Ro(S, q, a) = Ro(S, u, a), 

(4.7) becomes 

(s aho f h ) aRo aRo = 0 
aq + I 0 as + aa ' 

(4.13) 

(4.14) 

in which it is understood that ho and ahol aq are written in 
terms of u and a from inversion of (4.1 I and (4.10) in some 
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appropriate domain of the variables. From (4.14) it is evident 
that u = const defines one family of characteristics. The 
equation for the other family of characteristics is 

ds _ f;-aho -fh (4.15) 
da ~ aq - , o' 

The solution may be written in terms of the variable v given 
by 

v = sexp{ - fda' a;;l } 
- hof dafda')exp{ - f' da" ~:o }, (4.16) 

in which ho is to be expressed as a function ofu alone. That is, 
the general solution of (4.15) is obtained by holding v con­
stant in (4.16). Hence the solution of (3.33) is 

R (5, q,p) = R,(u, v), (4.17) 

where R, is an arbitrary function of u and v, which are de­
fined by (4.10) and (4.16), respectively. Defining 

X(u, a) = exp{ - fda' ~:a } , (4.18) 

Y(u, a) = hof dafda')X(u, a'), (4.19) 

in which again ho is to be expressed as a function of u alone, 
we have 

v = sX - Y+->-s = (v + Y)IX. (4.20) 

Rewriting (4.8) in terms of R ,(u, v) and the variables u and v, 
we have 

v + Y au aR, -----
x aq au 

{ 
v+ Y ~ (I'h _ av)~} aR, = aK .(4.21) 

+ X aq + JO a aq as av ap 

From (3.27), 

aK =s!(ar aR). 
ap aR as 

Combining (3.26) and (3.28), we find 

h ar _ ar = 0 
aq ap 

h ara ara - 0 
+->- 0aq - Ja - , 
where 

ra(R, q, a) = r (R, q, pl. 

The solution is 

r(R, q,p) = r,(R" u). 

Using (4.20) and (4.26), (4.22) becomes 

aK v+ Y 
ap = ~ flu, v), 

where 

flu, v) = (ar, aRI) - I. 

aR, av 
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(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

Thus (4.21) may be rewritten as 

v+ Y X~ aR, 
X 2 aq au 

+ { v + Y (v + Y ax _ ay)x ~ 
x 2 x au au aq 

+ (lclho - av)x} aR, = v +oYf(u, v). 
aq av x-

(4.29) 

For (4.29) to be self-consistent, it must be equivalent to an 
equation expressed solely in terms of u and v; i.e., it may 
contain the function a explicitly only through a common 
multiplicative factor. Hence we may write 

and 

au 
X-=M(u,v) 

aq 
(4.30) 

v + Y (v + Y ax _ ay)x ~ (lch _ av)x 
x 2 x au au aq + 0 0 aq 

(4.31) 
v + Y 

= -o-E(u, v), x-
where M (u, v) and E (u, v) are arbitrary functions of their 
arguments. 

In terms of the definition of u in (4.10), (4.30) may be 
written as 

x {aF2 (1 + a aho) + aF2 aho } = M(u, v). (4.32) 
aqo aq aha aq 

From the definition of X (u, a) in (4.18) we find 

aX(u, a) = _X aho , (4.33) 
aa aq 

which shows that aholaq is expressible completely in terms 
of u and a. The functions aF21aqo and aF21aha can be ex­
pressed as functions of u alone because qo and ho can be 
expressed as functions of u alone. Therefore, the left-hand 
side of (4.32) is manifestly independent of v, which means 
thatM(u, v)isonlyafunctionofu:M(u, v)-+M(u). (4.32) can 
now be written as 

aF2 (x _ a ax) _ aF2 ax = M(u). (4.34) 
aqo aa aha aa 

Since the right-hand side of (4.34) depends upon u only and 
both aF2/aqo and aF2/aha can be expressed in terms of u 
alone, the coefficients of aF21aqo and aF2/aha must be func­
tions of u alone, i.e., 

ax 
X-a- =A(u), 

aa 

ax 
-=B(u), 
aa 

(4.3)) 

whereA (u) and B (u) are arbitrary functions ofu, not both of 
which are zero. Thus X (u, a) can be expressed as 

X(u, a) =A (u) + aB(u). (4.36) 

Substituting (4.36) into (4.33), we find 

ah a 
_0 = _ -In[A (u) + aB (u)l, 
aq aa 

(4.37) 

which checks with (4.18). By using (4.36) in (4.19) we can 
write Y (u, a) as 
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Y(u, a) = Aho ffl(a')da' + Bho f a:fl(a') da'. (4.38) 

The functions A (u) andB (u) can be expressed in terms of 
the function FI (qo, ho) that was introduced in (4.1). By differ­
entiating (4.1) with respect to q and using (4.2) we obtain 

aho = _ 1 A aFI /aFI + a). (4.39) 
aq y ~ aho aqo 

By comparing this with (4.37) we then find 

A (u) = C (u) aFI , (4.40) 
aho 
aF B(u) = Cluj _I, (4.41) 
aqo 

where C is an arbitrary nonzero function. These equations 
express the derivatives of FI( qo, ho) in terms of 
u = F2( qo' ho) through the functions A andB. Theconsisten­
cy condition for the existence of a solution of(4.40) and (4.41) 
is 

[
A(U)],aF2 _ [B(U)],aF2 =0. 
Cluj aqo Cluj aho 

(4.42) 

By using (4.35) we can write (4.34) as 

A (u) aF2 _ B (u) aF2 = M(u). 
aqo aho 

(4.43) 

Before continuing with the analysis of(4.42) and (4.43), 
we begin to examine condition (4.31). It will tum out that 
information derived from examining (4.31) will be important 
in our treatment of (4.42) and (4.43). We write (4.31) in the 
form 

[ 
Y ax ay] 1 ax - - - - M(u)+u- -M(u) 
xau au xau 

x3 
[ av] + -- foho- - =E(u,u). 

u+ Y aq 
(4.44) 

Each coefficient of an expansion of the left-hand side in pow­
ers ofu must be independent of a and t. This implies that the 
quantities Y, ZI' and Z2 must be independent of a, where 

ZI = J... ax , (4.45) 
X au 

Z 
_ Y ax ay 

2 - X a;; - a;; (4.46) 

For ZI to be independent of a, we must have 

0= aZ I = A (u)B 'luI - B (u)A '(u) 
aa [A (u) + aB (ulF ' 

(4.47) 

the general solution of which is 

CIA (u) + c2B (u) = 0, (4.48) 

where C I and C2 are constants, not both of which are zero. 
Using (4.48) in (4.38) we find 

{

Ahofda'fda')[I- :~a']' ifc2 #0 
Y(u, a) = a 

Bho fda' fl(a')[ a' - :~], if CI #0. 

(4.49) 
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From this, ay faa = ° implies 

fl(a) =0, 

which implies 

Y(u, a) = 0. 

(4.50) 

(4.51) 

Because Y(u, a) = 0, we also have Z2 = 0, which means that 
Z2 is independent of a as required. 

The linear dependence of A (u) and B (u) restricts the 
form of FI(qo, hoI. Combining (4.48) with (4.40) and (4.41) we 
find 

C
2 

aFI +cI aFI =0, 
aqo aho 

the general solution of which is 

Ftfqo, hoI = F3(17), 

where 

(4.52) 

(4.53) 

17 = clqo - c2ho (4.54) 

and F3 is an arbitrary function. The function ho( q, a) is de­
fined by (4.1), which now reduces to 

F3(17) = 0. (4.55) 

The function F3 cannot be identically zero; if it were, (4.55) 
would not define hot q, a). Therefore, the solution of (4.55) 
must be 

17 = Co = const, 

which implies 

hot qo, a) = (clq - CO)/(c2 - cia). 

(4.56) 

(4.57) 

Since aholaq depends only on a, we can calculate X(u, a) 
directly from (4.18), 

(4.58) 

where we have made a particular choice of the irrelevant 
arbitrary constant in the definition of X. Comparing with 
(4.36) we find 

A (u) = c2' 

B(u)= -c i • 

(4.59) 

(4.60) 

We now make a particular choice of F2( qo, hoI which is 
functionally independent of 17, and therefore of FI ( qo, hoI, as 
required, 

u = F2( qo, hoI = C2qo + clho. (4.61) 

We then have the following relations for u, qo and ho: 

u = [Cd + d)q - CO(CI + c2a)]/(c2 - cia), (4.62) 

qo = (c2u + cocl)/Cd + C~), 
ho = (CIU - CoC2)/CC~ + c~). 

(4.63) 

(4.64) 

Substitution into (4.42) shows that C (u) must be a constant, 
which we choose to be minus one, 

C(u)= -1. 

Consistent with (4.40), (4.41), and (4.53), we take 

F I ( qo, ho) = F3(17) = 17 - Co· 

Finally, from (4.43) we find 

M(u) = c~ + c~. 
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NoticethatX (u, a),A (u),B (u), C (u)andM (u)areallconstant 
functions of u. 

We now conclude our examination of (4.44) to deter­
mine the class of potentials which can be treated by the pro­
cedure developed in this paper. Equation (4.44) can now be 
written as 

(4.68) 

Because the left-hand side of this equation is independent of 
v, it is appropriate to introduce an arbitrary function of u, 
W(u), by 

E(u, v)= 
W/(u) 

(4.69) 
v 

Then the admissible functions av /aq are given by 

av = I' ( )( c,u - COC2 ) W/(u). 
Jo a, t + 1 ' 

aq d + c~ (c l - cia)' 
(4.70) 

and the admissible potentials are given by 

Io(a, t) [1 2 ] V(q,t) = -c,q -coq 
(c2 - cia) 2 

W(u) 
+ 2 2 2 ' (c, + c2 )(c2 - cia) 

(4.71) 

where we have chosen the irrelevant additive function of tin 
such a way as to simplify the expression. Reiterating, we 
point out that Co, c,' and C2 are arbitrary constants such that 
c, and c2 are not both zero, fo(a, t) and W(u) are arbitrary 
functions, and a(t ) is any function satisfying 

ii = fora, t ). (4.72) 

The expression for the admissible potentials may be viewed 
in two ways. The first is constructive; i.e., givenfo(a, t), (4.72) 
may be solved for a and the potentials compatible with that 
choice offo and a deduced. The second is eliminative; i.e., 
one can ask whether a given potential is in the class of admis­
sible potentials. 

V. THE TRANSFORMED HAMILTONIAN AND THE 
INVARIANT 

We may now proceed to obtain the transformed Hamil­
tonian, the canonical transformation, and the invariant asso­
ciated with the admissible potentials. From the results of the 
previous section, (3.34) can be written as 

(c~ +c;)v aR, _ W/(u) aR, =vf(u, v). (5.1) 
au av 

Since c, and c2 were introduced as the coefficients in a rela­
tion expressing linear dependence, we may, and do, normal­
ize them according to 

c~ + c~ = 1. (5.2) 

Then (5.1) takes the simple form 

v aR, _ W'(u) aR, = vf(u, v). 
au av 

(5.3) 

The right-hand side of(5.3) is related to the transformed 
Hamiltonian by 
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aK vf(u, v) 

ap (cl - c,a)2 
(5.4) 

We now choose 

(5.5) 

so that 

vf(u, v) = 1. (5.6) 

There is no loss of generality with this choice because we 
shall be able to find the canonical transformation corre­
sponding to it. The equation for R ,(u, v) is now 

v aR, _ W/(u) aR, = I, (5.7) 
au av 

whose solution is 

R u v = - + T [a u, v), v JU du' 
,( ,) Ivl p[a(u, v) - W(u')jl'12 () 

(5.8) 

where 

a(u, v) = !v2 + W(u) (5.9) 

and T is an arbitrary function. 
The invariant may be calculated using (3.26) and (3.27) 

which, written in terms of r,(R" u) and R ,(u, v), are 

ar, = _ I JaR, , (5.10) 
au / ':'av 

ar, =v/aR , , (5.11) 
aR, av 

where v and aR .;av are to be expressed in terms of u and R, 
by solving (5.8) for v = v(u, R,) in terms of u and R ,. Let 

J(u, v) = r,[R,(u, v),uj. (5.12) 

From (5.1I), 

aJ ar, aR, - = -- -- =v, 
av aR, av 

(5.13) 

which implies 

J(u, v) = !v2 + Stu). (5.14) 

Combining (5.10) and (5.11) we find 

v ar, + ar, =0, 
au aR, 

(5.15) 

which can be solved as follows. We first derive expressions 
for the derivatives of v(u, R,) by considering the identity 

R, = R ,[u, v(u, R I)]' (5.16) 

Differentiating the identity with respect to R, gives 

~ = liaR, . (5.17) 
aR, av 

Differentiating the identity with respect to u and using (5.7) 
to eliminate aR'; au gives 

v~ = - liaR, - W'(u). (5.18) 
au av 

Substituting (5.14) into (5.15), considering v = v(u, R,), then 
gives 

- vW/(u) + vS/(u) = 0, (5.19) 
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which we can solve by taking 

S(u)= W(u). 

Therefore, we have 

I 2 
J(u, v) = rl(R I , u) = - v + W(u). 

2 

(5.20) 

(5.21) 

We now summarize our results for the canonical trans­
formation in terms of the variables q, p, a, and a. A 
Hamiltonian 

H = !p2 + fora, t) [!clq2 _ coq] + W(u) 2' (5.22) 
(c2 - cIa) (c2 - cIa) 

where 

(5.23) 
c2 - cIa 

co' c l , and C2 are arbitrary constants such that ci + c~ = 1, 
fora, t) and W(u) are arbitrary functions, anda(t) is any func­
tion satisfying 

ii = fora, t) , (5.24) 

is transformed to a new Hamiltonian 

K (P, a) = P /(c2 - claf (5.25) 

by the canonical transformation 

Q( q,p, a, a) = ~ r p[a(u, v) ~'W(U')]11/2 
+ T [a(u, v)], (5.26) 

P( q,p, a,a) = H(c2 - cla)p + a(clq - coW + W(u), (5.27) 

where 

a(u, v) = !v2 + W(u), 

V = (c 2 - cla)p + a(clq - co), 

(5.28) 

(5.29) 

and Tis an arbitrary function. The equations of motion for Q 
and Pare 

dQ 

dt 

dP 

dt 

JK 
JP (c2 - c l a)2 ' 

_ JK =0. 
JQ 

(5.30) 

(5.31 ) 

Therefore, P ( q, p, a, a) is an exact, in general explicitly time­
dependent, invariant of the motion induced by H. 

VI. DISCUSSION 

In the preceding sections we have investigated Hamilto­
nians of the type 

H=!p2+ V(q,t) (6.1) 

and determined a class for which we could find an exact 
invariant. To determine this class we postulated the exis­
tence of a canonical transformation 

Q=Q(q,p,p,p), P=P(q,p,p,p), (6.2) 

in which time dependence occurs only through the function 
p(t) and its derivative. It was also assumed that p was not 
identicaly zero. The transformed Hamiltonian was to take 
the form 

K=K(P,p), (6.3) 
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so that the invariant would be the transformed momentum, 
P. Apart from the postulates above, we worked within the 
framework of the theory of canonical transformations in Ha­
miltonian mechanics. Although the particular approach 
taken in the use of canonical transformations was unconven­
tional in that the generating function was a function of the 
original canonical variables and time only, the possibility of 
such an approach is inherent in at least one published 
work.20 However, in that work there is no suggestion of ap­
plying such a generating function in a practical context. 

Toward the end of our calculations it became apparent 
that there was no loss of generality in taking the transformed 
Hamiltonian as 

(6.4) 

where art ) is a function of t only and c I and c2 are constants. 
Thus the transformation is essentially one to action-angle 
variables. Indeed the transformation may be put exactly into 
the context of a transformation to action-angle variables if a 
generalized canonical transformation (cf. Ref. 22) is used. If 
in addition to (6.2) we introduce a new time variable 

7 = 7(t) 

= r [c2 - cla(t ')]-2dt I, 

so that now 

K=K(P)=P, 

then the invariant P is the action. 

(6.5) 

(6.6) 

At this stage it is instructive to see how the results ob­
tained here apply to some simple problems. For the first 
problem we consider that well-known paradigm, the time­
dependent linear oscillator with Hamiltonian 

H = !p2 + ¥U 2(t )q2. (6.7) 

Comparing this with (5.22) it is obvious that W(u) is at most 
quadratic in u and we write it as 

W(u) = !au 2 +(3u + y, (6.8) 

a, (3, and y being constants. Equating coefficients of like 
powers of q in (6.7) and (5.22) [with Was given in (6.8)], it is 
apparent that (3, y, and Co are zero. This leaves 

- cJo(a, t) = go(P, t) = - u/(t)p + a/p\ (6.9) 

where we have related p and a by 

(6.10) 

Thus p(t) is a solution of the second-order equation 

p + UJ2(t)p = a/pl. (6.11) 

The constanta is open to choice. In view of the form of(6.11) 
we set it as one or zero to obtain 

p + UJ 2(t)p = lip' (6.12) 

or 

p + UJ2(t )p = o. (6.13) 

The solutions to these two equations are related to one an­
other. The solutions of (6.12) can be expressed in terms of 
two linearly independent solutions of (6.13) [see the second 
work listed under Ref. 3]; however, for our purposes it is 
more convenient to takep(t) as a particular solution of(6.12). 
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Then (6.13) has the solution set {p cos T, p sin TJ where T is 
given by (6.5). We may usep,p cos Tandp sin T to obtain 
three first integrals from (5.27). They are 

II =HlPp_pq)2+q2/p2], (6.14) 

12 = Hpp cos T - rp cos T - p-I sin T)ql2, (6.15) 

13 = Hpp sin T - rp sin T + p-I cos T)q f. (6.16) 

The first of these is the invariant as given directly by (5.27) 
with a = 1 and can be found in Ref. 3. The second and third 
are obtained by substitutingp cos T andp sin T for pin (5.27) 
with a = O. It will be observed that 

II =12 +13' (6.17) 

i.e., these three integrals are not linearly independent. The 
existence of three linearly independent quadratic first inte­
grals is known from the work of Lutsky,9 which uses 
Noether's theorem, and of Leach (see the first work listed 
under Ref. 9), which uses the method of the Lie theory of 
extended groups. We may reconstruct their result as follows. 
From the expressions for 12 and 13 it is apparent that 

14 = (q/p) cos T - (p P - pq) sin T (6.18) 

and 

Is = (q/ p) sin T + (p P - pq) cos T 

are also first integrals of the motion. Since 

[14' Is] = 1, 

(6.19) 

(6.20) 

14 and Is are functionally independent and may be taken as 
the two functionally independent integrals of the system. It 
is evident that the following are three linearly independent 
quadratic first integrals: 

J I =n +I; =/1' 

J2 = 1415 = [I" I2l = [13, II], 

J3 =n -I; = [J I,J2l =13 -12, 

(6.21) 

(6.22) 

(6.23) 

The integrals J" J2 , and J3 are in the form given in the work 
cited. 

This type of result is usual for linear systems, but not for 
nonlinear systems. It is interesting to observe that the three 
linearly independent quadratic first integrals given in (6.14)­
(6.16) are, as it were, on an equal footing in our treatment, 
just as they are in the Lie and Noether treatments. Anyone 
of (6.14)-(6.16) could be taken as the transformed momen­
tum and could be obtained by canonical transformation 
from the original Hamiltonian (6.7). 

As our prime motivation for this work was to find non­
linear time-dependent systems for which an exact first inte­
gral can be determined, we consider as another example the 
system with Hamiltonian 

H = 1p2 + 1q2 +:tB (t )q3. (6.24) 

This has recently been treated using the Lie method applied 
to the corresponding Newtonian equation of motion. 23 Com­
paring (6.24) with (5.22), W(u) must be a cubic polynomial, 

W(u) = ¥XU3 + Jj3u 2 + yu + 0, (6.25) 

a, {J, y and 0 being constants. Clearly, Co, Y and 0 are zero. 
Then 

(6.26) 
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B(t)=a/p5. (6.27) 

If we set {J = 0, B (t ) takes the form 

B (t) = KI cos -5 (t + EIl, (6.28) 

and, for {J = 1, 

B(t)=K2[C+(C2-1)1/2cos(2T+E2)l 512, (6.29) 

where K I' K 2' C ( > 1), E I' and E2 are constan ts. In both cases, 
for agivenB (t) oftheform (6.28)or(6.29),p(t) has been found 
and can only be used to determine one invariant. The results 
given here are in accordance with the results obtained using 
the Lie method. 

In the two examples considered above we have started 
with a given Hamiltonian with a time-dependent potential 
and determined whether it fits in with the permissible form 
given by (5.22). In the case of the time-dependent linear oscil­
lator, no restriction was placed on U)2(t). For the anharmonic 
oscillator, an invariant was found only if B (t) is of a particu­
lar form, viz., that given by (6.28) or (6.29). As we have al­
ready remarked (see the final comments in Sec. IV), the re­
sults obtained in this paper may be viewed in two ways. The 
first, as in the two examples, is to test a given potential to 
determine whether it is of the permitted form and, if so, then 
to construct the invariant. The second viewpoint is to deduce 
classes of potentials for which a first integral can be found 
from these results. This in effect reduces to a choice of the 
function a(t) and the constants co, c l , andc2 . To take a simple 
example of this, suppose 

c2 -c la(t)= -(1 +t 2
), co=O. (6.30) 

The invariant is then 

I(q,p, t) = H(l + t 2)p - 2tql2 + w( -q- )(6.31) 
1 + t 2 

and the class of Hamiltonians which admit such an invariant 
is given by 

H(q,p,t)=i p2+ ~ + 1 w(-q-). 
1 + t 2 (1 + t 2)2 1 + t 2 

(6.32) 

Given the formulas presented in this paper, it is a 
straightforward exercise to apply them to a particular prob­
lem. This in itself represents an advantage over the Lie and 
Noether methods, for both of which it is necessary to solve a 
set of partial differential equations to determine the gener­
ators of symmetry transformations for each particular prob­
lem. We have, in effect, been able to include most of the 
computation I work within the general theory. Admittedly 
we do not obtain the generators of symmetry transforma­
tions and so have no knowledge of any group-theoretic prop­
erties of the problem under consideration. However, as is 
well known, one-dimensional linear systems all exhibit SL(3, 
R ) symmetry and nonlinear one-dimensional systems pos­
sess at most only one generator of a symmetry transforma­
tion. Thus nothing has really been lost. Indeed the practice 
of searching for first integrals of the motion via symmetry 
groups, when only the former are of interest, has received 
recently some adverse criticism as being unnecessarily 
circuitous. '4 

Another method for the investigation of invariants, 
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which has been revived and developed by Ray and Reid, 12 is 
found in the study of Ermakov systems. 13 The results which 
they have obtained are contained in the results given in this 
paper. Their work is continuing,24 and it will be of some 
interest to see how it develops. 

The application of our results to the corresponding 
quantum mechanical problem is immediate. An intermedi­
ate stage in the progress from the original canonical coordi­
nates q, p to the transformed coordinates Q, P may be written 
as a time-dependent linear point transformation to coordi­
nates q', p' given by 

q' = q - CO(c l + c2a) , (6.33) 
Cz - cia 

p' = (c2 - cla)p + a(clq - co). (6.34) 

The Hamiltonian H given by (5.22) is transformed to 

Ip'2 + W(q') 
H' = 2 (6.35) 

(c2 - c l a)2 

and, under the change of time scale given by (6.5), (6.35) is 
equivalent to 

iI = !p'2 + W(q'). (6.36) 

To the extent that a wavefunction for the Schrodinger equa­
tion for (6.36) can be obtained, a wavefunction for the origi­
nal problem may be obtained in the same way as for the time­
dependent oscillator (c f. Ref. 25). 

It is appropriate to ask whether it is possible to find 
time-dependent potentials of a more general form than those 
presented here for which a first integral can also be found. To 
obtain the results given here we assumed a transformation of 
the form 

Q = Q( q,p,p,p), P = P( q,p,p,p) 

and a transformed Hamiltonian of the form 

K=K(P,p). 

(6.37) 

(6.38) 

One generalization would be to allow more time-dependent 
parameters, assuming 

Q = Q( q,P,PI>PI,P2,P2'''')' 

(6.39) 

We hope to report on this possibility in the future. 
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The. current responses of first and second order, due to an electromagnetic perturbation of a 
statl?nary but o.therwise arbitrary solution of the relativistic Vlasov-Maxwell equations, are 
~tudled .. In particular ~he symmetries leading to the (approximative, due to wave-particle 
lllterac~lOn) conservatlO~ of wave energy for an inhomogeneous plasma are considered. Thereby 
we clanfy the mathematical structure of certain previously derived formulas for the response 
operators and also make these more readily accessible for applications. 

PACS numbers: 52.35.Fp, 52.40.Fd 

I. INTRODUCTION 

In a homogeneous plasma, mathematically described 
by the Vlasov-Maxwell equations, we may calculate the lin­
ear and quadratic conductivity tensors 1.2 in the form 
(K = (w,k )), 

(Tij(K) = ifaij(K,V)dV, 

(TijdKI,K2) = ifaijdKpK2,V)dV, 

where we have the symmetries 

aij(KI,v) = aji (K2,V) for KI + K2 = 0 

and 

aijdKpK2'V) = akij (K3,KI,V) = ajki(K2,K3'V) = aikj (K2,KI'V) 

= ajidK3,K2,V) = akji (K I,K3,V) 

(1.1) 

( 1.2) 

(1.3) 

for K, + K2 + K] = O. (1.4) 

Poles of the functions aij and aijk prevent the symme­
tries (1.3), (1.4) to be exactly inherited by (T .. and (T"k Howev-'J IJ • 

er, in many cases of interest, we have relations like (1.3), (1.4) 
approximately valid for the conductivity tensors and this 
means a considerable simplification as wave energy and mo­
mentum then are approximately conserved. 

It is demonstrated in this paper how (1.1 H 1.4) may be 
generalized to the case of inhomogeneous plasmas. This will 
be achieved by means of explicit formulas. Our unperturbed 
plasma is stationary and may have two directions of homo­
geneity (for example, a homogeneous plasma in the half­
space z > 0), one direction of homogeneity (for example, a cy­
lindrical plasma) or no such directions (e.g., a tokamak plas­
ma). In order to discuss a typical symmetry result of this 
paper let us consider the last case. 

A perturbation A(r)ei"" of the electromagnetic vector 
potential (we here choose the gauge with vanishing scalar 
potential, although, in the following sections only gauge in­
variant expressions will appear) induces the linear current 
response 0 J,u [A](r)e iwt. Defining (A"A2 ) = f AT(r)·A2(r)dr 
we make a suitable space of square integrable functions into 
a Hilbert space. Corresponding to (1.1) and (1.3) we obtain 

fA,(r),oJ",[A21(r)dr = f a[w,A"Azl(r,v)drdv, (1.5) 

a[w
"

A"A21 = a[w2,A2,A,]' for WI + W2 = O. (1.6) 

Thus if we may neglect pole contributions in (1.5) 

(A I,oJ,,,[A2 J> = fa [w,AT,A 2 ] drdv 

= fa [ - w,A2,Ar] dr dv 

= (oJ", [AI ],A2 ) (1.7) 

and then oJ", is Hermitian. 
The relations (1.2) and (1.4) may be generalized in a 

similar way, now involving the second-order current re­
sponse 0 J,u,(U, ' 

f A 3(r).oJ"J,,,,) [A"A2 ](r) dr 

= f a[w"w2,A"A2,A3 l (r,v) dr dv, ( 1.8) 

a [w l ,w2,A I ,A2,A3 l = a [w a ,wtI,Au ,AtI,Ay], (1.9) 

where [a,/3,yl = [1,2,31 and WI + W2 + W3 = O. 
In order to obtain (1.6) and (1.9) we have the following 

sufficient condition on the unperturbed Vlasov operator: 

lim (( - iw + 17) + V· ~ + q(Eo(r) + v X Bo(r)). ~) - I 

v~+ ~ ~ 

lim (( - iw - 17) + V· ~ + q(Eo(r) + v X Bo(r))· ~) - , 
>,.0+ Jr ~ 

(1.10) 
It is easily demonstrated that (1.10) follows if all unper­

turbed particle orbits are periodic. This result has some in­
terest in the ft.uid limit but for kinetic applications we cer­
tainly need to treat more general cases. 

The two operators in (1.10) may be calculated in terms 
of the unperturbed orbits and we notice that the condition 
(1.10) means that such an orbit is in some sense symmetric in 
time around any of its points. The Poincare recurrence theo­
rem and the ergodic theorems of Birkhoff give some infor­
mation in this direction. 3 In this paper, however, we have no 
ambition to derive (1.10) from results of general dynamics 
since this probably, if possible, would be a most difficult task. 
Instead we consider the case when the unperturbed orbits 
belong to a most natural and mathematically interesting 
class offunctions, namely, the almost periodic functions 
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(discovered by H. Bohr4
). The almost periodic functions 

have several attractive features, for example, the definition 
of almost periodicity is physically appealing, almost period­
icity is connected with Liapunov stability,3 almost periodic 
orbits have the necessary recurrence properties and the or­
bits of nearly integrable systems being conditionally period­
ic5 are also almost periodic. By this last point it will follow 
that the symmetry result in Ref. 6 is contained in this paper. 

It is instructive to consider what the poles of 
a[ev,ApAz](r,v) in (1.5) look like [the poles in (1.8) may, of 
course, be investigated in a similar way]. The unperturbed 
orbit through (r,v) being almost periodic determines a count­
able set offrequencies ! fln(r,v)in = 1,2 ... ]' we assume this 
set is closed under subtraction (otherwise we just include the 
necessary frequencies, in spite of the corresponding Fourier 
coefficients of the unperturbed orbit are zero). We then ob­
tain the poles in (1.5) from factors (ev - fln(r,v))-I and this 
seems physically natural. 

The notation and coordinate free formalism of Refs. 7 
and 8 will be used without repeating the definitions. Thus all 
formulas will be covariant. Another advantage is that we 
may write formulas covering at the same time the three dif­
ferent cases with two, one, or zero spatial directions of ho­
mogeneity. In Sec. 2 general formulas for the first- and sec­
ond-order current responses are given and in Sec. 3 these are 
specialized to the stationary case with an unspecified dimen­
sion on the space of homogeneity . In Sec. 4 the case of almost 
periodic orbits is considered. 

2. GENERAL UNPERTURBED STATE 

From (3.1)-(3.8) in Ref. 7 and (3.14) in Ref. 8 we obtain 
formulas for the linear and bilinear four-current responses 
8J111 [<p] and 8/ (2) [<p,<p ] due to an electromagnetic perturba­
tion with four-potential <p. The unperturbed state may be a 
quite arbitrary (space-time dependent) solution of the (rela­
tivistic, muiticomponent) Vlasov-Maxwell equations in the 
presence of an external four-current. In the notations of 
Refs. 7 and 8 we obtain 

Result I: Take <PoEL () (E, V) and <P1,<P2ELO (E, V). Then 

J <Po·{jJ(1)[<PI] dP 

= 2- 'qc L xs/c)(P,u)[Dx(I).V du,<po) + ou(l)·<Po 

+ 8x(0).V E(u,<pd + ou(O),<pd dP du, 

1 <Po·8J1
2
)[<PI,<Pz]dP= rt'f3~:O 2- 'qc ixs/c)(p,U), 

",of3 #y¥rt 

[6- 'ox(0) ® ox(l) ® 8x(2):V E ® V E ® V E(U.CPO) 

+ 2 -Iox(a) ® ox(j3) ® DU(Y):, 

V E ® V E ® CPo + 2- 'ox(a) ®ox(j3 ):V E ® V E(U'<Py ) 

(2.1) 

+ 8x(a) ® ou(f3 ):V E ® <PI' ]dP duo (2.2) 

Here ox(j) and ou(j) are determined by the equations 

Doox(j) = ou(j), (2.3) 
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D08u(j) - qmo- I C - 2V E 1\ CPo·8u(j) - qmo- IC-2 

Xox(j)·V E(V E 1\ <Po'u) 
- I -2V 1\.1. =qmo c E 'l'j'u 

with the boundary conditions 

ox(j),8u(j)-o towards the past if} = 1 or 2, 

l'x( 0), out 0)-0 towards the future. 

(2.4) 

(2.5) 

(2.6) 

Remark 1: The results (2.1), (2.2) look perfectly sym­
metric with respect to perturbations of the indecies 0, 1 and 
0, 1,2, respectively. Note, however, that index 0 plays a 
particular role, this is seen from (2.5), (2.6) and <PoEL 0 (E, V) 
while <P1,<P2ELO (E, V). 

Result 2: The function DX(j) defined by (2.3)-(2.6) may 
be expressed in terms of D 0- I (the inverse ofthe unperturbed 
Vlasov-operator Do) as 

8x(j) = - qmo- Ic-Z!VsDo-I(U'<PJ) 

+ D 0- '(u·Do V sD 0- I(U·tPJ)u L (2.7) 

where D 0- I is subject to boundary conditions in accordance 
with (2.5) and (2.6). 

Proof: We introduce the notations a = qmo- IC -2 and 

ox = - aVsDo- l(tP·U), ljfi = - aDoVsDr; l(tP·U). (2.8) 

Let us in this proof assume that (2.7) and (2.3) defines ox and 
DU and prove that the relation (2.4) then is satisfied. From 
(2.8), (2.7), and (2.3) we obtain 

8x = ox + D. 0- I(u.oil)u, 

8u = 8il + Do(D 0- I(U·OU)u). 

(2.9) 

(2.10) 

It is straightforward to demonstrate by means of (2.9), 
(2.10), and Do = u·V E + a(V E 1\ cp·u)·V s that 

Do8u - aVE 1\ CPo·8u - a8x·V r;(V E 1\ CPo'u) 

= Do(ou + u·oilu) - aVE 1\ CP·8ii 

- aox,V /,(V r; 1\ CPo'u) (2.11) 

and thus the left-hand side in (2.4) has been expressed in 
terms of ox and oil. The next step is to express the right-hand 
side of (2.11) in terms of $0 and 1,6. From (2.8) we obtain 

ou = - aV s(tP·u) + a(V E + u u·V E)D 0- l(tP·U) 

- a 2V r; 1\ cpo·V sD 0- l(tP·U ) (2.12) 

and from (2.12) 

oil + u·ou u = - atP + a(V E - aV E 1\ CPo'V s)D 0- l(tP·U). 
(2.13) 

Substitution of(2.13) and (2.8) in the right-hand side of(2.11) 
yields after a substantial amount of algebra the result (2.4). 
Three identities that have been used in the derivations above 
are 

v sU = I + u ® u, Dou = aVE 1\ CPo'u, (2.14) 

DoVs =VSDO-(VE +uu·Vr;) + aVr; I\CPo'Vs' (2.15) 

Lemma I: For VEV denote by T
" 

the translation opera-
tor defined on any function ¢J from E to some vector space by 
(T"tP HP) = 1,6 (P - v). Now if T,,/c) =/0 [i.e.,/c){P - v,u) 
= /c)(P,u)] and T" V E 1\ CPo = V E 1\ CPo and if A is an operator 
(linear or nonlinear) determined only by the unperturbed 
state and defined on a space of functions I dJ i<p:E- V I, then 
T,,(A (1,6 )) = A (T"tP ). 
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Remark 2: Lemma I is somewhat trivial but it will still 
be useful to have it explicitly stated. The content of the 
lemma is perhaps most clearly seen if we represent the func­
tions cP, TvcP, A (cP ), TvA (cP ) by their graphs in E X V. 

3. STATIONARY UNPERTURBED STATE 

We now consider the situation when the unperturbed 
state has one or several directions of homogeneity with at 
least one of these directions timelike. 

An arbitrary event OEE is choosen and then to each 
even t PEE there corresponds a vector XE V such that 
P = 0 + x. Often in notation we identify x and P = 0 + x 
and write xEE, etc. 

Definition I: The vector spaces Vh and Vi are defined by 
Vh = ! all homogenity directions of the unperturbed sta-
te 1 = ! aEV I lo(P + ...ta,u) and V E A <Po(P + ...ta) are indepen­
dentoftherealparameterA 1 and Vi = V~ = !aEVla.b = 0 
for all bE Vh I. 

Lemma 2: Vh + Vi = V and each aEVhas a unique 
decomposition a = ah + ao where ahEVh and ajEVi . 

Proof Choose a Lorentz coordinate system (eo, e I' ez, e3 ) 

such that (eo, ... ,em _ I) span Vh (m = 1,2, 3,4). This is possi­
ble to do since Vh contains a timelike vector Uust elementary 
linear algebra). Then (em , ... ,e}) span Vj' The lemma follows 
since each element in V, Vh, or Vj may be expressed as a 
unique linear combination from (eo, e" ez, eJ ), (eo, ... ,em _ ,) or 
(em , ... ,e}), respectively. 

Definition 2: (a) Subscripts i or h on a vector in V is 
defined by ah + aj = a for aEVand ahEVh and ajEVj 
(Lemma 2), 

(b) V f: = Vj + V h defines Vj and V h in analogy to (a) 
above. 

(c) For KEV h+ (the plus sign stands for complexification, 
cf. Ref. 8) we define V" = iK + Vj • 

(d) For KEV h+ we define 

DK =u,VK +qmo-'e-Z(VEA<P().u)·Vs · 

Remark 3:If IrnK is timelike (1m = imaginary part of) 
then we have a natural definition, including boundary condi­
tions, for the inverse D ,,- I of D". This is easily seen by inte­
grating along unperturbed orbits using that 
D"A (x, ,u) = e - i"oxhDo (ej"ox"A (x;.u)) and assuming that 
A (xj,u) and B (Xi'U) is bounded on each particle orbit while 
solving the equation D KA = B for A. For real K, however, we 
must indicate if an infinitesimal imaginary part of K is direct­
ed towards the past or the future. The notation D :-_1 is used 
in the former and D ,,-+' in the latter case. The symmetry 
results we want to demonstrate are valid when 
D ,,-_I = D K-+I 

, this follows from explicit expressions below 
in this section. In the next section it will be investigated what 
sort of conditions on the unperturbed state is needed in order 
to imply D ,, ___ I = D K--jl • 

Definition 3: (a) P (Vj, V +) is a set of functions 
tf;: Vi-+V + such that S vla.tf;(xi)lZdxi < 00 for alI aEV. We 
sometimes denote this set of functions with P only. 

(b) Let L be a Lorentz coordinate system (eo, e" e1 , e3) 

then we define PL = PLWr,v+) by PL = l tf;EP leo·tf; = 01· 
(c) The bilinear form (,) on P is defined by 
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(tf;"tf;l) = S v,tf;f·tf;z dx j. 
Remark 4: The bilinear form (,) is positive definite on 

P L but not on P. We consider P L to be a Hilbert space with 
scalar product (,). When P L instead of P is considered this 
only means that we have choosen a particular electromag­
netic gauge, namely, the radiation gauge in the frame L. 

Definition 4: (a) For K, K" K2EV h+ with imaginary parts 
directed towards the future, the linear operator 
t)JK:P (Vj , V +) -+P (Vj, V +) and the bilinear operator 
8JK,,,,:P XP-+P are defined by 

SJ" [tf;](Xi) = t)JIO[cP ] (x)exp( - iK'x), (3.1) 

t)J",,,z [tf;"tf;2](X,) = 8J(2)(cP"cPZ] (x) 
X exp( - i(K, + K2)·X), (3.2) 

where 

cP (x) = tf;(Xj )exp(iK'X), 

cPj(x) = tf;j(xj)exp(iKj'X), j = lor 2. 

(3.3) 

(3.4) 

(b) For KEV h+ with IrnK timelike the linear operators 
8x" and DU K on P are defined by 

D"DX,,[tf;] =8u,,[tf;J, (3.5) 

D"8u,, [tf;] - qmo- 'e-zV E A <Po·8u" [tf;] 

- qmo- 'e- z8x" [tf;]·V E(V Ii A <Po'u) 

= qmo le-
2V" A tf;·u. (3.6) 

Remark 5: We have to show that the right-hand sides in 
(3.1) and (3.2) are independent ofxh, i.e., VEVh=?Tv acts as 
the identity operator on the right-hand sides of (3.1) and 
(3.2). Let us check (3.1). For VEVh we have from Lemma I 
T"t)J(I)[cP] = t)J1!1[T"cP ]. Thus 

Tv(t)JIII[cP ](x)exp( - iK'X)) = Tv(t)JIII[cP ](x)), 

Tv(exp( - iK'X)) = 8J"1[TvcP ](x)exp(iK.v)exp( - iK'X) 

= t)J11I[cPexp( - iK.v)](x)exp(iK.v)exp( - iK'X) 

= t)JIII[cP ] (x)exp( - iK'X), 

In the same way we may check (3.2) then we use 

T"t)J'ZI[cP,dJ ](x) = bJ (2) [TvcP,TvcP ](x). (Lemma I). 

Remark 6: Since IrnK, IrnK" and IrnKl are directed to­
wards the future in (a) above it follows that cP, cP I' cPzdo (E, V) 

f -"JIII d "J P ) . and they may thus be used as arguments 0 u an u - asm 
(3.1) and (3.2). 

Remark 7: The operators 8x" and 8u" defined by (3.5), 
(3.6) may alternatively be defined by 

DX" [tf;](Xj) = DXIO[cP ) (x)exp( - iK'X), (3.7) 

8u
K 

[tf; J(x i ) = DUIll [¢ ] (x)exp( - iK'X), (3.8) 

wherecP (x) = tf;(x;)exp(iK'X) andKEV h+ with IrnKdirected to­
wards the future. For IrnK directed towards the past we just 
replace the operators DX(!) and 8Ulll in (3.7) and (3.8) by DX"- I 

and 8u" -) defined on L () (E, V) by DX" -) [cPo] = DX(O) and 
DU" - )[cPo] =oDU(O) with DX(O) and 8u(0) as in (2.3), (2.4), and 
(2.6). The right-hand side of(3.7) and (3.8) is independent of 
X h and this follows as in remark 5. Now (3.5) and (3.6) is 
easily obtained from (2.3), (2.4), and (3.7), (3.8). 

Remark 8: The operator bJ" may in a natural way be 
defined also for IrnK directed towards the past. Define the 
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operator {)J°-):L O(E, V)-L O(E, V) so that oJ o-) [¢] is the 
linear part of the "current response" due to ¢ and is subject 
to the boundary condition that it vanishes towards the 
future. 

From (2.1) it easily follows that 

L¢o'OJO)[¢I]dP = S/I'OJO-)[¢o]dP, (3.9) 

for¢oeL 0 (E,v) and¢leLo (E,V). Alternatively (3.9) maybe 
used as the definition of oJ o-). Now define 

oJ" [¢] = oJo-)[¢ ]exp( - iK'X) (3.10) 

for ¢ (x) = ¢(Xj )exp(iK'X) with KE V h+ and ImK directed to­
wards the past. 

It follows from (3.9) that (¢o,{)J" [¢.]) 
= (oJ". [¢O],¢I) and thus IlL o(oJ" + oJ ... ) is an Hermitian 

operator on PL' Here L = (eo, el, e2, e3 ) denotes a Lorentz 
frame and the operator IlL takes the spatial part of a vector 
with respect to this frame, i.e., IlL (v) = v + eo·veo. Thus 

IlL o{)J" = 2 - III L o(oJ" + {)J". ) + 2 -Ill L o(oJ" - oJ". ) 
(3.11) 

expresses IlL ooJ" as the sum of one Hermitian and one anti­
Hermitian operator on PL' 

Result 3: (a) Take ¢o, ¢1EP(Vj,V+) andKo,KIEV h+ such 
that Ko + K I = 0 and ImK I directed towards the future. Then 

r ¢o.{)J ... [¢I]dxj = 2- lqc r fo(xj>u)[ox(l).V",,(u.¢o) Jv, Jv,xs 
+ ox(O).V ... (u·¢.) + ou( 1 )·¢o + ou(O).¢.] dX j du, (3.12) 

where 

(3.13) 

(b) Take ¢o, ¢I' ¢2eP (Vj,v+) and Ko, KI, K2EV h+ such 
that Ko + KI + K2 = 0 and ImK l , ImK2 are directed towards 
the future. Then 

r ¢o.{)J" .... z[¢ .. ¢2]dxj =2- lqc 2: 2 r fo(P,u), 
J~ ~~r=O J~xs 

a#(3#r#a 

(6- lox(0) ®ox(l) ®ox(2):V E ® V E ® V E(U'<PO) 

+ 2 -Iox(a) ® ox(f3) ® ou(y): V E ® V E ® <Po 

+ 2- lox(a)®ox(f3): 

V"y ® V"y(u'¢r) + ox(a)®ou(j3):V"y ® ¢r Jdx j du,(3.14) 

where we also use definition (3.13). 
(c) Take KEV h+ with ImK timelike and ¢€P, then 

ox" [¢] = - qmo- I C -2 (V sD ,,- I(U'¢) 

+ D .. - l(u.D .. V sD ,,- I(U'¢))u J. (3.15) 

Definition 5: For KEVh (note ImK = 0) define 

D .. -_I = lim D ,,-_I jM' 
A -0 + 

whereeES. 

(3.16) 

(3.17) 

Corollary 1: If the limits in (3.16) and (3.17) exist and are 
equal we define for KE Vh 

(3.18) 
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and then (3.15) together with (3.5) defines ox" and oUK also 
for K with ImK = O. Then, for K, K I' K2E Vh , the integrands of 
(3.12) and (3.14) are perfectly symmetric with respect to per­
turbation of(O,l) and (0,1,2), respectively. 

ProofofCorollary 1: Due to (3.18) the only source of 
asymmetry is removed. 

Corollary 2: If D .. -+1 = D ,;_1 and if we may neglect pole 
contributions in (3.12) (with K = KI = - Ko, KEVh ) then 
IlL ooJ" is an Hermitian operator on P L ( V; , V + ), (cf. remark 
8). 

Proof By the assumptions 

r ¢0.{)J .. [¢I ]dxj = r ¢I'OJ _" [¢o] dXj (3.19) Jv, Jv, 
thus 

(¢0,{)J~)[¢1]) = r ¢O··oJ~I) [¢.1dx j Jv, 

= L.oJI~,,[¢o·]'¢ldXj = L.{)J~I)[¢O]·'¢ldXj 

(3.20) 

Remark 9: The Fourier transform with respect to Xh of 
a function G (x) is 

G,,(x j) = r G(x)exp( - iK'X)dxh (3.21) 
JVh 

and the inverse transform 

G(X) = (21T)-m r G,,(xj)exp(iK'X)dK, 
JVh 

(3.22) 

where m is the dimension of Vh • In (3.21) we take KE Vh or 
sometimes KE V h+ with timelike imaginary part and corre­
spondingly we may have to choose some path of integration 
in V h+ in (3.22) [see (2.1), (2.2), and Remark 1-3 in Ref. 8]. 

Lemma 3: We have the following Fourier transforms 

r {)J12)[¢,¢ ](x)exp( - iK'X)dx
h Jv. 

= (21T)-m r {)J"'.K_'" [¢""¢,,_,,,]dK', JVh 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

where ¢Jxj) is the Fourier transform of ¢ (x) with respect to 

Proof Calculate the inverse transforms of (3.23 )-(3.26). 
The results follows directly from (3.1), (3.2) and (3.7), (3.8). 

Proof of result 3: Consider case (a). Take Ko and K I as in 
this result. Take ¢.(x) = ¢1(x;)exp(iKI'X) and ¢oeL 0 (E,V) 
nLo (E, V). Substitution in (2.1) then yields (3.12) by means of 
(3.23), (3.25), (3.26), (3.7), and (3.8). In a similar way one 
obtains (3.14) from (2.2). 
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4. ALMOST PERIODIC MOTION 

The purpose of this section is to give, in terms of the 
unperturbed particle orbits, a sufficient condition for (3.18) 
in Corollary 1. Consider the unperturbed plasma in Sec. 3 
and choose a vector eOESnVh. Let (x(t), u(t))EE xS be the 
motion of a plasma particle with parameter t as eo time, i.e., 
ordinary time for an observer with eo as time axis (i.e., 
eo·x(t) = - ct). Denote the projection of this orbit on Vi xS 
by r i = [(x;(t ),u(t )lItER ]. 

Result 4: LetA bea continuous function on Vi xs andK 
a vector in Vh • If x; (t ) and u( t ) are almost periodic functions 
(in the sence ofH. Bohr4) and X h (t) is the sum ofa linear and 
an almost periodic function, and 

lim I(D .. -+I;rlc"A )(x;,u)1 is bounded on r; (4.1) 
1/ .. 0+ 

then 

(4.2) 

Remark 10: Denote the module of the almost periodic 
part of (x(t ),u(t)) by [iln In interger J. (Each almost periodic 
function determines a countable spectrum of Fourier expo­
nents and the module is then the smallest set which contains 
this spectrum and is closed under subtraction.) According to 
the assumptions in Result 4 we may write 

xh(t)=cteO+tvd +ra(t), (4.3) 

where eO,vd = eo·ra(t) = 0 and ra(t) is almost periodic. De­
fine UJ and k by 

K = c- IUJeo + k. 

It follows from the proof of result 4 below that 

(D .. -±l )(x;(t),u(t))~iL(UJ - k,vd - iln)-Ian 

xexp(z'ilnt), 

where an is determined from 

(4.4) 

(4.5) 

(4.6) 

and a(t) is given by (4.36). The assumption (4.1) is in general 
needed to prove (4.5). The reason for this is the small denomi­
nators in (4.5). The module [il n ] is indeed dense onR except 
when the almost periodic part of the motion is exactly 
periodic. 

Remark 11: Each point (x,u) in the plasma determines a 
set r (x,u) C E X S consisting of all points ofthe particle orbit 
through (x,u). Together with eoES the point (x,u) determines 
a module [iln (x,u)] and a drift velocity vd(x,u) [with 
eO'vd(x,u) = 0] if the particle orbit parametrized in eo time 
have the properties assumed in Result 4. From the homo­
geneity in the Vh directions it follows that vd(x,u) = Vd(X;.U) 
and [iln(x,u)] = [iln(Xi'U)]. Thus from (4.5) and (3.15) we 
observe that the poles in (3.12) and (3.14) are due to factors 
[UJ - k.vd(x;.u) - iln(X;.U)]-I. 

Remark 12: If a particle orbit have the properties as­
sumed in result 4 when parametrized in eo time then this is 
true also in e-time where e is any element in SnVh • This will 
now be demonstrated. Let s = h (t ) be the relation between e­
time s and eo-time t with respect to the particle orbit x(t) so 
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that x(h - I(S)) is the particle orbit in e time, that is 

h (t) = - c- le.x(t). (4.7) 

We observe directly that h (t ) is the sum of a linear and 
an almost periodic function and that h (t ) is strictly increasing 
[t2> t l=?X(t2) - x(td future oriented 
=?e·(x(t2) - x(t d) < O:=?h (t2) > h (t Ill- From Lemmas 5 and 6 
below it is easy to see that it is now sufficient for us to show 
h - I(S) is uniformly continuous. We use the following simple 
result: There exist a k> 0 such that 

Iv.el > k Iv·eol for all timelike v. (4.8) 

[Choose k > 0 such that e - keo is future oriented. For 
uES we then have 
u·(e - keo) <O:=? - ku·eo < - u·e=?lu.el > k lu.eo l=?(4.8)]. 

Given 6> 0, take D = k6; then 

Ih (t2) - h (tdl < D=>C- I le.(x(t2) - x(td)1 

(4.9) 

and thus h - I(S) is uniformly continuous. 
Lemma 4: Let g(t ), tER n, be a continuous function and 

h (s) an almost periodic function with values in R n. Then 
g(h (s)) is almost periodic and the module of g(h (s)) is con­
tained in the module of h (s). 

Proof It is sufficient to prove that given an 6> 0 there 
exists a trigonometric polynomial a(s) 

such that An is an element in the module of h (s) and 

Ig(h (s)) - a(s)1 <6, for sER. 

First define KCR n by (choose any norm on R n) 

K= [tERnlltl.;;;;sup Ih(s)1 + 1] 
SER 

(4.11) 

(4.12) 

then K is a compact set since h (s) is bounded. Being continu­
ous g(t ) is also uniformly continuous on K and thus we may 
choose a D with 0 < D < 1 such that for t I' t2E1( and 
It I - t21 <D, 

Ig(t l ) -g(t2 )1 <€f2. (4.13) 

By Weierstrass approximation theorem there exists a poly­
nomialp(t) in n variables tER n such that 

Ig(t) - p(t) I < €f2, tEl(. (4.14) 

Since h (s) is almost periodic there exists a trigonometric 
polynomial b (s) = 1,bnexp(iAns) withAn from the module of 
h (s) and 

Ih(s)-b(s)I<D<I, sER. (4.15) 

Now it easily follows from (4.13) and (4.15) that a(s) = p(b (s)) 
have the required properties. 

Lemma 5: Let s = h (t) be a strictly increasing function 
from R to R which is the sum of a linear and an almost 
periodic function. Then the inverse t = h - I(S) is also the sum 
of a linear and an almost periodic function if and only if 
h -I(S) is uniformly continuous. 

Lemma 6: Let the real valued functions g(s) be the sum 
of a linear and an almost periodic function and let h (s) be an 
almost periodic function. Then h (g(s)) is almost periodic. 

Proof of Lemmas 5 and 6: See, Ref. 9 
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Lemma 7: Let a(s) be an almost periodic function and 
define 

a"{s)=e-,,sI~oo eT/S'a(s')ds', n>O, (4,16) 

aT/Is) = - eT/S 100 

e - T/S'a(s')ds', 1] > O. (4.17) 

Then aT/{s) and aT/Is) are almost periodic with the same Four­
ier exponents as a(s). Furthermore, the functions aT/ (s) and 
aT/Is) are majorized4 by 1]- la(s). 

Proof Let 7 be a translation number of 1]- la(s) corre­
sponding to € > O. Then, by definition 

11]-la(s+7)-1]-la (s)I<€, forsER. (4.18) 

We easily obtain 

aT/Is + 7) - aT/Is) 

= e - T/S f 00 e"S'(a(s' + 7) - a(s'))ds' 

and then by means of (4.18) 

laT/(s + 7) - aT/(s)1 <€ 

(4.19) 

(4.20) 

and thus aT/Is) is almost periodic and majorized by 1]- la(s). 
For arbitrary but fixed 1] > 0 we may expand aT/ (s) and a(s) in 
Fourier series 

a(s) - I An exp (iAns), (4.21) 
n 

a,,(s)- IBn exp (iAnS), (4.22) 
n 

where! An J is the set of all Fourier exponents in a(s) and 
a" (s). From (4.16) 

d 
-(aT/Is)) = -1]a,,(s) + a(s) (4.23) 
ds 

and thus 

(4.24) 

and so a" (s) have the same Fourier exponents as a(s). All 
statements about aT/ (s) is now proved and aT/Is) may be treated 
in a similar way. The result corresponding to (4.24) is 

(4.25) 

Lemma 8: Let a(s) be an almost periodic function. Then 
(a), (b) and (c) below are equivalent 

(a) fa(S/)dS' is a bounded function of sER. 

(b) lim laT/(s)1 is a bounded function of sER. 
,,-0+ 

(c) lim aT/ (s) = lim aT/Is) is a bounded function of sER. 
",->0 + ,,-0 + 

Proof We prove (c)~(b)~(a)~(c). Here (c)~(b) is triv­
ial and (b)~(a) easily follows from 

I fa(S/)dS,/-;;;; la,,(s)1 + laT/(O)1 + 1] fla,,(S/)1 ds', (4.26) 

which we obtain by partial integration. From (a) and (4.21) it 
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follows that 

d (s)- I(iAn)-IAnexp (iAns) (4.27) 
n 

is an almost periodic primitive function of a(s). We will show 
that 

(4.28) 

is a majorizable set of functions and that 

lim T- 1 (Id(s) - a,,(s) 12ds~0 when 1]~0 +. (4.29) 
T-eo Jo 
Then it follows (Ref. 4, Sec. 73) that 

aT/(s)~(s) when 1]~ + (4.30) 

and in a similar way, 

aT/(s)~ (s) when 1]~ + (4.31) 

and thus (c) is obtained from (a). By the identity 

d (s) - aT/{s) = 1]dT/{s) (4.32) 

and Lemma 7 applied to d (s) we obtain that the set (4.28) is 
majorized by d (s). From (4.24), (4.21), and Parseval's equa­
tion for almost periodic functions we get 

P?: T- l iT Id{s) - a'l(sWds 

(4.33) 

Given € > 0 choose N so large that 

I IAnIZAn- Z<€ (4.34) 
Inl >N 

and this is possible to do since the series in (4.34) is conver­
gent [since (4.27) determines an almost periodic function]. 
Now the right-hand side in (4.33) is smaller than 

I IAn IZAn-Z1]2(1]2+A~)-1 +€ (4.35) 
Inl<N 

and (4.29) easily follows. 
Proof of Result 4: Define 

a(t) = [Ix/(t ).x'(t)I] llZA (X;(t ),U(t ))exp [iK'X(t)]. (4.36) 

Then a(t ) is almost periodic with Fourier exponents in the set 
! fln - U) + k,vd Ifln is an element in the module of the al­
most periodic part of(x{t ),u{t)) J [see (4.4) and Lemma 4]. By 
integration along the unperturbed orbit (x{t ),u{t)) we obtain 
(see Remark 13 below) 

(D K-+\"e"A )(x;(t ),u{t)) = a7)(t )exp[ - iK.X(t))' iJ = c1], 
(4.37) 

(D K-_I iTw"A )(x;(t ),u(t)) = a7)(t )exp [ - iK·X(t)]. (4.38) 

The condition (4.1) implies by means of (4.37) that (b) in 
Lemma 8 is satisfied by a(t) in (4.36). From this lemma and 
(4.37) and (4.38) we obtain (4.2). 

Remark 13: Let (x(t ),u(t)) be an unperturbed orbit; 
where t is eo time and let (x(s),u(s)) be the same orbit parame­
trized by arclength so that sic is proper time for the particle. 
The relation between sand t is 

ds = [Ix'(t ).x'(t)I] liZ. 

dt 
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The equation for the orbit is simplest in proper time 

i'ls) = u(s), 

U'(S) = qno- IC-
2V Ell 4>o(i(s))·u(s). 

Let B (x,u) be a function on E xS then 

(DoB )(i(s),u(s)) = !!..- B (i(s),u(s)) 
ds 

(4.40) 

(4.41) 

(4.42) 

and so we may calculate D 0- I by integration along unper­
turbed orbits. 

5.SUMMARV 

The first- and second-order conductivity tensors of a 
homogeneous Vlasov-plasma possess (approximately) cer­
tain well-known symmetry relations, which lead to the (ap­
proximative) conservation of wave energy. The purpose of 
this paper is to consider what happens when the plasma is 
inhomogeneous. Our starting point is the previously derived 
formulas (2.1 )-(2.6). It is quite straightforward that (2.1)­
(2.6) leads to the expected symmetries [i.e., (1.l)-(1.4)} when 
the plasma is homogeneous. However. in order to find the 
symmetries implied by (2.1)-{2.6) for an inhomogeneous 
plasma, essential use is made of result 2, which is new and 
give the solution of(2.3)-(2.6)-i.e., the Lagrangian pertuba­
tions 8x(j) and 8u(j)-in terms of the inverse unperturbed 
Vlasov operator. This inverse operator may be calculated by 
integration along unperturbed particle orbits which thus 
now explicitly enters in the response operator formulas. As­
suming a stationary unperturbed state and by Fourier trans­
formation in time and eventual spatial homogeneity direc­
tions we get in Sec. 3 from (2.1 )-(2.7) the condition 
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D K-+
1 = D K-_I for the wanted symmetries to be valid. In par­

ticular the fulfillment of this condition leads to an Hermitian 
(if we neglect pole contributions) dispersion operator (this 
follows from corollary 2) and, as will be seen in part II of this 
paper, 10 also to the Manley-Rowe relations in three wave 
interaction. It is now natural to search for conditions on the 
unperturbed particle orbits that leads to D K-+

I = D .-_' . In 
Sec. 4 a class of almost periodic motions is considered and in 
result 4 we obtain a result of the wanted form. 

Two reasons for the choice of studying almost periodic 
motions are (a) it is a sufficiently large class of motions to be 
physically interesting and (b) there is a good theory for gener­
alized Fourier series of almost periodic functions. It is (b) 
that make the analysis in Sec. 4 possible. 
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The three-wave interaction in a possibly strongly inhomogeneous plasma is considered. Coupled 
mode equations are derived with coefficients expressed in terms of the response operators treated 
in part I of this paper. 

PACS numbers: 52.35.Fp, 52.40.Fd 

I. INTRODUCTION 

The purpose of this part II is to derive the coupled mode 
equations for waves in an inhomogeneous plasma. The coef­
ficients will be expressed in terms of the first-and second­
order conductivity operators and thereby illustrate how the 
formulas and results in part II may be used. 

There are in general great qualitative differences be­
tween resonant wave interaction in a strongly inhomoge­
neous and a homogeneous plasma.2 We will only consider 
the situation where a pure resonant three-wave interaction is 
possible. The requirements for this is now much stronger 
than in the homogeneous case. Still the equations derived 
will be valid in situations of considerable physical interest. 
For example, the resonant interaction of three surface modes 
may be considered. 3 The symmetries that were discussed in I 
are of great importance for the properties of the coupled 
mode equations. Actually we have to assume from the outset 
that the normal modes, to first order, are determined by Her­
mitian operators. 

The class of three-wave interaction processes we are 
going to consider is the simplest possible where still the inho­
mogeneity of the plasma may be essential in the calculation 
of the coupling coefficients. Note that for a weakly inhomo­
geneous plasma we may use WKB analysis and obtain the 
mode coupling equations,4 but the coefficients are then cal­
culated for a homogeneous plasma. We take the unperturbed 
state of the plasma as in Sec. 3 (I). As in I we decompose the 
four-vector space Vas V = Vh + Vi' where Vh contains all 
directions of homogeneity of the plasma and Vi = V * . Cor­
respondingly we uniquely write a four-vector x as 
x =Xh +Xi , wherexhEVh andxiEVi . Let the plasma have 
normal modes of the form 

¢(xi ) exp (iK'X h ) + complex conjugate, (1.1) 

for K = K I , K2, and K3, where 

(1.2) 

and KI ,K2,K3EVh, [In a Lorentz frame (eO,e l ,e2,e3 ) we may 
write (l.2) as WI + W2 + W3 = 0 and kl + k2 + k3 = 0 if we 
define Kj = c-IwA) + kj .] We may then consider the inter­
action between three wave packets of the form 

¢j(Xh, Xi) exp (iKj'X) + c.c., j = 1,2,3. (1.3) 

Each wave packet in (1.3) is a superposition of normal modes 
with K close to Kj . The amplitude ¢j(Xh' Xi) has a slow vari­
ation in Xh in comparison with exp iKj'X 
( = exp iKj.xhsince KjEVh). In principle one could write 
down a self-consistent set of equations describing the devel-

opment of¢j(xh, Xi),j = 1,2,3 including the resonant wave 
interaction. However, already the linear evolution of the 
wave packets may be very complicated. In general we have 
little control of the change in the Xi dependence with time 
and additional assumptions are thus needed in order to get 
resonably simple equations. Two important mechanisms be­
hind the complicated behavior in the general case may be 
distinguished. First, there may be several branches of nor­
mal modes represented in each wave packet. [The Hermitian 
operator IlL oHK defined in Sec. 2, determines to first order 
the branches of normal modes by dispersion relations 
A (K) = 0, where A (K) is some eigenvalue of IlL OH

K 
and con­

tinuous in K.] Normal modes with K close to Kj and belonging 
to one single branch have an approximately common Xi de­
pendence while there are in general no simple relation be­
tween normal modes from different branches. This means 
that we may have a fast and complicated linear development 
of the X i dependence of a wave packet if several branches of 
normal modes are present. We now come to the second 
mechanism. Let us consider the development of the Kj-wave 
packet if only normal modes from one single branch are pre­
sent. Let (¢j(x i ) exp iKj'X + c.c.) be a normal mode of this 
branch. Then we have 

¢j(Xh' Xi) =Aj(xh, Xi) ¢j(Xi )' (1.4) 

where the complex valued function Aj(xh , Xi) varies slowly 
inxh andx i in comparison with exp (iKj.X) and ¢j(xi ), respec­
tively. When the inhomogeneity also is weak we have the 
situation in Ref. 4 and WKB analysis may be used. In the 
present paper we will consider a complementary case, in­
volving a possibly strong inhomogeneity, where the typical 
wavelengths of the normal modes are of the same order as 
the size of the plasma. Then the slow variation ofAj(Xh' Xi) in 
Xi effectively means that it is constant in Xi' Another situa­
tion when this may happen is when the normal modes are 
localized, take for example surface waves. Then the thick­
ness of the layer close to the surface, where the wave fields 
are essentially different from zero, enters instead of the plas­
ma size. In order to obtain the coupled mode equations given 
in the result and in Corollary 2 of the next section we thus 
need to assume that (A) only one branch of normal modes 
exists fOrK close to Kj forj = 1,2, and 3, (b)Aj(xh' x,) in (1.4) 
is independent of Xi' 

The resonant three-wave interaction is then described 
by equations of the same form as in a homogeneous plasma. 
The inhomogeneity enters in the calculation of the coeffi­
cients in these equations. 

183 J. Math. Phys. 23(1), January 1982 0022-2488/82/010183-05$02.50 . © 1982 American Institute of Physics 183 



                                                                                                                                    

2. THE COUPLED MODE EQUATIONS 

We use the notation from part I and Ref. 5. The electro­
magnetic waves are governed by the wave equation for the 
perturbation ¢ of the 4-potential 

VE,(VE I\¢) = - (,uo/to)l/z(8J1II[¢] + 81 1Z1 [¢,¢ ]). (2.1) 

Here V E is the four-dimensional gradient operator on the 
event space. The second-order current response is included 
in (2.1) since we are considering the three-wave interaction. 
We Fourier transform (2.1) with respect to Vh and obtain 

V".(V" I\¢,,) + (,uo/tO)I/Z81" [¢,,] 

= - (,uo/Eo)I/Z(21T) . m ( 81"'."_K' [¢K"¢K-K' ]dK'. (2.2) Jv, 
As in I we have VK = iK + Vi'¢K(Xi ) is the Fourier trans­

form of ¢ (x) and m is the dimension of Vh • The linear terms 
have been collected on the left-hand side in (2.2) and we re­
write these as 

(2.3) 

The operators H" and h" are defined on [see definition 3 (I)] 
P(V;, V+). Take KE Vh andletK + (K - ) denote that a future 
(past) oriented infinitesimal imaginary part is present in K. 

W<: define [c.f. remark 8 (I) and definition 5 (I)] 

HK tP = V" ,(VK 1\ 1/;) + (,uo/Eo) l/z2 -1(8J .. +- + 81
K 

_ ), (2.4) 

h"l/;= -(,uo/EO) Ii2i2- 1(8J .. + -8JK ). (2.5) 

The resonant particle contributions is contained in h
K

• 

Convention: The" + " sign but never the" - " sign 
will be omitted after "K" in most places below. We observe 
that "K + " indicate that we consider the causal (i.e., the 
physical) response of the perturbation. 

Lemma 1: Take KE Vh and a Lorentz frame L. Then 
Jl L 0 HK and II L °h •. are Hermitian operators on P L (Vi' V +). 

Proof The operator Jl L is defined in remark 8(1) and 
takes the spatial part of a 4-vector with respect to L. From 
remark 8(1) it follows that only the Hermitian property of 
JldVK,(VK 1\ tP)) remains to be demonstrated. We make use 
of the identity 

tPT,(VK,(VK 1\ I/;z)) + Vi·(tPT,VK 1\ I/;z) 

= I/;z,(VK,(VK 1\ I/; d) * + vj .(I/;2"(VK 1\ I/;tl*), (2.6) 

where 1/;1' tP2EPL(Vi' V+). By integrating (2.6) over Vi we 
obtain 

(1/;\, VK,(VK 1\ tP2) = «(VK,(VK 1\ tP\), tPz) (2.7) 

and now the Hermitian property we wanted to show follows 
easily and Lemma 1 is proved. 

Given KE Vh we associate with each I/;EP ( Vi' V +) the 4-
potential 

¢ (x) = tP(x i ) exp (iK'x) + C.c. (2.8) 

and the corresponding electromagnetic field tensor 
- V E I\¢. The necessary and sufficient condition for tP, and 

tP2 in P ( Vi' V +) to represent the same electromagnetic field 
is 

(2.9) 

Accordingly we make the following definition. 
Definition: A function/(tP) of I/;EP (Vi> V +) is gauge in-
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variant with respect to KEVh if 

VK 1\ tPl = VK 1\ tPz=?/(tPd = /(I/;z)' (2.10) 

Lemma 2: Take KEVh and a Lorentz frame L = (eo, el , 

e2, e,) such that eO'K j= O. For each tPEP (Vi' V +) there exist a 
unique XEPL (Vi' V +) such that VK 1\ tP = VK I\X. In terms of 
the electric field (E(x,) exp iK'X + c.c.) in the Lorentz frame 
L due to tP and K we get X(xi ) = - i(c/w)E(Xi) with 
w = - ceo·K. 

Proof: The existence of X follows by checking that 
- (V K I\X (Xi) exp iK'X + c.c.) with X(xi ) = - i(c/w)E(x,) is 

equal to the electromagnetic field tensor due to K and tP. This 
is straightforward to do if we use Faraday's law. 

The uniqueness of X follows from 
eo'(V" 1\ 1/;) = eo' (V" I\X) = ieo'KX and eo·Kj=O. 

Remark 1: In Lemma 1 we consider operators defined 
on P d Vi' V +) C P (V,, V +). This is necessary in order to 
obtain Hermitian operators [see Remark 4 (I)]. From 
Lemma 2 we may observe that a particular gauge which 
uniquely determines the 4-potential as a very simple func­
tion of the electric field then has been chosen. 

Result: Let tPj and Kj be given for j = 1, 2, and 3 such 
that tPj EP (Vi,v +) and Kj E Vh and 

HK,tPj = 0 andK I + K2 + KJ = O. (2.11) 

Assume that: 
(i) To first order we may neglect hK in comparison with 

H K,' Thus ' 

I/;j(x i ) exp (i .. ;x) + c.c. (2.12) 
are normal modes. 

(ii) Any wave packet of normal modes with K close to Kj 

will, if an appropriate gauge is chosen, be proportional to 
tPj(xi ) (see Remark 3 below). Then , 

¢(x)= IAj(xh)tPj(xi)exp(iKj'x)+c.c. (2.13) 
j~1 

is approximately a solution of (2.1) provided the complex 
amplitudes Aj(xh) satisfy the mode coupling equation 

[Vh (I/;"H .. 1/;,) ] .. ~ K:V h A f - (I/;,A,I/;,)A f 
= 2i(,uo/Eo) 1/2( tPf, 81K , j ,,,.,j [1/;1' 1/;2] )A IA2 (2.14) 

and the two equations obtained by permutating 1,2, and 3. 
The first V h in (2.14) acts on KE Vh and the second on x h E Vh . 
We note some properties of the coefficients. The 4-vector 
[V h (I/;j' H" I/;j ) ]K ~ ") is gauge invariant with respect to Kj . It 
is proportional to the group four velocity ugjEVhrS of wave 
j. In a Lorentz frame L = (eO,e l ,e2,e,) we have the relation 

e(),[Vh (tPj' H .. I/;) ]"~" = (t(fUj)-IUj, (2.15) 

where Wj = - ceo'Kj is the frequency of wave j and 
IAj (Xh 112 Uj is the over V. integrated energy density ofwavej. 
The quantity (I/;j' h .. , tPj) is real and gauge invariant with 
respect to Kj . It is proportional to the linear damping. Finally 
(I/;f, 8J •. , ... , [tPl' tP2]) is gauge invariant with respect to K I , 

K2, or K3 when considered as a function of 1/;\0 tPz, or 1/;." 
respectively. 

Proof: See Secs. 3 and 4. 
Corollary 1: If D .. -+' = D ~,-' for K = KI, K2 and K3 and 

wave-particle interactions are neglected then [see corollary 
1-2 (11] hK, = 0 and (I/;f, 8JK" K, [1/;" tP2]) is independent of 
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permutations of 1,2, and 3. The Manley-Rowe relations are 
then satisfied, i.e., 

(2.16) 

is independent ofj,jE( 1,2,3 J. 
Proof The Manley-Rowe relations follows from (2.14) 

and the two other equations obtained by permutations of 1, 
2, and 3 if we make use of (tPj, hKjtPj) = a and the symmetry 
of the coupling coefficient. 

Corollary 2: With the assumptions in the result we may 
write (2.14) in a Lorentz frameL (eO,e l ,e2,e3) as 

( i. + V 3' i. + Y3 \ A t(t,r) = iUJ3 V(3, 1,2)A l(t,r)A2(t,r). at g ar -r W3 
(2.17) 

We define cteo + r = X h , (UJ/c)eo + k = K for j = 1,2, and 3 

Uj = EoUJj ( :w (tPJ' HKtPj) t=K,' (2.18) 

Vg; = - ( :k (tPj' HKtP)/ :UJ (tPj' HKtPj) t=K/ (2.19) 

Yj =EoUJj(tPj,hK,tPj)Wj-
l
, (2.20) 

V(3,1,2) = - 2c- l (tPt, 8JK"K, [tPI' tP2])' (2.21) 

Proof Corollary 2 follows in a straightfoward way from 
the result, 

Remark 2: By assumption (i) in the result the first-order 
linear wave spectrum is determined by an essentially Hermi­
tian operator. This is of course an important simplification 
due to the nice properties of such operators. The assumption 
is essential for the derivation of (2.14). 

Remark 3: Assumption (ii) in the result is easily seen to 
be equivalent to (a) and (b) in the end of the Introduction, 
Without (a) a pure three-wave interaction process is no long­
er possible since also modes on the other branches would be 
excited. In the case of many such modes this may be a fast 
randomization mechanism,2 

3. A COROLLARY OF RESULT 1 IN REFERENCE 5 

In order to prove the gauge invariance of the coeffi­
cients in (2.14) we need (for m = 1 and 2) the following corol­
lary of Result 1 in Ref. 4. 

Corollary 3: (a) The quantity 

LtPo(x).DJlml[¢lI, ... ,tPm ] (x)dx, (3.1) 

appearing in Ref. 4 in (3.1) and (3.2), is gauge invariant in ¢lj 
forj = O,I, ... ,m. 

(b) 8J lml [tPI' ¢2, .. ·,tPm ] is gauge invariant in tPj for 
j= I, ... ,m. 

(c) V E·8J lml [tPI, ... tPm ] = a (3.2) 
Proof In (a) we need to prove that if V E 1\ ¢lj = V E 1\ ¢I ; 

for j = O, ... ,m then a substitution of tP ; instead of tPj in (3.1) 
does not change the value of the quantity (3.1). This follows 
easily by the use of(4.22), (4.23), and (4.25) (in Ref. 5) in (3.1)­
(3.3) (Ref. 5). We directly obtain (b) from (a) so now only (c) 
remains. From (a) we have 
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Since V E 1\ (V EB) = a for any scalar function B (x) we 
obtain from (3.3) that 

1 V EB (X).DJlml[tPl, .. ·,tPm ] (x)dx = O. (3.4) 

By partial integration of(3.4) we easily see that (3.2) follows. 

4. DERIVATION OF THE RESULT 

The derivation of the result is divided in the following 
steps: 

(a) The gauge invariance of the coefficients in (2.14) is 
proved. 

(b) We prove that the imaginary parts of the coefficients 
on the left hand side vanishes. 

(c) Equation (2.14) is then derived. Due to (a) above it is 
now sufficient to consider the case when 
!/I1,tP2,tP3EPL (V" V +), where L is some Lorentz frame. 

(d) We show that [Vh (tPj' HKtP) ]K=K, is proportional 
to the group four velocity 

(e) We demonstrate that the wave energy density inte­
grated over Vi and with respect to a Lorentz frame 
L = (eO,e l ,e2,e3) is equal to IAj(Xh W Jtj where Uj is given by 
(2.18). From this (2.15) follows. 

Proof of (a): First we demonstrate the gauge invariance 
of (!/I, HKtP), i.e., for tP, !/I'EP(Vi' V +) we want to show the 
implication 

VK 1\ tP = V K 1\ !/I'~(!/I, HK!/I) = (!/I', HKtP'). (4.1) 

From remark 8(1) and (2.7) (which is valid for !/II' 
!/I2EP ( V;, V +)) we easily obtain 

(tPI,HK !/I2) = (HKtPI,!/I2)' (4.2) 

It follows from Corollary 3(b) that HK tP is gauge invariant 
with respect to K. IfVK 1\ tP = VK 1\ !/I' we now obtain 

(!/I,HK!/I) = (!/I,HK!/I') = (HK!/I,!/I') = (HKtP',tP') 

= (!/I',HKtP'). (4.3) 

We have now derived (4.1). The formulas (4.1)-(4.3) remains 
valid if we replace H with h and now the gauge invariance of 
the coefficients on the left-hand side in (2.14) follows. In the 
right-hand side we must prove that (!/IT, OJK"K) [tPI,tP21) is a 
gauge invariant function of !/II' !/I2' and tP3 with respect to KI, 
K 2, and K 3, respectively. The statement conserning!/ll and!/l2 
follows easily from Corollary 3 (b). In order to prove it for tP3 
it is sufficient to demonstrate that the implication 
(!/IEP (V; , V-f-)) 

(4.4) 

However, V 1<, 1\ !/I = a implies the existence of a unique com­
plexvalued function A (Xi) such that 

VK,A (Xi) = tP(x;). (4.5) 

(Proof Write !/I = tPh + !/Ii in accordance with defini­
tion 2(a) (I). Observe that V K, 1\ !/I = 0 is equivalent the three 
relations (I): iK3 1\ !/Ih = 0, (2): Vi 1\ !/Ii = 0 and 
(3): iK31\!/I, + V, I\!/Ih = O. By means of (I) we haveK3 paral­
lel to !/Ih and we define a complex valued function A (Xi) by 
!/Ih = iAK3' By inserting this expression in (3) we obtain 
iK31\ (tP; - ViA) = a which implies tPi = V,A. Then also (2) 
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is satisfied and the existence and uniqueness of A have been 
proved.) By substitution of (4.5) in (4.4), by partial integra­
tion and the use of K 3 = - (K, + K 2) we obtain 

«(V .. ,A )*,8J .. , ... , [1/',,1/'21> = - i AV .. , H, .8J,., .... [1/',,1/'2Jdx i . 

v, 

From corollary 3(c) we easily obtain 
(4.6) 

V",H,·8JK ,-+ .. , [1/',,1/'2J =0. (4.7) 

Now (4.4) follows from (4.6) and (4.7). 
Proof of(b ): Take KE Vh and ¢EP (Vj , V +). According to 

Lemma 2 there exist a XEP L (Vi' V -+) such that 
V" I\X = V" 1\ 1/'. Due to (a) above we have 

(I/',H"I/') = <X, H,X) = (X, IlL oH"X). (4.8) 

The last term in (4.8) is real since IlL oHK is Hermitian. 
The reality of (I/', hKI/') is proved in the same way and (b) 
follows easily. 

Pro%/(c): Take 1/'" 1/'2' and 1/'3 in PL(Vu V+). We use 
the symbol 0 (E") to denote any quantity of order E" or small­
er, where E is a small parameter. We assume that 

A) = o (E), 1/')=0(1), LlK=O(E), H,,)=O(I), 

h", = 0 (E),(j = 1,2,3), (4.9) 

where LlK is the width in K space of the wave packets. 
Fourier transformation of (2.13) with respect to Vh 

yields 3 

cP,· = I (A),.. ,.l/'J + (A n,.. -+ ",I/'t) + 0 (E2), (4.10) 
)=, 

whereA)K_K, #0 only for K - K) = OlE). For K - K, = OlE) 
we have 

(1/'3,(HK + ih,..)cP,..) = (1/'3' [H", + (K - K3HVhH")"~K' 
+ ih,., + 0 (E2)]cP,..). (4.11) 

Since 1/'3EPdVi, V-+) and IlL oH", is Hermitian and 
(2.11) we obtain (1/'3' H,,J .. ) = O. Thus 

(1/'3,(HK + ihK)cPK) = (1/'3' [(K - K3HVhH K)K=K, 

+ ihK' + O(~)]cPK)' (4.12) 

We now substitute (4.10) in (4.12) 

(1/'3,(HK + ihK)cPK) = [(K - K 3HVh (1/'3,HKI/'3»)K=K, 

+ i(1/'3' hK,1/'3) ]A 3K - K., + O(~) (4.13) 

From (4.13) we then obtain by the inverse Fourier trans­
form [see (3.22) (I)] 

(21T) - m1 = K, -+ OrE) (1/'3,(HK + ihK )cPK) exp ilK - K3)·xdK 

= - i(Vh (1/'3,HKI/'3»)K=K, .VhA3(Xh) 

+ i(1/'3' hK' 1/'3)A3(Xh) + 0 (~). (4.14) 

Now substitute in (4.14) the right-hand side of (2.2) in 
place of(HK + ihK)cPK' We get 

(21T) - rn ( < 1/'3' - (,uofEo) '/2(21T) - m 

)K=K~+Ok) 
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X ( 8J" .. ,.. _ ,,' [cP,..·, cP,,- ,,' ]dK') JVh 

xexp irK - KJ)·xdK = - 2(,uofEo)'/2 

X (1/'3' 8J _",. -K, [I/'f, I/'~])A fA~. 
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(4.15) 

Now (2.14) follows from (2.2), (2.3), (4.14), and (4.15). 
Pro%/(d): Let us consider wave 3. We deal below with 

K satisfying K = K, + 0 (E). According to (a) above we may 
assume that 1/'3EP L ( Vi' V -+). Let A L (K) be continuous in K 
and an eigenvalue of the Hermitian operator IlL oH,. and 
satisfying A L (K 3) = O. We denote the corresponding eigen­
vectors X (K). Then according to assumption (ii) in the result 
the plasma have only one branch of normal modes for K close 
to K, (see Remark 3). Thus A L (K) is uniquely determined by 
the requirements above. The eigenvector X (K 3) is proportion­
al to 1/', and we normalize so that X (K,) = 1/'3' The dispersion 
relation of mode 3 is A L (K) = O. The ordinary group velocity 
in frameL is - [[JAL(K)/Jk]/[JAL(K)/JlU]t_."" where 
K = (lU/c)eo + k. Thus the group 4-velocity ug , ESnVh is pro­

portional to (VhAL(K))"~K" Now, if 

(1/'" H"I/',) = AL(K)(1/'3' 1/'3) + 0 (E2) (4.16) 

then it follows that ug , is proportional to (V h (1/'3,HK 1/'3»)K - K, 
as we want to show. In order to prove (4.16) observe that 

(1/'" H"O(I) = o (E), 

(0(1), IlL oH,,(1/'3) = OlE). 

The relations (4.17) and (4.18) follows from 

(4.17) 

(4.18) 

1/'3EP L (V" V -+), the Hermitian property of IlL 0 H" and 
H .. , ifl, = O. From (4.17), (4.18), andx (K) = 1/'3 + 0 (E) we ob­
tain 

(X(K),H"X(K) = (1/'3,HKI/'3) +0(E2). (4.19) 

We also have 

(x (K),H"X(K) = AL (K)(X(K), X(K) 

=AL(K)(1/'3' 1/'3) + 0(E2), (4.20) 

whereAL(K) = OrE) is used. The relations (4.19) and (4.20) 
gives (4.16). 

Pro%f(e): The wave energy in a loss less medium is 
equal to the work required from external sources to generate 
the wave. In an almost lossless plasma, like the one we con­
sider [assumption (i) in the result], it is reasonable to define 
the wave energy as the work required to generate the wave 
when dissipation is neglected. We want to calculate the 
overVj integrated wave energy density W3 of the normal 
mode 

(4.21) 

The wave energy is defined with respect to some Lorentz 
frame L. In accordance with the discussion above we calcu­
late W3 as follows. Take cP (x) so that cP (x) approaches cP3(X) 
towards the future and vanishes towards the past. Let Jex! (x) 
be the 4-current that linearily produces cP (x) if dissipation is 
neglected, i.e., [see (2.1) and Remark 8 (I)] 

V r;'(V E 1\ cP ) + (,uo/Eo)'/22 -'(8J(lI[cP 1 + 8J(I-I[cP ]) 

= - (,ut/Eo)'/2Jext. (4.22) 

Let E be the electric field due to cP and J ext the external 
current in the frame L = (eO,e"e2,e3). Take Was the energy 
density which is related to cP as W3 is to cP3' Then we have 

W'(t) = - i E(x)·Jext(x)dxi , 

v, 
(4.23) 

where t = - c-'eo'x and the line above the integral denotes 
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that variations in Vh on the scale exp iK3'X have been aver­
aged away. We obtain 

W3 = W( 00) = - f: 00 dt {E(X),Jexl(X)dX i , (4,24) 

Let a(t ) be a slowly growing function with a( - 00) = 0 and 

a(t )t/J (x) = (211r If [a(CtJ - CtJ))if'(Xi) exp (ik3'r) 

+ a(CtJ + CtJ))if'*(x,) exp - (ik),r)]e - i<v1dCtJ. 

a( 00) = 1. We then take 

(4.25) 

The 4-current J exI is determined by (4.22). Let a(CtJ) denote 
the Fourier transform of a(t). We assume that a(CtJ) #0 only 
for a sufficiently small CtJ. We have 

(4.26) 

From (4.22), (4.26), (2.4), and Remark 8 (I) we obtain (for typographical reasons we write HK [tP) = H [K,tP)) 

(211') - I J {a(CtJ - CtJ))H [(CtJlc)eo + k 3,if')] (Xi )exp ik),x + a(CtJ + CtJ3)H [(CtJ!c)eo - k), tP3 *l(xi) exp i( - k3,x) lejlv1dCtJ 

= - (PoIEO)II2Jext. (4.27) 

We may choose tP3EP L ( Vj , V +) and then by Lemma 2 

E(x) = a(t )i(CtJ3Ic)(tP3(X;) exp (iK 3'X) - c.c.). (4.28) 

We now substitute (4.27) and (4.28) in (4.24) 

W) = f(CtJ3Ic)(Eol.uo)I/2{21T)- J: 00 dtJ dCtJ a{1 l! - (tPT,H [(lU!c)eo - k), tPr]) 

Xa(w + lU3) exp i( - W3 - wIt + (rf3' H [(w!c)eo + k). rf3J )a{w - ( 3)exp f(W3 - wit I. (4.29) 

In the first term of the integrand in (4.29) only CtJ close tOCtJ3 will contribute (for only then a(CtJ + CtJ 3) #0) to the integral and 
in the second term only CtJ close to CtJ 3 will contribute. 

We accordingly may approximate the integrand by linear terms in (CtJ + lU3 ) and (CtJ - CtJ3)' We also use 

(if'T, H [(CtJlc)eo - k), if't1> = (tP3' H [ - (CtJ/c)eo + k), tP3]) (4.30) 

and then we obtain from (4.29) 

W3 = EclU3 [ a: (rf3,H I (lUI cleo + k 3• tP3 J) ] w ~ lv, J: 00 dt a(t )(211') - I J dw 

. [ - i(CtJ + CtJ3)a(CtJ + CtJ 3 ) exp( - i(CtJ + CtJ 3 )t) - i(CtJ - CtJ 3 )a(CtJ - CtJ3) exp ( - f(CtJ - CtJ3)t )]. (4.31) 

TheCtJ integral in (4.31) is equal to 2a'(t) and for the t -integral 
we then obtain 

J: oc dt a(t )2a'(t )dt = a( 00)2 - a( - 00)2 = 1. (4.32) 

5,SUMMARY 

The main result of this paper are the coupled mode 
equations in the form (2.14) or in "standards" form (2.17). 
Explicit expressions for the coefficients may be found in part 
I of this paper. In corollary 1 we see how the symmetries 
considered in part I leads to the Manley-Rowe relations. As 
have been stressed in the Introduction and in the Result 
there are, for an inhomogeneous plasma, additional condi­
tions for these coupled mode equations to be valid (see also 
remark 2). There are, however no specific restrictions on the 
geometry of the plasma and the formulas may still be used 
for a great variety of situations. We finally remark that this 
part II has been written in a model independent way only 
requiring knowledge of the response operators and the re-
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suIts may thus be useful also for fluid and/or collisional 
plasmas. 

Note added in proof The Lorentz frames 
L = (eO,e l ,e2,e3 ) of interest in this paper have the property 
thateo, ... ,em _ I EVh while em , ... ,e3EVj, wherem is thedimen­
sion of V H' This property of L has implicitly been assumed in 
some derivations above. 
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